Desiderio, Luca; Falletta, Silvia; Ferrari, Matteo; Scuderi, Letizia CVEM-BEM coupling with decoupled orders for 2D exterior Poisson problems. (English) Zbl 07568988 J. Sci. Comput. 92, No. 3, Paper No. 96, 25 p. (2022). MSC: 35A01 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{L. Desiderio} et al., J. Sci. Comput. 92, No. 3, Paper No. 96, 25 p. (2022; Zbl 07568988) Full Text: DOI OpenURL
Barrios, Tomás P.; Behrens, Edwin M.; Bustinza, Rommel Numerical analysis of a stabilized scheme applied to incompressible elasticity problems with Dirichlet and with mixed boundary conditions. (English) Zbl 07560218 Adv. Comput. Math. 48, No. 4, Paper No. 43, 33 p. (2022). MSC: 65N30 65N15 65N50 35A01 35A02 35A15 74B10 74S05 35Q74 PDF BibTeX XML Cite \textit{T. P. Barrios} et al., Adv. Comput. Math. 48, No. 4, Paper No. 43, 33 p. (2022; Zbl 07560218) Full Text: DOI OpenURL
Safari, Z.; Loghmani, G. B.; Ahmadinia, M. Convergence analysis of a LDG method for time-space tempered fractional diffusion equations with weakly singular solutions. (English) Zbl 07545429 J. Sci. Comput. 91, No. 2, Paper No. 68, 29 p. (2022). MSC: 65-XX 35R11 65M60 65M12 PDF BibTeX XML Cite \textit{Z. Safari} et al., J. Sci. Comput. 91, No. 2, Paper No. 68, 29 p. (2022; Zbl 07545429) Full Text: DOI OpenURL
Boon, Wietse M.; Gläser, Dennis; Helmig, Rainer; Yotov, Ivan Flux-mortar mixed finite element methods on nonmatching grids. (English) Zbl 07538281 SIAM J. Numer. Anal. 60, No. 3, 1193-1225 (2022). MSC: 65N30 65N12 65N15 65N55 65N50 35B45 35A01 35A02 76S05 76D07 PDF BibTeX XML Cite \textit{W. M. Boon} et al., SIAM J. Numer. Anal. 60, No. 3, 1193--1225 (2022; Zbl 07538281) Full Text: DOI OpenURL
Faustmann, Markus; Karkulik, Michael; Melenk, Jens Markus Local convergence of the FEM for the integral fractional Laplacian. (English) Zbl 07534669 SIAM J. Numer. Anal. 60, No. 3, 1055-1082 (2022). MSC: 65-XX 35R11 65N15 65N30 PDF BibTeX XML Cite \textit{M. Faustmann} et al., SIAM J. Numer. Anal. 60, No. 3, 1055--1082 (2022; Zbl 07534669) Full Text: DOI OpenURL
Civiletti, B. J.; Lakhtakia, A.; Monk, P. B. Hybridization of the rigorous coupled-wave approach with transformation optics for electromagnetic scattering by a surface-relief grating. (English) Zbl 07531742 J. Comput. Appl. Math. 412, Article ID 114338, 22 p. (2022). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A45 78A25 78M10 78M30 65N30 65N12 65N15 35B45 35A02 35J05 35Q60 PDF BibTeX XML Cite \textit{B. J. Civiletti} et al., J. Comput. Appl. Math. 412, Article ID 114338, 22 p. (2022; Zbl 07531742) Full Text: DOI OpenURL
Ding, Qianqian; Long, Xiaonian; Mao, Shipeng Convergence analysis of a fully discrete finite element method for thermally coupled incompressible MHD problems with temperature-dependent coefficients. (English) Zbl 1487.65147 ESAIM, Math. Model. Numer. Anal. 56, No. 3, 969-1005 (2022). MSC: 65M60 65M06 65N30 65M12 65M15 76W05 35D30 35A01 35A02 76M10 76M20 35Q35 PDF BibTeX XML Cite \textit{Q. Ding} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 3, 969--1005 (2022; Zbl 1487.65147) Full Text: DOI OpenURL
Zhang, Hongjuan; Wu, Boying; Meng, Xiong A local discontinuous Galerkin method with generalized alternating fluxes for 2D nonlinear Schrödinger equations. (English) Zbl 07508608 Commun. Appl. Math. Comput. 4, No. 1, 84-107 (2022). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{H. Zhang} et al., Commun. Appl. Math. Comput. 4, No. 1, 84--107 (2022; Zbl 07508608) Full Text: DOI OpenURL
Gómez, Sergio; Moiola, Andrea A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation. (English) Zbl 07506905 SIAM J. Numer. Anal. 60, No. 2, 688-714 (2022). Reviewer: Yan Xu (Hefei) MSC: 65M60 78M10 35Q41 65M12 65M15 35B45 35J05 35A01 35A02 PDF BibTeX XML Cite \textit{S. Gómez} and \textit{A. Moiola}, SIAM J. Numer. Anal. 60, No. 2, 688--714 (2022; Zbl 07506905) Full Text: DOI OpenURL
Campo, Marco; Copetti, Maria I. M.; Fernández, José R.; Quintanilla, Ramón On existence and numerical approximation in phase-lag thermoelasticity with two temperatures. (English) Zbl 07501093 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2221-2245 (2022). MSC: 35Q74 74H10 74F05 74S05 74S20 80A19 65M12 65M15 65M60 65M06 65N30 35A15 35B65 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{M. Campo} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2221--2245 (2022; Zbl 07501093) Full Text: DOI OpenURL
Zhou, Li; Li, Yunzhang An LDG method for stochastic Cahn-Hilliard type equation driven by general multiplicative noise involving second-order derivative. (English) Zbl 1482.65016 Commun. Comput. Phys. 31, No. 2, 516-547 (2022). MSC: 65C30 60H35 PDF BibTeX XML Cite \textit{L. Zhou} and \textit{Y. Li}, Commun. Comput. Phys. 31, No. 2, 516--547 (2022; Zbl 1482.65016) Full Text: DOI OpenURL
Li, Yunzhang A high-order numerical method for BSPDEs with applications to mathematical finance. (English) Zbl 1484.65016 SIAM J. Financ. Math. 13, No. 1, 147-178 (2022). MSC: 65C30 60H15 65M60 65M12 65M15 91G60 PDF BibTeX XML Cite \textit{Y. Li}, SIAM J. Financ. Math. 13, No. 1, 147--178 (2022; Zbl 1484.65016) Full Text: DOI OpenURL
Tian, Lulu; Guo, Hui; Jia, Rui; Yang, Yang Stability analysis and error estimates of fully-discrete local discontinuous Galerkin methods for simulating wormhole propagation with Darcy-Forchheimer model. (English) Zbl 07489831 J. Comput. Appl. Math. 409, Article ID 114158, 25 p. (2022). MSC: 65M60 65M12 65M15 76Nxx 76S05 PDF BibTeX XML Cite \textit{L. Tian} et al., J. Comput. Appl. Math. 409, Article ID 114158, 25 p. (2022; Zbl 07489831) Full Text: DOI OpenURL
Manohar, Ram; Sinha, Rajen Kumar Local a posteriori error estimates for boundary control problems governed by nonlinear parabolic equations. (English) Zbl 07489826 J. Comput. Appl. Math. 409, Article ID 114146, 29 p. (2022). MSC: 65Mxx 65K10 65N30 65M60 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Comput. Appl. Math. 409, Article ID 114146, 29 p. (2022; Zbl 07489826) Full Text: DOI OpenURL
Chen, Hu; Stynes, Martin Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation. (English) Zbl 1484.65175 Comput. Methods Appl. Math. 22, No. 1, 15-29 (2022). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{H. Chen} and \textit{M. Stynes}, Comput. Methods Appl. Math. 22, No. 1, 15--29 (2022; Zbl 1484.65175) Full Text: DOI OpenURL
Manohar, Ram; Sinha, Rajen Kumar Local a posteriori error analysis of finite element method for parabolic boundary control problems. (English) Zbl 1484.65227 J. Sci. Comput. 91, No. 1, Paper No. 17, 43 p. (2022). MSC: 65M60 65M06 65N30 65N50 35K20 49M41 93C20 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Sci. Comput. 91, No. 1, Paper No. 17, 43 p. (2022; Zbl 1484.65227) Full Text: DOI OpenURL
Dehghan, Mehdi; Gharibi, Zeinab An analysis of weak Galerkin finite element method for a steady state Boussinesq problem. (English) Zbl 1482.35168 J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022). MSC: 35Q35 35B45 35B35 35A01 35A02 76D05 76M10 80A19 65N30 65N15 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{Z. Gharibi}, J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022; Zbl 1482.35168) Full Text: DOI OpenURL
Le, Van Chien; Slodička, Marián; Van Bockstal, Karel A space-time discretization for an electromagnetic problem with moving non-magnetic conductor. (English) Zbl 1483.35237 Appl. Numer. Math. 173, 345-364 (2022). MSC: 35Q60 65M12 65N12 65M15 35D30 35A01 35A02 78M10 78M20 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{V. C. Le} et al., Appl. Numer. Math. 173, 345--364 (2022; Zbl 1483.35237) Full Text: DOI OpenURL
Garg, Deepika; Ganesan, Sashikumaar Generalized local projection stabilized nonconforming finite element methods for Darcy equations. (English) Zbl 1480.65333 Numer. Algorithms 89, No. 1, 341-369 (2022). MSC: 65N30 65N15 65N12 76S05 76M10 PDF BibTeX XML Cite \textit{D. Garg} and \textit{S. Ganesan}, Numer. Algorithms 89, No. 1, 341--369 (2022; Zbl 1480.65333) Full Text: DOI OpenURL
Yang, Ying; Shen, Ruigang; Fang, Mingjuan; Shu, Shi Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson-Nernst-Planck equations. (English) Zbl 07444635 J. Comput. Appl. Math. 404, Article ID 113874, 30 p. (2022). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Comput. Appl. Math. 404, Article ID 113874, 30 p. (2022; Zbl 07444635) Full Text: DOI arXiv OpenURL
Zhou, Lingling; Xia, Yinhua Arbitrary Lagrangian-Eulerian local discontinuous Galerkin method for linear convection-diffusion equations. (English) Zbl 07435365 J. Sci. Comput. 90, No. 1, Paper No. 21, 31 p. (2022). MSC: 65Mxx 76Mxx 35Lxx PDF BibTeX XML Cite \textit{L. Zhou} and \textit{Y. Xia}, J. Sci. Comput. 90, No. 1, Paper No. 21, 31 p. (2022; Zbl 07435365) Full Text: DOI OpenURL
Wang, Danxia; Wang, Xingxing; Jia, Hongen A second order linear energy stable numerical method for the Cahn-Hilliard-Hele-Shaw system. (English) Zbl 1483.35156 J. Comput. Appl. Math. 403, Article ID 113788, 24 p. (2022). Reviewer: Catalin Popa (Iaşi) MSC: 35Q30 76D27 76S05 76M10 35A02 65M60 65M22 65N30 PDF BibTeX XML Cite \textit{D. Wang} et al., J. Comput. Appl. Math. 403, Article ID 113788, 24 p. (2022; Zbl 1483.35156) Full Text: DOI OpenURL
Garg, Deepika; Ganesan, Sashikumaar An overlapping local projection stabilization for Galerkin approximations of Stokes and Darcy flow problems. (English) Zbl 07418829 Appl. Numer. Math. 171, 106-127 (2022). MSC: 65N30 65N15 65N12 76S05 76D07 76M10 35B45 35Q35 PDF BibTeX XML Cite \textit{D. Garg} and \textit{S. Ganesan}, Appl. Numer. Math. 171, 106--127 (2022; Zbl 07418829) Full Text: DOI OpenURL
Li, Changfeng; Yuan, Yirang; Yang, Qing Characteristic mixed volume element for compressible two-phase displacement in porous media. (English) Zbl 1480.65263 Int. J. Comput. Math. 98, No. 11, 2233-2250 (2021). MSC: 65M60 65M12 76S05 PDF BibTeX XML Cite \textit{C. Li} et al., Int. J. Comput. Math. 98, No. 11, 2233--2250 (2021; Zbl 1480.65263) Full Text: DOI OpenURL
Ren, H. M.; Argyros, I. K. Achieving an extended convergence analysis for the secant method under a restricted Hölder continuity condition. (English) Zbl 1476.65092 S\(\vec{\text{e}}\)MA J. 78, No. 3, 335-345 (2021). MSC: 65J15 49M15 PDF BibTeX XML Cite \textit{H. M. Ren} and \textit{I. K. Argyros}, S\(\vec{\text{e}}\)MA J. 78, No. 3, 335--345 (2021; Zbl 1476.65092) Full Text: DOI OpenURL
Nie, Daxin; Deng, Weihua Local discontinuous Galerkin method for the fractional diffusion equation with integral fractional Laplacian. (English) Zbl 07447585 Comput. Math. Appl. 104, 44-49 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{D. Nie} and \textit{W. Deng}, Comput. Math. Appl. 104, 44--49 (2021; Zbl 07447585) Full Text: DOI arXiv OpenURL
Cheng, Yao; Song, Chuanjing; Mei, Yanjie Local discontinuous Galerkin method for time-dependent singularly perturbed semilinear reaction-diffusion problems. (English) Zbl 1473.65186 Comput. Methods Appl. Math. 21, No. 1, 31-52 (2021). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Cheng} et al., Comput. Methods Appl. Math. 21, No. 1, 31--52 (2021; Zbl 1473.65186) Full Text: DOI OpenURL
Dong, Ziming; Li, Hong A space-time finite element method based on local projection stabilization in space and discontinuous Galerkin method in time for convection-diffusion-reaction equations. (English) Zbl 07422784 Appl. Math. Comput. 397, Article ID 125937, 15 p. (2021). MSC: 76Dxx 65Nxx PDF BibTeX XML Cite \textit{Z. Dong} and \textit{H. Li}, Appl. Math. Comput. 397, Article ID 125937, 15 p. (2021; Zbl 07422784) Full Text: DOI OpenURL
Yan, Fengna; Xu, Yan Error analysis of an unconditionally energy stable local discontinuous Galerkin scheme for the Cahn-Hilliard equation with concentration-dependent mobility. (English) Zbl 1473.65155 Comput. Methods Appl. Math. 21, No. 3, 729-751 (2021). MSC: 65M15 65M12 65M60 35K55 PDF BibTeX XML Cite \textit{F. Yan} and \textit{Y. Xu}, Comput. Methods Appl. Math. 21, No. 3, 729--751 (2021; Zbl 1473.65155) Full Text: DOI OpenURL
Chaumont-Frelet, T.; Lanteri, S.; Vega, P. A posteriori error estimates for finite element discretizations of time-harmonic Maxwell’s equations coupled with a non-local hydrodynamic drude model. (English) Zbl 07415650 Comput. Methods Appl. Mech. Eng. 385, Article ID 114002, 27 p. (2021). MSC: 78-XX 76-XX PDF BibTeX XML Cite \textit{T. Chaumont-Frelet} et al., Comput. Methods Appl. Mech. Eng. 385, Article ID 114002, 27 p. (2021; Zbl 07415650) Full Text: DOI arXiv OpenURL
Yuan, Long; Xi, Shuai; Zhang, Binlin The plane wave methods for the time-harmonic elastic wave problems with the complex valued coefficients. (English) Zbl 07409154 Adv. Appl. Math. Mech. 13, No. 5, 1169-1202 (2021). MSC: 65N35 65N30 65K10 65F08 65N15 35Q74 74K20 74J20 74B10 35J05 74S25 74K05 PDF BibTeX XML Cite \textit{L. Yuan} et al., Adv. Appl. Math. Mech. 13, No. 5, 1169--1202 (2021; Zbl 07409154) Full Text: DOI OpenURL
Elasmi, Mehdi; Erath, Christoph; Kurz, Stefan Non-symmetric isogeometric FEM-BEM couplings. (English) Zbl 07402266 Adv. Comput. Math. 47, No. 5, Paper No. 61, 36 p. (2021). MSC: 65N30 65N38 65N12 65N15 65D07 35A01 35A02 35B45 78A55 78M10 78M15 PDF BibTeX XML Cite \textit{M. Elasmi} et al., Adv. Comput. Math. 47, No. 5, Paper No. 61, 36 p. (2021; Zbl 07402266) Full Text: DOI arXiv OpenURL
Li, Yunzhang; Shu, Chi-Wang; Tang, Shanjian A local discontinuous Galerkin method for nonlinear parabolic SPDEs. (English) Zbl 1480.65019 ESAIM, Math. Model. Numer. Anal. 55, Suppl., 187-223 (2021). MSC: 65C30 60H35 60H15 65M60 65M12 PDF BibTeX XML Cite \textit{Y. Li} et al., ESAIM, Math. Model. Numer. Anal. 55, 187--223 (2021; Zbl 1480.65019) Full Text: DOI OpenURL
Nan, Caixia; Song, Huailing Error estimates of local discontinuous Galerkin method with implicit-explicit Runge Kutta for two-phase miscible flow in porous media. (English) Zbl 1486.65172 Appl. Numer. Math. 169, 334-350 (2021). MSC: 65M60 65M06 65N30 65L06 65M12 65M15 76S05 35Q35 PDF BibTeX XML Cite \textit{C. Nan} and \textit{H. Song}, Appl. Numer. Math. 169, 334--350 (2021; Zbl 1486.65172) Full Text: DOI OpenURL
Zhou, Yanhui; Zou, Qingsong Locally conservative serendipity finite element solutions for elliptic equations. (English) Zbl 1486.65271 Int. J. Numer. Anal. Model. 18, No. 1, 19-37 (2021). MSC: 65N30 65N12 65N15 41A25 65Y05 35R35 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{Q. Zou}, Int. J. Numer. Anal. Model. 18, No. 1, 19--37 (2021; Zbl 1486.65271) Full Text: Link OpenURL
Ding, Qi; Zheng, Bo; Shang, Yueqiang Local and parallel finite element algorithms for the time-dependent Oseen equations. (English) Zbl 1475.35228 Numer. Algorithms 87, No. 4, 1653-1677 (2021). MSC: 35Q30 65M15 65N55 65N50 65M60 65M06 65N30 76D07 35B45 65Y05 PDF BibTeX XML Cite \textit{Q. Ding} et al., Numer. Algorithms 87, No. 4, 1653--1677 (2021; Zbl 1475.35228) Full Text: DOI OpenURL
Wei, Leilei; He, Yinnian A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. (English) Zbl 1476.65256 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4907-4926 (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35S10 26A33 35R11 PDF BibTeX XML Cite \textit{L. Wei} and \textit{Y. He}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4907--4926 (2021; Zbl 1476.65256) Full Text: DOI arXiv OpenURL
Feng, Xiaobing; Li, Buyang; Ma, Shu High-order mass- and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation. (English) Zbl 1477.65254 SIAM J. Numer. Anal. 59, No. 3, 1566-1591 (2021). MSC: 65N35 65N30 65N12 65N15 65N50 35C08 35A01 35A02 35Q55 PDF BibTeX XML Cite \textit{X. Feng} et al., SIAM J. Numer. Anal. 59, No. 3, 1566--1591 (2021; Zbl 1477.65254) Full Text: DOI arXiv OpenURL
He, Ling-Bing; Xu, Li On the compressible Navier-Stokes equations in the whole space: from non-isentropic flow to isentropic flow. (English) Zbl 1470.35282 Discrete Contin. Dyn. Syst. 41, No. 7, 3489-3530 (2021). MSC: 35Q35 35B40 35B45 76N10 35A02 PDF BibTeX XML Cite \textit{L.-B. He} and \textit{L. Xu}, Discrete Contin. Dyn. Syst. 41, No. 7, 3489--3530 (2021; Zbl 1470.35282) Full Text: DOI OpenURL
Bukal, Mario Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. (English) Zbl 1476.65165 Discrete Contin. Dyn. Syst. 41, No. 7, 3389-3414 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N06 65M12 65M15 35B45 35A01 35A02 35D30 82C31 35Q82 PDF BibTeX XML Cite \textit{M. Bukal}, Discrete Contin. Dyn. Syst. 41, No. 7, 3389--3414 (2021; Zbl 1476.65165) Full Text: DOI arXiv OpenURL
Scarpa, Luca; Signori, Andrea On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport. (English) Zbl 1468.35217 Nonlinearity 34, No. 5, 3199-3250 (2021). MSC: 35Q92 92C17 35K86 35K61 35K57 35D35 35B40 35B65 35A01 35A02 65J99 35R09 PDF BibTeX XML Cite \textit{L. Scarpa} and \textit{A. Signori}, Nonlinearity 34, No. 5, 3199--3250 (2021; Zbl 1468.35217) Full Text: DOI arXiv OpenURL
Baccouch, Mahboub Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. (English) Zbl 1471.65086 Numer. Algorithms 86, No. 4, 1615-1650 (2021). MSC: 65L10 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 86, No. 4, 1615--1650 (2021; Zbl 1471.65086) Full Text: DOI OpenURL
Leykekhman, D. Pointwise error estimates for \(C^0\) interior penalty approximation of biharmonic problems. (English) Zbl 1452.65347 Math. Comput. 90, No. 327, 41-63 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 31A30 PDF BibTeX XML Cite \textit{D. Leykekhman}, Math. Comput. 90, No. 327, 41--63 (2021; Zbl 1452.65347) Full Text: DOI OpenURL
Hesse, Kerstin; Sloan, Ian H.; Womersley, Robert S. Local RBF-based penalized least-squares approximation on the sphere with noisy scattered data. (English) Zbl 1484.65031 J. Comput. Appl. Math. 382, Article ID 113061, 20 p. (2021). MSC: 65D12 41A15 65D07 65D10 33C55 42C10 46E35 PDF BibTeX XML Cite \textit{K. Hesse} et al., J. Comput. Appl. Math. 382, Article ID 113061, 20 p. (2021; Zbl 1484.65031) Full Text: DOI OpenURL
Pinto, Severiano González; Abreu, Domingo Hernández; Montijano, Juan Ignacio Variable step-size control based on two-steps for Radau IIA methods. (English) Zbl 1486.65072 ACM Trans. Math. Softw. 46, No. 4, Article No. 33, 24 p. (2020). MSC: 65L04 65L50 65L80 PDF BibTeX XML Cite \textit{S. G. Pinto} et al., ACM Trans. Math. Softw. 46, No. 4, Article No. 33, 24 p. (2020; Zbl 1486.65072) Full Text: DOI OpenURL
Yang, Miaomiao Numerical approximation of time-fractional Burgers-type equation. (English) Zbl 1482.35258 Adv. Difference Equ. 2020, Paper No. 182, 11 p. (2020). MSC: 35R11 65M60 65M12 65M06 65M15 PDF BibTeX XML Cite \textit{M. Yang}, Adv. Difference Equ. 2020, Paper No. 182, 11 p. (2020; Zbl 1482.35258) Full Text: DOI OpenURL
Yuan, Long; Hu, Qiya Generalized plane wave discontinuous Galerkin methods for nonhomogeneous Helmholtz equations with variable wave numbers. (English) Zbl 1480.65349 Int. J. Comput. Math. 97, No. 4, 920-941 (2020). MSC: 65N30 65N55 PDF BibTeX XML Cite \textit{L. Yuan} and \textit{Q. Hu}, Int. J. Comput. Math. 97, No. 4, 920--941 (2020; Zbl 1480.65349) Full Text: DOI OpenURL
Yang, He Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein-Gordon-Schrödinger equations. (English) Zbl 1475.65097 J. Appl. Math. Comput. 62, No. 1-2, 377-424 (2020). MSC: 65M15 65M60 65M06 81Q05 PDF BibTeX XML Cite \textit{H. Yang}, J. Appl. Math. Comput. 62, No. 1--2, 377--424 (2020; Zbl 1475.65097) Full Text: DOI OpenURL
Adak, D.; Natarajan, S. Virtual element methods for nonlocal parabolic problems on general type of meshes. (English) Zbl 1471.65131 Adv. Comput. Math. 46, No. 5, Paper No. 74, 29 p. (2020). MSC: 65M60 65M06 65N30 65H10 65N12 65N15 35A01 PDF BibTeX XML Cite \textit{D. Adak} and \textit{S. Natarajan}, Adv. Comput. Math. 46, No. 5, Paper No. 74, 29 p. (2020; Zbl 1471.65131) Full Text: DOI OpenURL
Baccouch, Mahboub A superconvergent local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems. (English) Zbl 07336570 Int. J. Comput. Methods 17, No. 7, Article ID 1950035, 31 p. (2020). MSC: 65L10 65L20 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Int. J. Comput. Methods 17, No. 7, Article ID 1950035, 31 p. (2020; Zbl 07336570) Full Text: DOI OpenURL
Leonov, Alexander S. Source recovery with a posteriori error estimates in linear partial differential equations. (English) Zbl 1466.65105 J. Inverse Ill-Posed Probl. 28, No. 5, 677-692 (2020). MSC: 65M32 65M60 65M15 65M12 65J20 35N30 35A01 35A02 PDF BibTeX XML Cite \textit{A. S. Leonov}, J. Inverse Ill-Posed Probl. 28, No. 5, 677--692 (2020; Zbl 1466.65105) Full Text: DOI OpenURL
Yang, He Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schrödinger equations. (English) Zbl 1453.65283 J. Korean Soc. Ind. Appl. Math. 24, No. 1, 39-78 (2020). MSC: 65M15 65M60 65M06 81Q05 PDF BibTeX XML Cite \textit{H. Yang}, J. Korean Soc. Ind. Appl. Math. 24, No. 1, 39--78 (2020; Zbl 1453.65283) Full Text: DOI OpenURL
Caucao, Sergio; Gatica, Gabriel N.; Oyarzúa, Ricardo; Sánchez, Nestor A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations. (English) Zbl 1456.65155 J. Sci. Comput. 85, No. 2, Paper No. 44, 36 p. (2020). MSC: 65N30 65N12 65N15 80A19 76S05 76R05 76R50 76D07 35B45 35A01 35A02 35Q79 35Q35 PDF BibTeX XML Cite \textit{S. Caucao} et al., J. Sci. Comput. 85, No. 2, Paper No. 44, 36 p. (2020; Zbl 1456.65155) Full Text: DOI OpenURL
Bi, Hai; Zhang, Yu; Yang, Yidu Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem. (English) Zbl 1453.65402 Comput. Math. Appl. 79, No. 7, 1895-1913 (2020). MSC: 65N30 65N15 65N55 65N25 65N50 PDF BibTeX XML Cite \textit{H. Bi} et al., Comput. Math. Appl. 79, No. 7, 1895--1913 (2020; Zbl 1453.65402) Full Text: DOI arXiv OpenURL
Zhang, Shun Robust and local optimal a priori error estimates for interface problems with low regularity: mixed finite element approximations. (English) Zbl 1448.35500 J. Sci. Comput. 84, No. 2, Paper No. 40, 16 p. (2020). MSC: 35Q68 35J25 35B45 35B65 65N30 65N15 65J10 PDF BibTeX XML Cite \textit{S. Zhang}, J. Sci. Comput. 84, No. 2, Paper No. 40, 16 p. (2020; Zbl 1448.35500) Full Text: DOI arXiv OpenURL
Almonacid, Javier A.; Gatica, Gabriel N.; Oyarzúa, Ricardo; Ruiz-Baier, Ricardo A new mixed finite element method for the \(n\)-dimensional Boussinesq problem with temperature-dependent viscosity. (English) Zbl 1446.65155 Netw. Heterog. Media 15, No. 2, 215-245 (2020). MSC: 65N30 65N12 65N15 35Q79 80A19 76R05 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{J. A. Almonacid} et al., Netw. Heterog. Media 15, No. 2, 215--245 (2020; Zbl 1446.65155) Full Text: DOI OpenURL
Mizerová, Hana; She, Bangwei Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier-Stokes system. (English) Zbl 1466.65075 J. Sci. Comput. 84, No. 1, Paper No. 25, 39 p. (2020). MSC: 65M06 65N06 65M12 65M15 76N10 35A02 35Q30 PDF BibTeX XML Cite \textit{H. Mizerová} and \textit{B. She}, J. Sci. Comput. 84, No. 1, Paper No. 25, 39 p. (2020; Zbl 1466.65075) Full Text: DOI arXiv OpenURL
Proinov, Petko D.; Petkova, Milena D. Local and semilocal convergence of a family of multi-point Weierstrass-type root-finding methods. (English) Zbl 1442.65092 Mediterr. J. Math. 17, No. 4, Paper No. 107, 20 p. (2020). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H05 PDF BibTeX XML Cite \textit{P. D. Proinov} and \textit{M. D. Petkova}, Mediterr. J. Math. 17, No. 4, Paper No. 107, 20 p. (2020; Zbl 1442.65092) Full Text: DOI OpenURL
Baccouch, Mahboub An adaptive local discontinuous Galerkin method for nonlinear two-point boundary-value problems. (English) Zbl 1444.65036 Numer. Algorithms 84, No. 3, 1121-1153 (2020). Reviewer: Kevin Burrage (Brisbane) MSC: 65L10 65L50 65L60 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 84, No. 3, 1121--1153 (2020; Zbl 1444.65036) Full Text: DOI OpenURL
Ahmadinia, Mahdi; Safari, Zeinab Convergence analysis of a LDG method for tempered fractional convection-diffusion equations. (English) Zbl 1442.65247 ESAIM, Math. Model. Numer. Anal. 54, No. 1, 59-78 (2020). MSC: 65M60 35R11 65M12 PDF BibTeX XML Cite \textit{M. Ahmadinia} and \textit{Z. Safari}, ESAIM, Math. Model. Numer. Anal. 54, No. 1, 59--78 (2020; Zbl 1442.65247) Full Text: DOI OpenURL
Kurima, Shunsuke Time discretization of an initial value problem for a simultaneous abstract evolution equation applying to parabolic-hyperbolic phase-field systems. (English) Zbl 1437.65120 ESAIM, Math. Model. Numer. Anal. 54, No. 3, 977-1002 (2020). MSC: 65M12 65M15 35A35 47N20 35G30 35L70 35A01 PDF BibTeX XML Cite \textit{S. Kurima}, ESAIM, Math. Model. Numer. Anal. 54, No. 3, 977--1002 (2020; Zbl 1437.65120) Full Text: DOI arXiv OpenURL
Borssoi, Joelmir A.; Paula, Gilberto A.; Galea, Manuel Elliptical linear mixed models with a covariate subject to measurement error. (English) Zbl 1437.62252 Stat. Pap. 61, No. 1, 31-69 (2020). MSC: 62J05 62H20 62F03 62F35 PDF BibTeX XML Cite \textit{J. A. Borssoi} et al., Stat. Pap. 61, No. 1, 31--69 (2020; Zbl 1437.62252) Full Text: DOI OpenURL
Gatica, Gabriel N.; Inzunza, Cristian An augmented fully-mixed finite element method for a coupled flow-transport problem. (English) Zbl 1436.65179 Calcolo 57, No. 1, Paper No. 8, 41 p. (2020). MSC: 65N30 65N12 76R05 76R50 76D07 65N15 35Q35 35Q49 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{G. N. Gatica} and \textit{C. Inzunza}, Calcolo 57, No. 1, Paper No. 8, 41 p. (2020; Zbl 1436.65179) Full Text: DOI OpenURL
Kuehn, Christian; Kürschner, Patrick Combined error estimates for local fluctuations of SPDEs. (English) Zbl 07189697 Adv. Comput. Math. 46, No. 1, Paper No. 11, 25 p. (2020). MSC: 65C30 65M99 60H15 35R60 37M99 15A24 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{P. Kürschner}, Adv. Comput. Math. 46, No. 1, Paper No. 11, 25 p. (2020; Zbl 07189697) Full Text: DOI arXiv OpenURL
Yan, Fengna; Xu, Yan Stability analysis and error estimates of local discontinuous Galerkin methods with semi-implicit spectral deferred correction time-marching for the Allen-Cahn equation. (English) Zbl 1436.65145 J. Comput. Appl. Math. 376, Article ID 112857, 23 p. (2020). MSC: 65M60 65M70 65M12 65M15 35Q35 PDF BibTeX XML Cite \textit{F. Yan} and \textit{Y. Xu}, J. Comput. Appl. Math. 376, Article ID 112857, 23 p. (2020; Zbl 1436.65145) Full Text: DOI OpenURL
Wang, Haijin; Zhang, Qiang; Wang, Shiping; Shu, Chi-Wang Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. (English) Zbl 1434.65196 Sci. China, Math. 63, No. 1, 183-204 (2020). MSC: 65M60 65M12 65M15 65M20 65L06 PDF BibTeX XML Cite \textit{H. Wang} et al., Sci. China, Math. 63, No. 1, 183--204 (2020; Zbl 1434.65196) Full Text: DOI arXiv OpenURL
Yuan, Long A combined scheme of the local spectral element method and the generalized plane wave discontinuous Galerkin method for the anisotropic Helmholtz equation. (English) Zbl 1434.65299 Appl. Numer. Math. 150, 341-360 (2020). MSC: 65N35 35J05 65N30 65N15 PDF BibTeX XML Cite \textit{L. Yuan}, Appl. Numer. Math. 150, 341--360 (2020; Zbl 1434.65299) Full Text: DOI OpenURL
Li, Can; Liu, Shuming Local discontinuous Galerkin scheme for space fractional Allen-Cahn equation. (English) Zbl 1463.65301 Commun. Appl. Math. Comput. 2, No. 1, 73-91 (2020). MSC: 65M60 35R11 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{C. Li} and \textit{S. Liu}, Commun. Appl. Math. Comput. 2, No. 1, 73--91 (2020; Zbl 1463.65301) Full Text: DOI OpenURL
Xu, Da Analytical and numerical solutions of a class of nonlinear integro-differential equations with \(L^1\) kernels. (English) Zbl 1434.65197 Nonlinear Anal., Real World Appl. 51, Article ID 103002, 28 p. (2020). MSC: 65M60 65M06 65M15 65N30 45K05 35A01 35A02 PDF BibTeX XML Cite \textit{D. Xu}, Nonlinear Anal., Real World Appl. 51, Article ID 103002, 28 p. (2020; Zbl 1434.65197) Full Text: DOI OpenURL
Li, Jia; Zhang, Dazhi; Meng, Xiong; Wu, Boying; Zhang, Qiang Discontinuous Galerkin methods for nonlinear scalar conservation laws: generalized local Lax-Friedrichs numerical fluxes. (English) Zbl 1436.65142 SIAM J. Numer. Anal. 58, No. 1, 1-20 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M60 65M12 65M15 35B35 35L65 PDF BibTeX XML Cite \textit{J. Li} et al., SIAM J. Numer. Anal. 58, No. 1, 1--20 (2020; Zbl 1436.65142) Full Text: DOI OpenURL
Baccouch, Mahboub A posteriori error analysis of the local discontinuous Galerkin method for the sine-Gordon equation in one space dimension. (English) Zbl 1428.65025 J. Comput. Appl. Math. 366, Article ID 112432, 20 p. (2020). MSC: 65M12 65M60 65M15 65M50 35Q53 65L06 35C08 PDF BibTeX XML Cite \textit{M. Baccouch}, J. Comput. Appl. Math. 366, Article ID 112432, 20 p. (2020; Zbl 1428.65025) Full Text: DOI OpenURL
Otárola, Enrique; Salgado, Abner J. A weighted setting for the stationary Navier Stokes equations under singular forcing. (English) Zbl 1428.35309 Appl. Math. Lett. 99, Article ID 105933, 7 p. (2020). MSC: 35Q30 35A01 35B45 76D05 PDF BibTeX XML Cite \textit{E. Otárola} and \textit{A. J. Salgado}, Appl. Math. Lett. 99, Article ID 105933, 7 p. (2020; Zbl 1428.35309) Full Text: DOI arXiv OpenURL
Sun, Jing; Nie, Daxin; Deng, Weihua Central local discontinuous Galerkin method for the space fractional diffusion equation. (English) Zbl 1442.65276 Comput. Math. Appl. 78, No. 5, 1274-1287 (2019). MSC: 65M60 35R11 PDF BibTeX XML Cite \textit{J. Sun} et al., Comput. Math. Appl. 78, No. 5, 1274--1287 (2019; Zbl 1442.65276) Full Text: DOI arXiv OpenURL
Kumar, Dileep; Chaudhary, Sudhakar; Kumar, V. V. K. Srinivas Fractional Crank-Nicolson-Galerkin finite element scheme for the time-fractional nonlinear diffusion equation. (English) Zbl 1431.65133 Numer. Methods Partial Differ. Equations 35, No. 6, 2056-2075 (2019). MSC: 65M06 65N30 35R11 35A01 65M12 65M15 65H10 35A02 PDF BibTeX XML Cite \textit{D. Kumar} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 2056--2075 (2019; Zbl 1431.65133) Full Text: DOI arXiv OpenURL
Hu, Xiuling; Wang, Shanshan; Zhang, Luming Maximum error estimates for a compact difference scheme of the coupled nonlinear Schrödinger-Boussinesq equations. (English) Zbl 1430.35208 Numer. Methods Partial Differ. Equations 35, No. 6, 1971-1999 (2019). MSC: 35Q55 35Q35 35Q41 76X05 65M06 65M12 65M15 35A02 PDF BibTeX XML Cite \textit{X. Hu} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 1971--1999 (2019; Zbl 1430.35208) Full Text: DOI OpenURL
Yuan, Long The plane wave discontinuous Galerkin method combined with local spectral finite elements for the wave propagation in anisotropic media. (English) Zbl 1463.78008 Numer. Math., Theory Methods Appl. 12, No. 2, 517-546 (2019). MSC: 78M10 65M15 65N30 65N35 78A40 78A45 78M22 PDF BibTeX XML Cite \textit{L. Yuan}, Numer. Math., Theory Methods Appl. 12, No. 2, 517--546 (2019; Zbl 1463.78008) Full Text: DOI OpenURL
Proinov, Petko D.; Vasileva, Maria T. On the convergence of high-order Gargantini-Farmer-Loizou type iterative methods for simultaneous approximation of polynomial zeros. (English) Zbl 1429.65101 Appl. Math. Comput. 361, 202-214 (2019). MSC: 65H04 12-08 PDF BibTeX XML Cite \textit{P. D. Proinov} and \textit{M. T. Vasileva}, Appl. Math. Comput. 361, 202--214 (2019; Zbl 1429.65101) Full Text: DOI OpenURL
Baccouch, Mahboub Optimal error estimates of the local discontinuous Galerkin method for the two-dimensional sine-Gordon equation on Cartesian grids. (English) Zbl 1427.65214 Int. J. Numer. Anal. Model. 16, No. 3, 436-462 (2019). MSC: 65M12 65M15 65M60 65N12 65N30 35Q51 35L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Int. J. Numer. Anal. Model. 16, No. 3, 436--462 (2019; Zbl 1427.65214) Full Text: Link OpenURL
Du, Jie; Yang, Yang; Chung, Eric Stability analysis and error estimates of local discontinuous Galerkin methods for convection-diffusion equations on overlapping meshes. (English) Zbl 1427.65242 BIT 59, No. 4, 853-876 (2019). MSC: 65M60 65M12 65M20 65M15 PDF BibTeX XML Cite \textit{J. Du} et al., BIT 59, No. 4, 853--876 (2019; Zbl 1427.65242) Full Text: DOI OpenURL
Proinov, Petko D.; Ivanov, Stoil I.; Petković, Miodrag S. On the convergence of Gander’s type family of iterative methods for simultaneous approximation of polynomial zeros. (English) Zbl 1429.65100 Appl. Math. Comput. 349, 168-183 (2019). MSC: 65H04 PDF BibTeX XML Cite \textit{P. D. Proinov} et al., Appl. Math. Comput. 349, 168--183 (2019; Zbl 1429.65100) Full Text: DOI OpenURL
Faulstich, Fabian M.; Laestadius, Andre; Legeza, Örs; Schneider, Reinhold; Kvaal, Simen Analysis of the tailored coupled-cluster method in quantum chemistry. (English) Zbl 1435.81069 SIAM J. Numer. Anal. 57, No. 6, 2579-2607 (2019). MSC: 81Q05 81V55 81P40 62H30 82B28 65N15 35A01 35A02 PDF BibTeX XML Cite \textit{F. M. Faulstich} et al., SIAM J. Numer. Anal. 57, No. 6, 2579--2607 (2019; Zbl 1435.81069) Full Text: DOI arXiv OpenURL
Chuenjarern, Nattaporn; Yang, Yang Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlapping meshes. (English) Zbl 1423.76219 J. Sci. Comput. 81, No. 2, 671-688 (2019). MSC: 76M10 76N10 PDF BibTeX XML Cite \textit{N. Chuenjarern} and \textit{Y. Yang}, J. Sci. Comput. 81, No. 2, 671--688 (2019; Zbl 1423.76219) Full Text: DOI OpenURL
Ayadi, Mekki; Ayed, Hela; Baffico, Leonardo; Sassi, Taoufik Stokes problem with slip boundary conditions of friction type: error analysis of a four-field mixed variational formulation. (English) Zbl 1427.65348 J. Sci. Comput. 81, No. 1, 312-341 (2019). MSC: 65N30 76M10 35B45 35A01 35A02 76D08 76D07 35A15 PDF BibTeX XML Cite \textit{M. Ayadi} et al., J. Sci. Comput. 81, No. 1, 312--341 (2019; Zbl 1427.65348) Full Text: DOI OpenURL
Baccouch, Mahboub Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear second-order two-point boundary-value problems. (English) Zbl 1477.65121 Appl. Numer. Math. 145, 361-383 (2019). MSC: 65L20 34B15 65L10 65L60 PDF BibTeX XML Cite \textit{M. Baccouch}, Appl. Numer. Math. 145, 361--383 (2019; Zbl 1477.65121) Full Text: DOI OpenURL
Yuan, Long; Liu, Yang A Trefftz-discontinuous Galerkin method for time-harmonic elastic wave problems. (English) Zbl 1438.65300 Comput. Appl. Math. 38, No. 3, Paper No. 137, 29 p. (2019). MSC: 65N30 65N55 65N15 65N35 74J10 74S10 PDF BibTeX XML Cite \textit{L. Yuan} and \textit{Y. Liu}, Comput. Appl. Math. 38, No. 3, Paper No. 137, 29 p. (2019; Zbl 1438.65300) Full Text: DOI OpenURL
Zhang, Jun; Chen, Xiangling Superconvergence analysis of local discontinuous Galerkin methods for linear convection-diffusion equations in one space dimension. (English) Zbl 1449.65267 Comput. Appl. Math. 38, No. 1, Paper No. 15, 22 p. (2019). MSC: 65M60 42C10 65M12 65M15 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Chen}, Comput. Appl. Math. 38, No. 1, Paper No. 15, 22 p. (2019; Zbl 1449.65267) Full Text: DOI OpenURL
Zhang, Chao; Xu, Yan; Xia, Yinhua Local discontinuous Galerkin methods for the \(\mu \)-Camassa-Holm and \(\mu \)-Degasperis-Procesi equations. (English) Zbl 1450.65131 J. Sci. Comput. 79, No. 2, 1294-1334 (2019). MSC: 65M60 65L06 65N30 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Sci. Comput. 79, No. 2, 1294--1334 (2019; Zbl 1450.65131) Full Text: DOI OpenURL
Proinov, Petko D.; Ivanov, Stoil I. Convergence analysis of Sakurai-Torii-Sugiura iterative method for simultaneous approximation of polynomial zeros. (English) Zbl 1415.65115 J. Comput. Appl. Math. 357, 56-70 (2019). MSC: 65H05 PDF BibTeX XML Cite \textit{P. D. Proinov} and \textit{S. I. Ivanov}, J. Comput. Appl. Math. 357, 56--70 (2019; Zbl 1415.65115) Full Text: DOI OpenURL
Tao, Qi; Xia, Yinhua Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equations. (English) Zbl 1422.65270 J. Comput. Appl. Math. 356, 198-218 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M60 65M15 35Q41 PDF BibTeX XML Cite \textit{Q. Tao} and \textit{Y. Xia}, J. Comput. Appl. Math. 356, 198--218 (2019; Zbl 1422.65270) Full Text: DOI OpenURL
Bi, Hai; Han, Jiayu; Yang, Yidu Local and parallel finite element algorithms for the transmission eigenvalue problem. (English) Zbl 1410.65435 J. Sci. Comput. 78, No. 1, 351-375 (2019). MSC: 65N25 65N30 65N15 PDF BibTeX XML Cite \textit{H. Bi} et al., J. Sci. Comput. 78, No. 1, 351--375 (2019; Zbl 1410.65435) Full Text: DOI OpenURL
Wang, Haijin; Zheng, Jingjing; Yu, Fan; Guo, Hui; Zhang, Qiang Local discontinuous Galerkin method with implicit-explicit time marching for incompressible miscible displacement problem in porous media. (English) Zbl 1412.65120 J. Sci. Comput. 78, No. 1, 1-28 (2019). MSC: 65M12 65M15 65M60 76S05 35Q35 65M06 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Sci. Comput. 78, No. 1, 1--28 (2019; Zbl 1412.65120) Full Text: DOI OpenURL
Wang, Shijie; Yang, Yidu; Bi, Hai Multiscale finite element discretizations based on local defect correction for the biharmonic eigenvalue problem of plate buckling. (English) Zbl 1407.74092 Math. Methods Appl. Sci. 42, No. 3, 999-1017 (2019). MSC: 74S05 74K20 74G60 65N25 65N30 65N15 PDF BibTeX XML Cite \textit{S. Wang} et al., Math. Methods Appl. Sci. 42, No. 3, 999--1017 (2019; Zbl 1407.74092) Full Text: DOI OpenURL
Baccouch, Mahboub Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. (English) Zbl 1407.65165 Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 19-54 (2019). MSC: 65M60 65M15 65M12 65M50 65N30 65N50 65M20 PDF BibTeX XML Cite \textit{M. Baccouch}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 19--54 (2019; Zbl 1407.65165) Full Text: DOI OpenURL
Ghattassi, Mohamed; Roche, Jean Rodolphe; Schmitt, Didier Analysis of a full discretization scheme for \(2D\) radiative-conductive heat transfer systems. (English) Zbl 1462.65142 J. Comput. Appl. Math. 346, 1-17 (2019). MSC: 65M60 65M06 65M12 65M15 80A21 45K05 35R09 35A01 35A02 35Q79 PDF BibTeX XML Cite \textit{M. Ghattassi} et al., J. Comput. Appl. Math. 346, 1--17 (2019; Zbl 1462.65142) Full Text: DOI OpenURL
Proinov, Petko D. On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros. (English) Zbl 1438.65101 J. Nonlinear Sci. Appl. 11, No. 9, 1045-1055 (2018). MSC: 65H04 PDF BibTeX XML Cite \textit{P. D. Proinov}, J. Nonlinear Sci. Appl. 11, No. 9, 1045--1055 (2018; Zbl 1438.65101) Full Text: DOI OpenURL
Wei, Leilei; Mu, Yundong Stability and convergence of a local discontinuous Galerkin finite element method for the general Lax equation. (English) Zbl 1411.65136 Open Math. 16, 1091-1103 (2018). MSC: 65M60 65M12 35Q53 35S10 PDF BibTeX XML Cite \textit{L. Wei} and \textit{Y. Mu}, Open Math. 16, 1091--1103 (2018; Zbl 1411.65136) Full Text: DOI OpenURL
Kim, Dojin Error estimates of a semi-discrete LDG method for the system of damped acoustic wave equation. (English) Zbl 1448.65133 Adv. Difference Equ. 2018, Paper No. 464, 20 p. (2018). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{D. Kim}, Adv. Difference Equ. 2018, Paper No. 464, 20 p. (2018; Zbl 1448.65133) Full Text: DOI OpenURL
Apel, Thomas; Winkler, Max; Pfefferer, Johannes Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains. (English) Zbl 1477.49046 IMA J. Numer. Anal. 38, No. 4, 1984-2025 (2018). MSC: 49M25 65N15 65N30 PDF BibTeX XML Cite \textit{T. Apel} et al., IMA J. Numer. Anal. 38, No. 4, 1984--2025 (2018; Zbl 1477.49046) Full Text: DOI Link OpenURL
Baccouch, Mahboub A superconvergent local discontinuous Galerkin method for nonlinear two-point boundary-value problems. (English) Zbl 1416.65227 Numer. Algorithms 79, No. 3, 697-718 (2018). MSC: 65L60 65L10 65L20 65L70 PDF BibTeX XML Cite \textit{M. Baccouch}, Numer. Algorithms 79, No. 3, 697--718 (2018; Zbl 1416.65227) Full Text: DOI OpenURL
Ahmadinia, M.; Safari, Z.; Fouladi, S. Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations. (English) Zbl 1398.65243 BIT 58, No. 3, 533-554 (2018). MSC: 65M60 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{M. Ahmadinia} et al., BIT 58, No. 3, 533--554 (2018; Zbl 1398.65243) Full Text: DOI OpenURL