×

Continuum mechanical modeling of liquid crystal elastomers as dissipative ordered solids. (English) Zbl 1477.76010

Summary: Liquid crystal elastomers (LCEs) are special cross-linked polymer materials combining the large elastic deformability of elastomers with the orientational orders of liquid crystals. Here we develop a general framework of LCEs in the language of continuum mechanics to consider the interaction of polymer backbone and Liquid Crystal (LC) microstructure, which is suitable for large deformation and large director rotation. Based on the dissipation principle, the balance of momentum and the evolution equations of orientational order are obtained. In addition to the deformation and its time derivative, the basic kinematic ingredients of this theory are identical to those arising in the director theories and the order tensor theories for nematic fluids. The Cauchy stress consists of not only the bulk stress contribution of the backbone but also the Ericksen-Leslie stress of LC and the obtained rotational momentum balance implies the asymmetric Cauchy stress due to the inhomogeneous director rotation. Based on the principles of objectivity and symmetry, we present the general form of free energy densities and Rayleigh dissipation function and give some possible invariants of constitutive functions. Further, we propose a simple model to study the rate dependence of stretch induced reorientation processes for thin LCE films. Semi-analytical method is utilized to obtain the solutions of constrained uniaxial stretches and stretches with shear for homogenous deformations. The results indicate that the stress-deformation response and the director rotation are rate dependent and can be non-monotonic depending on the initial orientations. Finite element simulations are carried out to study the process of uniaxial stretches with fixed grips. Two different types of stress induced director reorientation processes are observed, one via stripe domains and the other via uniform rotations. We find that the appearance of the stripe domains has a strong dependence on aspect ratios and initial director orientation, which show good agreement with experiment results.

MSC:

76A15 Liquid crystals
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
82D60 Statistical mechanics of polymers
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, D. R.; Carlson, D. E.; Fried, E., A continuum-mechanical theory for nematic elastomers, J. Elast., 56, 33-58 (1999) · Zbl 0978.74004
[2] Cirak, F.; Long, Q.; Bhattacharya, K.; Warner, M., Computational analysis of liquid crystalline elastomer membranes: changing Gaussian curvature without stretch energy, Int. J. Solids Struct., 51, 1, 144-153 (2014)
[3] Clarke, S.; Tajbakhsh, A.; Terentjev, E.; Warner, M., Anomalous viscoelastic response of nematic elastomers, Phys. Rev. Lett., 86, 18, 4044-4047 (2001)
[4] Clarke, S. M.; Terentjev, E. M., Slow stress relaxation in liquid crystal elastomers and gels, Faraday Discuss, 112, 325-333 (1999)
[5] De Gennes, P. G., Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A, 30, 8, 454-455 (1969)
[6] De Gennes, P. G., Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liquid Cryst., 12, 3, 193-214 (1971)
[7] De Gennes, P. G.; Prost, J.; Pelcovits, R., The Physics of Liquid Crystals (1993), Oxford University Press Inc.: Oxford University Press Inc. New York
[8] de Luca, M.; DeSimone, A.; Petelin, A.; Čopič, M., Sub-stripe pattern formation in liquid crystal elastomers: experimental observations and numerical simulations, J. Mech. Phys. Solids, 61, 11, 2161-2177 (2013)
[9] DeSimone, A.; DiCarlo, A.; Teresi, L., Critical voltages and blocking stresses in nematic gels: dynamics of director rotation for nematic elastomers under electro-mechanical loads, Eur. Phys. J. E Soft Matter, 24, 3, 303-310 (2007)
[10] Ennis, R.; Malacarne, L.; Palffy-Muhoray, P.; Shelley, M., Nonlocal model for nematic liquid-crystal elastomers, Phys. Rev. E, 74, 6 (2006)
[11] Ericksen, J. L., Conservation laws for liquid crystals, T Soc Rheol, 5, 1, 23-34 (1961)
[12] Ericksen, J. L., Liquid-crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113, 97-120 (1991) · Zbl 0729.76008
[13] Finkelmann, H.; Greve, A.; Warner, M., The elastic anisotropy of nematic elastomers, Eur. Phys. J. E, 5, 3, 281-293 (2001)
[14] Finkelmann, H.; Nishikawa, E.; Pereira, G.; Warner, M., A new opto-mechanical effect in solids, Phys. Rev. Lett., 87, 1 (2001), 015501/1-4
[15] Frank, F. C., I. Liquid crystals. On the theory of liquid crystals, Discuss. Faraday Soc., 25, 19-28 (1958)
[16] Fukunaga, A.; Urayama, K.; Takigawa, T.; DeSimone, A.; Teresi, L., Dynamics of electro-opto-mechanical effects in swollen nematic elastomers, Macromolecules, 41, 23, 9389-9396 (2008)
[17] Gent, A., Engineering with Rubber: How to Design Rubber Components (2001), Carl Hanser Verlag: Carl Hanser Verlag Munich
[18] Higaki, H.; Takigawa, T.; Urayama, K., Nonuniform and uniform deformations of stretched nematic elastomers, Macromolecules, 46, 13, 5223-5231 (2013)
[19] Hotta, A.; Terentjev, E. M., Dynamic soft elasticity in monodomain nematic elastomers, Eur. Phys. J. E, 10, 4, 291-301 (2003)
[20] Jin, L.; Zeng, Z.; Huo, Y., Thermomechanical modeling of the thermo-order-mechanical coupling behaviors in liquid crystal elastomers, J. Mech. Phys. Solids, 58, 11, 1907-1927 (2010) · Zbl 1225.74025
[21] Kundler, I.; Finkelmann, H., Strain-induced director reorientation in nematic liquid single-crystal elastomers, Macromol. Rapid Commun., 16, 9, 679-686 (1995)
[22] Kundler, I.; Finkelmann, H., Director reorientation via stripe-domains in nematic elastomers: influence of cross-link density, anisotropy of the network and smectic clusters, Macromol. Chem. Phys, 199, 4, 677-686 (1998)
[23] Leslie, F. M., Continuum theory for nematic liquid crystals, Cont. Mech. Thermodyn., 4, 3, 167-175 (1992) · Zbl 0760.76005
[24] Maffettone, P. L.; Sonnet, A. M.; Virga, E. G., Shear-induced biaxiality in nematic polymers, J. Non-Newton. Fluid Mech., 90, 2-3, 283-297 (2000) · Zbl 0981.76006
[25] Martinoty, P.; Stein, P.; Finkelmann, H.; Pleiner, H.; Brand, H. R., Mechanical properties of mono-domain side chain nematic elastomers, Eur. Phys. J. E Soft Matter, 14, 4, 311-321 (2004)
[26] Mbanga, B. L.; Ye, F.; Selinger, J. V.; Selinger, R. L.B., Modeling elastic instabilities in nematic elastomers, Phys. Rev. E, 82, 5 (2010), 051701/1-4
[27] Mitchell, G.; Davis, F.; Guo, W., Strain-induced transitions in liquid-crystal elastomers, Phys. Rev. Lett., 71, 18, 2947-2950 (1993)
[28] Oates, W. S.; Wang, H., A new approach to modeling liquid crystal elastomers using phase field methods, Modell. Simul. Mater. Sci. Eng., 17, 6, Article 064004 pp. (2009)
[29] Ohm, C., Brehmer, M., Zentel, R., 2012. Applications of liquid crystalline elastomers. 250, 49-93.; Ohm, C., Brehmer, M., Zentel, R., 2012. Applications of liquid crystalline elastomers. 250, 49-93.
[30] Pereira, G. G.; Warner, M., Mechanical and order rigidity of nematic elastomers, Eur. Phys. J. E, 5, 3, 295-307 (2001)
[31] Petelin, A.; Čopič, M., Observation of a soft mode of elastic instability in liquid crystal elastomers, Phys. Rev. Lett., 103, 7 (2009), 077801/1-4
[32] Petelin, A.; Čopič, M., Strain dependence of the nematic fluctuation relaxation in liquid-crystal elastomers, Phys. Rev. E, 82, 1 (2010), 011703/1-8
[33] Petelin, A.; Čopič, M., Nematic fluctuations and semisoft elasticity in liquid-crystal elastomers, Phys. Rev. E, 87, 6 (2013), 062509/1-19
[34] Sonnet, A. M.; Maffettone, P. L.; Virga, E. G., Continuum theory for nematic liquid crystals with tensorial order, J. Non-Newton. Fluid Mechanics, 119, 1-3, 51-59 (2004) · Zbl 1074.76007
[35] Sonnet, A. M.; Virga, E. G., Dissipative Ordered Fluids: Theories for Liquid Crystals (2012), Springer · Zbl 1258.76002
[36] Stein, P.; Aßfalg, N.; Finkelmann, H.; Martinoty, P., Shear modulus of polydomain, mono-domain and non-mesomorphic side-chain elastomers: influence of the nematic order, Eur. Phys. J. E, 4, 3, 255-262 (2001)
[37] Stenull, O.; Lubensky, T. C., Commentary on “Mechanical properties of monodomain side chain nematic elastomers” by P. Martinoty et al., Eur. Phys. J. E Soft Matter, 14, 333-337 (2004), author reply 339-340
[38] Stephen, M. J.; Straley, J. P., Physics of liquid crystals, Rev. Modern Phys., 46, 4, 617-704 (1974)
[39] Tajbakhsh, A. R.; Terentjev, E. M., Spontaneous thermal expansion of nematic elastomers, Eur. Phys. J. E, 6, 2, 181-188 (2001)
[40] Talroze, R. V.; Zubarev, E. R.; Kuptsov, S. A.; Merekalov, A. S.; Yuranova, T. I.; Plate’, N. A.; Finkelmann, H., Liquid crystal acrylate-based networks: polymer backbone-LC order interaction, React. Funct. Polym., 41, 1-3, 1-11 (1999)
[41] Terentjev, E. M.; Hotta, A.; Clarke, S. M.; Warner, M., Liquid crystalline elastomers: dynamics and relaxation of microstructure, Philos. Trans. Series A Math. Phys. Eng. Sci., 361, 1805, 653-663 (2003), discussion 663-654
[42] Terentjev, E. M.; Warner, M., Linear hydrodynamics and viscoelasticity of nematic elastomers, Eur. Phys. J. E, 4, 3, 343-353 (2001)
[43] Urayama, K.; Honda, S.; Takigawa, T., Slow dynamics of shape recovery of disordered nematic elastomers, Phys. Rev. E, 74, 4 (2006), 041709/1-7
[44] Urayama, K.; Mashita, R.; Kobayashi, I.; Takigawa, T., Stretching-induced director rotation in thin films of liquid crystal elastomers with homeotropic alignment, Macromolecules, 40, 21, 7665-7670 (2007)
[45] Verwey, G. C.; Warner, M., Compositional fluctuations and semisoftness in nematic elastomers, Macromolecules, 30, 14, 4189-4195 (1997)
[46] Warner, M.; Terentjev, E., Liquid Crystal Elastomers (2003), Clarendon Press: Clarendon Press Oxford
[47] Zeng, Z.; Jin, L.; Huo, Y., Strongly anisotropic elastic moduli of nematic elastomers: analytical expressions and nonlinear temperature dependence, Eur. Phys. J. E Soft Matter, 32, 1, 71-79 (2010)
[48] Zentel, R., Shape variation of cross-linked liquid-crystalline polymers by electric fields, Liquid Cryst., 1, 6, 589-592 (1986)
[49] Zhang, F.; Heiney, P.; Srinivasan, A.; Naciri, J.; Ratna, B., Structure of nematic liquid crystalline elastomers under uniaxial deformation, Phys. Rev. E, 73, 2 (2006), 021701/1-8
[50] Zheng, Q. S., Theory of representations for tensor functions—a unified invariant approach to constitutive equations, Appl. Mech. Rev., 47, 11, 545-587 (1994) · Zbl 0999.74500
[51] Zhu, W.; Shelley, M.; Palffy-Muhoray, P., Modeling and simulation of liquid-crystal elastomers, Phys. Rev. E, 83, 5 (2011), 051703/1-11
[52] Zubarev, E. R.; Kuptsov, S. A.; Yuranova, T. I.; Talroze, R. V.; Finkelmann, H., Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains, Liquid Cryst., 26, 10, 1531-1540 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.