×

The interior inverse electromagnetic scattering for an inhomogeneous cavity. (English) Zbl 1457.78012

The authors analyse the interior inverse electromagnetic scattering problem for a penetrable cavity in an inhomogeneous medium in three dimensions. Internal measurements allow to determine that the homogeneous cavity is uniquely determined. The linear sampling method is used to reconstruct the cavity and numerical examples are included to illustrate the method.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35Q61 Maxwell equations
62D05 Sampling theory, sample surveys
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Software:

Netgen
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Audibert L 2015 Qualitative methods for heterogeneous media PhD Thesis Ecole polytechnique X
[2] Audibert L and Haddar H 2014 A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements Inverse Problems30 035011 · Zbl 1291.35377 · doi:10.1088/0266-5611/30/3/035011
[3] Buffa A, Costabel M and Sheen D 2002 On traces for H(curl, Ω) in Lipschitz domains J. Math. Anal. Appl.276 845-67 · Zbl 1106.35304 · doi:10.1016/s0022-247x(02)00455-9
[4] Cakoni F and Colton D 2003 A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media Proc. Edinb. Math. Soc.46 293-314 · Zbl 1051.78013 · doi:10.1017/s0013091502000664
[5] Cakoni F, Colton D and Meng S 2014 The inverse scattering problem for a penetrable cavity with internal measurements Inverse Problems and Applications615 71-88 · Zbl 1330.35524 · doi:10.1090/conm/615/12246
[6] Cakoni F, Colton D and Monk P 2011 The Linear Sampling Method in Inverse Electromagnetic Scattering vol 80 (Philadelphia, PA: SIAM) · Zbl 1221.78001 · doi:10.1137/1.9780898719406
[7] Cakoni F and Colton D L 2014 A Qualitative Approach to Inverse Scattering Theory vol 767 (Berlin: Springer) · Zbl 1302.35001 · doi:10.1007/978-1-4614-8827-9
[8] Cakoni F and Haddar H 2013 Transmission eigenvalues in inverse scattering theory Inverse Problems and Applications (Cambridge: : Cambridge University Press) pp 529-80 inside out 60 · Zbl 1316.35297
[9] Lucas C 2012 Interior transmission eigenvalue problem for maxwell’s equations: the t-coercivity as an alternative approach Inverse Problems28 065005 · Zbl 1243.78024 · doi:10.1088/0266-5611/28/6/065005
[10] Cogar S, Colton D and Monk P 2018 Using eigenvalues to detect anomalies in the exterior of a cavity Inverse Problems34 085006 · Zbl 1400.78015 · doi:10.1088/1361-6420/aac8ef
[11] Colton D and Kress R 2019 Inverse Acoustic and Electromagnetic Scattering Theory vol 93 (Berlin: Springer Nature) · Zbl 1425.35001 · doi:10.1007/978-3-030-30351-8
[12] Gilbarg D and Trudinger N S 2015 Elliptic Partial Differential Equations of Second Order (Berlin: Springer)
[13] Haddar H and Monk P 2002 The linear sampling method for solving the electromagnetic inverse medium problem Inverse Problems18 891 · Zbl 1006.35102 · doi:10.1088/0266-5611/18/3/323
[14] Hähner P 2000 On the uniqueness of the shape of a penetrable, anisotropic obstacle J. Comput. Appl. Math.116 167-80 · Zbl 0978.35098 · doi:10.1016/s0377-0427(99)00323-4
[15] Ikehata M 2012 An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data Inverse Problems28 095016 · Zbl 1250.35183 · doi:10.1088/0266-5611/28/9/095016
[16] Kirsch A and Grinberg N 2008 The Factorization Method for Inverse Problems (Oxford: Oxford University Press) Number 36 · Zbl 1222.35001
[17] Kirsch A and Frank H 2016 Mathematical Theory of Time-Harmonic Maxwell’s Equations (Berlin: Springer)
[18] Kirsch A and Monk P 1995 A finite element/spectral method for approximating the time-harmonic maxwell system in rˆ3 SIAM J. Appl. Math.55 1324-44 · Zbl 0840.65128 · doi:10.1137/s0036139993259891
[19] Li X, Li J and Zeng F 2019 Maxwell exterior transmission eigenvalue problems and their applications to electromagnetic cloaking East Asian Journal on Applied Mathematics9 312-29 · Zbl 1464.35342 · doi:10.4208/eajam.280418.190918
[20] Liu L, Cai J and Xu Y S 2019 Regularized Newton iteration method for a penetrable cavity with internal measurements in inverse scattering problem Math. Methods Appl. Sci.43 2665-2678 · Zbl 1448.35578 · doi:10.1002/mma.6074
[21] Liu X 2013 The factorization method for cavities Inverse Problems30 015006 · Zbl 1292.78014 · doi:10.1088/0266-5611/30/1/015006
[22] Meng S, Haddar H and Cakoni F 2014 The factorization method for a cavity in an inhomogeneous medium Inverse Problems30 045008 · Zbl 1287.35102 · doi:10.1088/0266-5611/30/4/045008
[23] Okaji T 2002 Strong unique continuation property for time harmonic maxwell equations J. Math. Soc. Jpn.54 89-122 · Zbl 1032.35167 · doi:10.2969/jmsj/1191593956
[24] Qin H-H and Cakoni F 2011 Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem Inverse Problems27 035005 · Zbl 1222.65151 · doi:10.1088/0266-5611/27/3/035005
[25] Qin H-H and Colton D 2012 The inverse scattering problem for cavities Appl. Numer. Math.62 699-708 · Zbl 1241.78027 · doi:10.1016/j.apnum.2010.10.011
[26] Qu F, Yang J and Zhang H 2019 Shape reconstruction in inverse scattering by an inhomogeneous cavity with internal measurements SIAM J. Imag. Sci.12 788-808 · Zbl 1524.35765 · doi:10.1137/18m1232401
[27] Schöberl J 1997 Netgen an advancing front 2d/3d-mesh generator based on abstract rules Comput. Visualization Sci.1 41-52 · Zbl 0883.68130 · doi:10.1007/s007910050004
[28] Sun Y, Guo Y and Ma F 2016 The reciprocity gap functional method for the inverse scattering problem for cavities Appl. Anal.95 1327-46 · Zbl 1338.35501 · doi:10.1080/00036811.2015.1064519
[29] Zeng F, Cakoni F and Sun J 2011 An inverse electromagnetic scattering problem for a cavity Inverse Problems27 125002 · Zbl 1237.78019 · doi:10.1088/0266-5611/27/12/125002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.