Pinelis, Iosif Monotonicity properties of the gamma family of distributions. (English) Zbl 07325875 Stat. Probab. Lett. 171, Article ID 109027, 5 p. (2021). MSC: 62E15 26D15 33B20 60E15 PDF BibTeX XML Cite \textit{I. Pinelis}, Stat. Probab. Lett. 171, Article ID 109027, 5 p. (2021; Zbl 07325875) Full Text: DOI
Yang, Zhen-Hang; Tian, Jing-Feng; Zhu, Ya-Ru A sharp lower bound for the complete elliptic integrals of the first kind. (English) Zbl 1455.33014 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021). Reviewer: István Mező (Nanjing) MSC: 33E05 26E60 40A99 41A21 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021; Zbl 1455.33014) Full Text: DOI
Furuichi, Shigeru; Minculete, Nicuşor Refined inequalities on the weighted logarithmic mean. (English) Zbl 07332407 J. Math. Inequal. 14, No. 4, 1347-1357 (2020). MSC: 26D15 26B25 26E60 PDF BibTeX XML Cite \textit{S. Furuichi} and \textit{N. Minculete}, J. Math. Inequal. 14, No. 4, 1347--1357 (2020; Zbl 07332407) Full Text: DOI
Li, Hao; Li, Xiaoqin; Duan, Pengju On the strong law of large numbers for END sequences. (English) Zbl 07295439 J. Math. Res. Appl. 40, No. 4, 432-440 (2020). MSC: 60F15 PDF BibTeX XML Cite \textit{H. Li} et al., J. Math. Res. Appl. 40, No. 4, 432--440 (2020; Zbl 07295439) Full Text: DOI
Chala, Adel; Hafayed, Dahbia On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. (English) Zbl 1455.91216 Evol. Equ. Control Theory 9, No. 3, 817-843 (2020). MSC: 91G05 93E20 60H10 PDF BibTeX XML Cite \textit{A. Chala} and \textit{D. Hafayed}, Evol. Equ. Control Theory 9, No. 3, 817--843 (2020; Zbl 1455.91216) Full Text: DOI
Yin, Li; Lin, Xiu-Li; Qi, Feng Monotonicity, convexity and inequalities related to complete \((p,q,r)\)-elliptic integrals and generalized trigonometric functions. (English) Zbl 07287379 Publ. Math. 97, No. 1-2, 181-199 (2020). MSC: 33E05 26D15 33B10 PDF BibTeX XML Cite \textit{L. Yin} et al., Publ. Math. 97, No. 1--2, 181--199 (2020; Zbl 07287379) Full Text: DOI
Yalonetzky, Gaston Inequality of ratios. (English) Zbl 1452.62334 Metron 78, No. 2, 193-217 (2020). MSC: 62G30 60E15 62P25 62P20 PDF BibTeX XML Cite \textit{G. Yalonetzky}, Metron 78, No. 2, 193--217 (2020; Zbl 1452.62334) Full Text: DOI
Durai Baskar, A. Logarithmic mean labeling of some ladder related graphs. (English) Zbl 1445.05091 Appl. Appl. Math. 15, No. 1, 296-313 (2020). Reviewer: P. Jeyanthi (Tiruchendur) MSC: 05C78 05C25 PDF BibTeX XML Cite \textit{A. Durai Baskar}, Appl. Appl. Math. 15, No. 1, 296--313 (2020; Zbl 1445.05091) Full Text: Link
Bukor, József; Filip, Ferdinánd; Tóth, János T. Sets with countably infinitely many prescribed weighted densities. (English) Zbl 1446.11014 Rocky Mt. J. Math. 50, No. 2, 467-477 (2020). Reviewer: Štefan Porubský (Praha) MSC: 11B05 40G99 PDF BibTeX XML Cite \textit{J. Bukor} et al., Rocky Mt. J. Math. 50, No. 2, 467--477 (2020; Zbl 1446.11014) Full Text: DOI Euclid
Qi, Feng Some inequalities and an application of exponential polynomials. (English) Zbl 07196442 Math. Inequal. Appl. 23, No. 1, 123-135 (2020). MSC: 11B83 11A25 11B73 11C08 11C20 15A15 26A24 26A48 26C05 26D05 33B10 34A05 60H40 PDF BibTeX XML Cite \textit{F. Qi}, Math. Inequal. Appl. 23, No. 1, 123--135 (2020; Zbl 07196442) Full Text: DOI
Dragomir, Silvestru Sever Some inequalities for logarithm with applications to weighted means. (English) Zbl 1430.26003 Palest. J. Math. 9, No. 1, 537-548 (2020). MSC: 26D15 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Palest. J. Math. 9, No. 1, 537--548 (2020; Zbl 1430.26003) Full Text: Link
Deng, Shengbing Existence of solutions for some weighted mean field equations in dimension \(N\). (English) Zbl 1430.35107 Appl. Math. Lett. 100, Article ID 106010, 7 p. (2020). MSC: 35J92 35J67 35A01 PDF BibTeX XML Cite \textit{S. Deng}, Appl. Math. Lett. 100, Article ID 106010, 7 p. (2020; Zbl 1430.35107) Full Text: DOI
Mai, Jan-Frederik Portfolio optimization for credit-risky assets under Marshall-Olkin dependence. (English) Zbl 1437.91410 Appl. Math. Finance 26, No. 6, 598-618 (2019). MSC: 91G10 91G40 PDF BibTeX XML Cite \textit{J.-F. Mai}, Appl. Math. Finance 26, No. 6, 598--618 (2019; Zbl 1437.91410) Full Text: DOI
Schlichting, André; Slowik, Martin Poincaré and logarithmic Sobolev constants for metastable Markov chains via capacitary inequalities. (English) Zbl 1432.60070 Ann. Appl. Probab. 29, No. 6, 3438-3488 (2019). MSC: 60J10 34L15 60J45 82C26 60E15 PDF BibTeX XML Cite \textit{A. Schlichting} and \textit{M. Slowik}, Ann. Appl. Probab. 29, No. 6, 3438--3488 (2019; Zbl 1432.60070) Full Text: DOI Euclid
Sándor, József; Bhayo, Barkat Ali On certain new means generated by generalized trigonometric functions. (English) Zbl 1435.26039 Tbil. Math. J. 12, No. 1, 1-16 (2019). MSC: 26E60 26D05 33C75 33E05 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{B. A. Bhayo}, Tbil. Math. J. 12, No. 1, 1--16 (2019; Zbl 1435.26039) Full Text: DOI Euclid
Carrillo, José A.; Jüngel, Ansgar; Santos, Matheus C. Displacement convexity for the entropy in semi-discrete non-linear Fokker-Planck equations. (English) Zbl 1423.60119 Eur. J. Appl. Math. 30, No. 6, 1103-1122 (2019). MSC: 60J27 53C21 65M20 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Eur. J. Appl. Math. 30, No. 6, 1103--1122 (2019; Zbl 1423.60119) Full Text: DOI
Arnaudon, Marc; Del Moral, Pierre A variational approach to nonlinear and interacting diffusions. (English) Zbl 07098089 Stochastic Anal. Appl. 37, No. 5, 717-748 (2019). MSC: 65C35 82C80 58J65 47J20 PDF BibTeX XML Cite \textit{M. Arnaudon} and \textit{P. Del Moral}, Stochastic Anal. Appl. 37, No. 5, 717--748 (2019; Zbl 07098089) Full Text: DOI
Shi, Huan-Nan; Wu, Shan-He A concise proof of a double inequality involving the exponential and logarithmic functions. (English) Zbl 1416.26029 Ital. J. Pure Appl. Math. 41, 284-289 (2019). MSC: 26D07 PDF BibTeX XML Cite \textit{H.-N. Shi} and \textit{S.-H. Wu}, Ital. J. Pure Appl. Math. 41, 284--289 (2019; Zbl 1416.26029) Full Text: Link
Choi, Jin Ho; Kim, Young Ho The \(k\)-golden mean of two positive numbers and its applications. (English) Zbl 1415.15013 Bull. Korean Math. Soc. 56, No. 2, 521-533 (2019). MSC: 15A24 15B48 26D07 47A64 51M04 26E60 PDF BibTeX XML Cite \textit{J. H. Choi} and \textit{Y. H. Kim}, Bull. Korean Math. Soc. 56, No. 2, 521--533 (2019; Zbl 1415.15013) Full Text: DOI
Khalid, Sadia; Pečarić, Đilda; Pečarić, Josip On Zipf-Mandelbrot entropy and 3-convex functions. (English) Zbl 07064101 Adv. Oper. Theory 4, No. 4, 724-737 (2019). MSC: 26A24 26A48 26A51 26D15 PDF BibTeX XML Cite \textit{S. Khalid} et al., Adv. Oper. Theory 4, No. 4, 724--737 (2019; Zbl 07064101) Full Text: DOI
Wu, Guoqiang; Zheng, Yu Sharp logarithmic Sobolev inequalities along an extended Ricci flow and applications. (English) Zbl 1412.53097 Pac. J. Math. 298, No. 2, 483-509 (2019). MSC: 53C44 53C21 PDF BibTeX XML Cite \textit{G. Wu} and \textit{Y. Zheng}, Pac. J. Math. 298, No. 2, 483--509 (2019; Zbl 1412.53097) Full Text: DOI
Xiong, Kui; Wang, Shiyuan Robust least mean logarithmic square adaptive filtering algorithms. (English) Zbl 1405.93220 J. Franklin Inst. 356, No. 1, 654-674 (2019). MSC: 93E11 93E12 93E24 93C40 93B35 PDF BibTeX XML Cite \textit{K. Xiong} and \textit{S. Wang}, J. Franklin Inst. 356, No. 1, 654--674 (2019; Zbl 1405.93220) Full Text: DOI
Liang, Yingjie; Chen, Wen A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids. (English) Zbl 07263231 Commun. Nonlinear Sci. Numer. Simul. 56, 131-137 (2018). MSC: 00 PDF BibTeX XML Cite \textit{Y. Liang} and \textit{W. Chen}, Commun. Nonlinear Sci. Numer. Simul. 56, 131--137 (2018; Zbl 07263231) Full Text: DOI
Sándor, J.; Bhayo, B. A. On two new means of two arguments. III. (English) Zbl 1428.26066 Probl. Anal. Issues Anal. 7(25), No. 1, 116-133 (2018). MSC: 26E60 26D05 26D15 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{B. A. Bhayo}, Probl. Anal. Issues Anal. 7(25), No. 1, 116--133 (2018; Zbl 1428.26066) Full Text: DOI MNR
Cui, Xiaohui; Wang, Chunjie; Zhu, Kehe Area integral means of analytic functions in the unit disk. (English) Zbl 1407.30027 Can. Math. Bull. 61, No. 3, 509-517 (2018). Reviewer: Ali Abkar (Qazvin) MSC: 30H10 30H20 PDF BibTeX XML Cite \textit{X. Cui} et al., Can. Math. Bull. 61, No. 3, 509--517 (2018; Zbl 1407.30027) Full Text: DOI
Lei, Jian-Jun; Chen, Jing-Jing; Long, Bo-Yong Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean. (English) Zbl 1391.26066 J. Math. Inequal. 12, No. 2, 365-377 (2018). MSC: 26E60 PDF BibTeX XML Cite \textit{J.-J. Lei} et al., J. Math. Inequal. 12, No. 2, 365--377 (2018; Zbl 1391.26066) Full Text: DOI
Kamiya, Toshiki; Takeuchi, Shingo Complete \((p,q)\)-elliptic integrals with application to a family of means. (English) Zbl 1424.33033 J. Class. Anal. 10, No. 1, 15-25 (2017). MSC: 33E05 33C75 34L10 PDF BibTeX XML Cite \textit{T. Kamiya} and \textit{S. Takeuchi}, J. Class. Anal. 10, No. 1, 15--25 (2017; Zbl 1424.33033) Full Text: DOI
Zou, Limin Improved logarithmic-geometric mean inequality and its application. (English) Zbl 07004657 Bull. Iran. Math. Soc. 43, No. 7, 2323-2326 (2017). MSC: 47A63 26D07 26D15 PDF BibTeX XML Cite \textit{L. Zou}, Bull. Iran. Math. Soc. 43, No. 7, 2323--2326 (2017; Zbl 07004657) Full Text: Link
Xu, Huizuo; Qian, Weimao Some sharp bounds for Toader-Qi mean of other bivariate means. (Chinese. English summary) Zbl 1399.26088 J. Zhejiang Univ., Sci. Ed. 44, No. 5, 526-530 (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{H. Xu} and \textit{W. Qian}, J. Zhejiang Univ., Sci. Ed. 44, No. 5, 526--530 (2017; Zbl 1399.26088) Full Text: DOI
Qi, Feng; Shi, Xiao-Ting; Liu, Fang-Fang; Yang, Zhen-Hang A double inequality for an integral mean in terms of the exponential and logarithmic means. (English) Zbl 1413.26061 Period. Math. Hung. 75, No. 2, 180-189 (2017). MSC: 26E60 26D07 30E20 33C10 33C75 PDF BibTeX XML Cite \textit{F. Qi} et al., Period. Math. Hung. 75, No. 2, 180--189 (2017; Zbl 1413.26061) Full Text: DOI
Matejíčka, Ladislav Optimal weighted geometric mean bounds of centroidal and harmonic means for convex combinations of logarithmic and identric means. (English) Zbl 1384.26056 Konuralp J. Math. 5, No. 1, 77-84 (2017). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{L. Matejíčka}, Konuralp J. Math. 5, No. 1, 77--84 (2017; Zbl 1384.26056) Full Text: Link
Ledoux, Michel; Nourdin, Ivan; Peccati, Giovanni A Stein deficit for the logarithmic Sobolev inequality. (English) Zbl 1381.60064 Sci. China, Math. 60, No. 7, 1163-1180 (2017). MSC: 60E15 26D10 60B10 PDF BibTeX XML Cite \textit{M. Ledoux} et al., Sci. China, Math. 60, No. 7, 1163--1180 (2017; Zbl 1381.60064) Full Text: DOI
Bentkowska, Urszula; Díaz, Susana; Drewniak, Józef; Janiš, Vladimír; Montes, Susana Properties of extremal families of \(MN\)-convex (\(MN\)-concave) functions. (English) Zbl 06841165 Fuzzy Sets Syst. 325, 47-57 (2017). MSC: 26B25 PDF BibTeX XML Cite \textit{U. Bentkowska} et al., Fuzzy Sets Syst. 325, 47--57 (2017; Zbl 06841165) Full Text: DOI
Zhang, Zhiming Deriving the priority weights from trapezoidal fuzzy reciprocal preference relations based on uncertainty ratio and geometric mean. (English) Zbl 1376.68136 J. Intell. Fuzzy Syst. 33, No. 2, 1083-1095 (2017). MSC: 68T37 PDF BibTeX XML Cite \textit{Z. Zhang}, J. Intell. Fuzzy Syst. 33, No. 2, 1083--1095 (2017; Zbl 1376.68136) Full Text: DOI
Matejíčka, Ladislav On two problems for Gauss compound mean. (English) Zbl 1379.26017 J. Math. Inequal. 11, No. 4, 1161-1167 (2017). MSC: 26D07 26E60 PDF BibTeX XML Cite \textit{L. Matejíčka}, J. Math. Inequal. 11, No. 4, 1161--1167 (2017; Zbl 1379.26017) Full Text: DOI
Chen, Jing-Jing; Lei, Jian-Jun; Long, Bo-Yong Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means. (English) Zbl 1372.26028 J. Inequal. Appl. 2017, Paper No. 251, 11 p. (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{J.-J. Chen} et al., J. Inequal. Appl. 2017, Paper No. 251, 11 p. (2017; Zbl 1372.26028) Full Text: DOI
Gou, Jiangtao; Tamhane, Ajit C. Estimation of a parametric function associated with the lognormal distribution. (English) Zbl 1376.62015 Commun. Stat., Theory Methods 46, No. 16, 8134-8154 (2017). MSC: 62F10 62F12 PDF BibTeX XML Cite \textit{J. Gou} and \textit{A. C. Tamhane}, Commun. Stat., Theory Methods 46, No. 16, 8134--8154 (2017; Zbl 1376.62015) Full Text: DOI
Milman, Vitali; Rotem, Liran Non-standard constructions in convex geometry: geometric means of convex bodies with an appendix by Alexander Magazinov. (Non-standard constructions in convex geometry: geometric means of convex bodies.) (English) Zbl 1381.52006 Carlen, Eric (ed.) et al., Convexity and concentration. New York, NY: Springer (ISBN 978-1-4939-7004-9/hbk; 978-1-4939-7005-6/ebook). The IMA Volumes in Mathematics and its Applications 161, 361-390 (2017). Reviewer: Maria A. Hernández Cifre (Murcia) MSC: 52A20 PDF BibTeX XML Cite \textit{V. Milman} and \textit{L. Rotem}, IMA Vol. Math. Appl. 161, 361--390 (2017; Zbl 1381.52006) Full Text: DOI
From, Steven G. Some new inequalities of Hermite-Hadamard and Fejér type for certain functions with higher convexity. (English) Zbl 1364.26027 Aust. J. Math. Anal. Appl. 14, No. 1, Article No. 10, 17 p. (2017). MSC: 26D15 PDF BibTeX XML Cite \textit{S. G. From}, Aust. J. Math. Anal. Appl. 14, No. 1, Article No. 10, 17 p. (2017; Zbl 1364.26027) Full Text: Link
Ding, Qing; Zhao, Tiehong Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean. (English) Zbl 1360.26025 J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{T. Zhao}, J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017; Zbl 1360.26025) Full Text: DOI
Dragomir, Silvestru Sever Ostrowski type inequalities for Lebesgue integral: a survey of recent results. (English) Zbl 1358.26020 Aust. J. Math. Anal. Appl. 14, No. 1, Article No. 1, 287 p. (2017). MSC: 26D15 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Aust. J. Math. Anal. Appl. 14, No. 1, Article No. 1, 287 p. (2017; Zbl 1358.26020) Full Text: Link
Beliakov, Gleb; Dujmović, Jozo Extension of bivariate means to weighted means of several arguments by using binary trees. (English) Zbl 1390.68631 Inf. Sci. 331, 137-147 (2016). MSC: 68T37 PDF BibTeX XML Cite \textit{G. Beliakov} and \textit{J. Dujmović}, Inf. Sci. 331, 137--147 (2016; Zbl 1390.68631) Full Text: DOI
Wada, Shuhei; Yamazaki, Takeaki Equivalence relations among some inequalities on operator means. (English) Zbl 06820443 Nihonkai Math. J. 27, No. 1-2, 1-15 (2016). MSC: 47A64 47A30 47A63 PDF BibTeX XML Cite \textit{S. Wada} and \textit{T. Yamazaki}, Nihonkai Math. J. 27, No. 1--2, 1--15 (2016; Zbl 06820443) Full Text: Euclid arXiv
Sándor, József Series expansions related to the logarithmic mean. (English) Zbl 1367.26050 Notes Number Theory Discrete Math. 22, No. 2, 54-57 (2016). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. Sándor}, Notes Number Theory Discrete Math. 22, No. 2, 54--57 (2016; Zbl 1367.26050) Full Text: Link
Sándor, József On certain logarithmic inequalities. (English) Zbl 1367.26049 Notes Number Theory Discrete Math. 22, No. 4, 20-24 (2016). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. Sándor}, Notes Number Theory Discrete Math. 22, No. 4, 20--24 (2016; Zbl 1367.26049) Full Text: Link
Haslhofer, Robert; Hershkovits, Or Ancient solutions of the mean curvature flow. (English) Zbl 1345.53068 Commun. Anal. Geom. 24, No. 3, 593-604 (2016). MSC: 53C44 PDF BibTeX XML Cite \textit{R. Haslhofer} and \textit{O. Hershkovits}, Commun. Anal. Geom. 24, No. 3, 593--604 (2016; Zbl 1345.53068) Full Text: DOI arXiv
Doubtsov, Evgueni Hyperbolic Hardy classes and logarithmic Bloch spaces. (English) Zbl 1356.32005 Ruzhansky, Michael (ed.) et al., Methods of Fourier analysis and approximation theory. Collected papers based on the presentations at the 9th ISAAC congress, section “Approximation theory and Fourier analysis”, Crakow, Poland, August 5–9, 2013 and at the conference on Fourier analysis and approximation theory in the CRM, Barcelona, Spain, November 4–8, 2013. Basel: Birkhäuser/Springer (ISBN 978-3-319-27465-2/hbk; 978-3-319-27466-9/ebook). Applied and Numerical Harmonic Analysis, 33-42 (2016). Reviewer: Joan Fàbrega (Barcelona) MSC: 32A37 32A35 47B33 PDF BibTeX XML Cite \textit{E. Doubtsov}, in: Methods of Fourier analysis and approximation theory. Collected papers based on the presentations at the 9th ISAAC congress, section ``Approximation theory and Fourier analysis'', Crakow, Poland, August 5--9, 2013 and at the conference on Fourier analysis and approximation theory in the CRM, Barcelona, Spain, November 4--8, 2013. Basel: Birkhäuser/Springer. 33--42 (2016; Zbl 1356.32005) Full Text: DOI
Yang, Zhen-Hang; Chu, Yu-Ming; Song, Ying-Qing Sharp bounds for Toader-Qi mean in terms of logarithmic and identric means. (English) Zbl 1337.26063 Math. Inequal. Appl. 19, No. 2, 721-730 (2016). MSC: 26E60 33C10 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 19, No. 2, 721--730 (2016; Zbl 1337.26063) Full Text: DOI Link
Chow, Bennett; Lu, Peng A bound for the order of the fundamental group of a complete noncompact Ricci shrinker. (English) Zbl 1336.53076 Proc. Am. Math. Soc. 144, No. 6, 2623-2625 (2016). MSC: 53C44 57N65 PDF BibTeX XML Cite \textit{B. Chow} and \textit{P. Lu}, Proc. Am. Math. Soc. 144, No. 6, 2623--2625 (2016; Zbl 1336.53076) Full Text: DOI arXiv
Yang, Zhen-Hang; Chu, Yu-Ming On approximating the modified Bessel function of the first kind and Toader-Qi mean. (English) Zbl 1332.33009 J. Inequal. Appl. 2016, Paper No. 40, 21 p. (2016). MSC: 33C10 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} and \textit{Y.-M. Chu}, J. Inequal. Appl. 2016, Paper No. 40, 21 p. (2016; Zbl 1332.33009) Full Text: DOI
Li, Jun-Feng; Yang, Zhen-Hang; Chu, Yu-Ming Optimal power mean bounds for the second Yang mean. (English) Zbl 1336.26053 J. Inequal. Appl. 2016, Paper No. 31, 9 p. (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{J.-F. Li} et al., J. Inequal. Appl. 2016, Paper No. 31, 9 p. (2016; Zbl 1336.26053) Full Text: DOI
Fang, Shouwen; Zheng, Tao The (logarithmic) Sobolev inequalities along geometric flow and applications. (English) Zbl 1328.53084 J. Math. Anal. Appl. 434, No. 1, 729-764 (2016). MSC: 53C44 53C50 46E35 PDF BibTeX XML Cite \textit{S. Fang} and \textit{T. Zheng}, J. Math. Anal. Appl. 434, No. 1, 729--764 (2016; Zbl 1328.53084) Full Text: DOI arXiv
Pappas, Vasileios; Professor Adamidis, Konstantinos; Loukas, Sotirios A generalization of the exponential-logarithmic distribution. (English) Zbl 1442.60028 J. Stat. Theory Pract. 9, No. 1, 122-133 (2015). MSC: 60E05 62N05 PDF BibTeX XML Cite \textit{V. Pappas} et al., J. Stat. Theory Pract. 9, No. 1, 122--133 (2015; Zbl 1442.60028) Full Text: DOI
Wang, Zhou-Jing Consistency analysis and priority derivation of triangular fuzzy preference relations based on modal value and geometric mean. (English) Zbl 1388.91090 Inf. Sci. 314, 169-183 (2015). MSC: 91B06 91B08 PDF BibTeX XML Cite \textit{Z.-J. Wang}, Inf. Sci. 314, 169--183 (2015; Zbl 1388.91090) Full Text: DOI
Badi, Adel B. Basic introduction to exponential and logarithmic functions. (English) Zbl 1384.26015 Real Anal. Exch. 40(2014-2015), No. 1, 219-226 (2015). Reviewer: George Stoica (Saint John) MSC: 26A09 26A24 26A06 PDF BibTeX XML Cite \textit{A. B. Badi}, Real Anal. Exch. 40, No. 1, 219--226 (2015; Zbl 1384.26015) Full Text: DOI Euclid
Sándor, József A basic logarithmic inequality and the logarithmic mean. (English) Zbl 1354.26048 Notes Number Theory Discrete Math. 21, No. 1, 31-35 (2015). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. Sándor}, Notes Number Theory Discrete Math. 21, No. 1, 31--35 (2015; Zbl 1354.26048) Full Text: Link
Sándor, József; Egri, Edith On \((M,N)\)-convex functions. (English) Zbl 1350.26016 Notes Number Theory Discrete Math. 21, No. 4, 40-47 (2015). MSC: 26A51 26D99 39B72 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{E. Egri}, Notes Number Theory Discrete Math. 21, No. 4, 40--47 (2015; Zbl 1350.26016) Full Text: Link
Bhayo, B. A.; Yin, L. On the generalized convexity and concavity. (English) Zbl 1345.26043 Probl. Anal. Issues Anal. 4(22), No. 1, 3-10 (2015). MSC: 26E60 26A51 26D15 PDF BibTeX XML Cite \textit{B. A. Bhayo} and \textit{L. Yin}, Probl. Anal. Issues Anal. 4(22), No. 1, 3--10 (2015; Zbl 1345.26043) Full Text: DOI
Yang, Zhen-Hang; Chu, Yu-Ming Inequalities for certain means in two arguments. (English) Zbl 1336.26054 J. Inequal. Appl. 2015, Paper No. 299, 11 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} and \textit{Y.-M. Chu}, J. Inequal. Appl. 2015, Paper No. 299, 11 p. (2015; Zbl 1336.26054) Full Text: DOI
Ru, Guobao; Huang, Yan; Guo, Yingjie; Gan, Liangcai A new variable step size LMS algorithm based on logarithmic function. (Chinese. English summary) Zbl 1340.93212 J. Wuhan Univ., Nat. Sci. Ed. 61, No. 3, 295-298 (2015). MSC: 93E24 94A12 60G35 PDF BibTeX XML Cite \textit{G. Ru} et al., J. Wuhan Univ., Nat. Sci. Ed. 61, No. 3, 295--298 (2015; Zbl 1340.93212) Full Text: DOI
He, Zai-Yin; Wang, Miao-Kun; Chu, Yu-Ming Optimal one-parameter mean bounds for the convex combination of arithmetic and logarithmic means. (English) Zbl 1333.26035 J. Math. Inequal. 9, No. 3, 699-707 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{Z.-Y. He} et al., J. Math. Inequal. 9, No. 3, 699--707 (2015; Zbl 1333.26035) Full Text: DOI
Witkowski, Alfred On Seiffert-like means. (English) Zbl 1329.26055 J. Math. Inequal. 9, No. 4, 1071-1092 (2015). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{A. Witkowski}, J. Math. Inequal. 9, No. 4, 1071--1092 (2015; Zbl 1329.26055) Full Text: DOI arXiv
Abolarinwa, Abimbola Differential Harnack and logarithmic Sobolev inequalities along Ricci-harmonic map flow. (English) Zbl 1333.53102 Pac. J. Math. 278, No. 2, 257-290 (2015). Reviewer: Gabjin Yun (Yongin) MSC: 53C44 58E20 58J35 58J60 PDF BibTeX XML Cite \textit{A. Abolarinwa}, Pac. J. Math. 278, No. 2, 257--290 (2015; Zbl 1333.53102) Full Text: DOI
Huang, R. L.; Xu, R. W. On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space II. (English) Zbl 1329.53094 Int. J. Math. 26, No. 9, Article ID 1550072, 10 p. (2015). MSC: 53C44 53B25 35J96 PDF BibTeX XML Cite \textit{R. L. Huang} and \textit{R. W. Xu}, Int. J. Math. 26, No. 9, Article ID 1550072, 10 p. (2015; Zbl 1329.53094) Full Text: DOI
Berndt, Bruce C.; Kim, Sun Logarithmic means and double series of Bessel functions. (English) Zbl 1390.11100 Int. J. Number Theory 11, No. 5, 1535-1556 (2015). MSC: 11M06 33C10 PDF BibTeX XML Cite \textit{B. C. Berndt} and \textit{S. Kim}, Int. J. Number Theory 11, No. 5, 1535--1556 (2015; Zbl 1390.11100) Full Text: DOI
Neuman, Edward On a new bivariate mean. II. (English) Zbl 1321.26061 Aequationes Math. 89, No. 4, 1031-1040 (2015). Reviewer: V. Lokesha (Bangalore) MSC: 26E60 33E05 26D07 PDF BibTeX XML Cite \textit{E. Neuman}, Aequationes Math. 89, No. 4, 1031--1040 (2015; Zbl 1321.26061) Full Text: DOI
Topping, Peter M. Uniqueness of instantaneously complete Ricci flows. (English) Zbl 1323.53080 Geom. Topol. 19, No. 3, 1477-1492 (2015). Reviewer: Vasyl Gorkaviy (Kharkov) MSC: 53C44 35K55 58J35 PDF BibTeX XML Cite \textit{P. M. Topping}, Geom. Topol. 19, No. 3, 1477--1492 (2015; Zbl 1323.53080) Full Text: DOI arXiv
Qian, Wei-Mao; Shao, Zhi-Hua; Chu, Yu-Ming Sharp inequalities involving Neuman means of the second kind. (English) Zbl 1314.26038 J. Math. Inequal. 9, No. 2, 531-540 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., J. Math. Inequal. 9, No. 2, 531--540 (2015; Zbl 1314.26038) Full Text: DOI Link
Yang, Zhen-Hang; Chu, Yu-Ming An optimal inequalities chain for bivariate means. (English) Zbl 1314.26039 J. Math. Inequal. 9, No. 2, 331-343 (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} and \textit{Y.-M. Chu}, J. Math. Inequal. 9, No. 2, 331--343 (2015; Zbl 1314.26039) Full Text: DOI Link
Ye, Rugang The logarithmic Sobolev and Sobolev inequalities along the Ricci flow. (English) Zbl 1319.53078 Commun. Math. Stat. 3, No. 1, 1-36 (2015). MSC: 53C44 35K55 PDF BibTeX XML Cite \textit{R. Ye}, Commun. Math. Stat. 3, No. 1, 1--36 (2015; Zbl 1319.53078) Full Text: DOI arXiv
Horwitz, Alan A logarithmic mean and intersections of osculating hyperplanes in \(\mathbb R^n\). (English) Zbl 1412.26067 J. Class. Anal. 4, No. 1, 41-61 (2014). MSC: 26E60 26B99 PDF BibTeX XML Cite \textit{A. Horwitz}, J. Class. Anal. 4, No. 1, 41--61 (2014; Zbl 1412.26067) Full Text: DOI
Furuichi, Shigeru Unitarily invariant norm inequalities for some means. (English) Zbl 1379.15012 J. Inequal. Appl. 2014, Paper No. 158, 11 p. (2014). MSC: 15A39 15A45 PDF BibTeX XML Cite \textit{S. Furuichi}, J. Inequal. Appl. 2014, Paper No. 158, 11 p. (2014; Zbl 1379.15012) Full Text: DOI arXiv
Fechner, Włodzimierz Comparisons of means and related functional inequalities. (English) Zbl 1321.39028 Rassias, Themistocles M. (ed.), Handbook of functional equations. Functional inequalities. New York, NY: Springer (ISBN 978-1-4939-1245-2/hbk; 978-1-4939-1246-9/ebook). Springer Optimization and Its Applications 95, 147-160 (2014). Reviewer: Snezhana Hristova (Plovdiv) MSC: 39B62 26E60 26D20 PDF BibTeX XML Cite \textit{W. Fechner}, Springer Optim. Appl. 95, 147--160 (2014; Zbl 1321.39028) Full Text: DOI
Bhayo, Barkat Ali; Yin, Li Logarithmic mean inequality for generalized trigonometric and hyperbolic functions. (English) Zbl 1315.26036 Acta Univ. Sapientiae, Math. 6, No. 2, 135-145 (2014). MSC: 26E60 26D07 33B10 PDF BibTeX XML Cite \textit{B. A. Bhayo} and \textit{L. Yin}, Acta Univ. Sapientiae, Math. 6, No. 2, 135--145 (2014; Zbl 1315.26036) Full Text: DOI arXiv
Ye, Rugang The logarithmic Sobolev inequality along the Ricci flow: the case \(\lambda _0(g_0)=0\). (English) Zbl 1316.53080 Commun. Math. Stat. 2, No. 3-4, 363-368 (2014). MSC: 53C44 35K55 46E35 PDF BibTeX XML Cite \textit{R. Ye}, Commun. Math. Stat. 2, No. 3--4, 363--368 (2014; Zbl 1316.53080) Full Text: DOI arXiv
He, Zai-Yin; Chu, Yu-Ming Sharp bounds for the convex combinations of arithmetic, logarithmic and geometric means in terms of harmonic mean. (English) Zbl 1312.26054 Poincare J. Anal. Appl. 2014, No. 2, 47-54 (2014). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{Z.-Y. He} and \textit{Y.-M. Chu}, Poincare J. Anal. Appl. 2014, No. 2, 47--54 (2014; Zbl 1312.26054)
Petrov, A. N. Integral reverse estimates for logarithmic Bloch spaces in the ball. (English. Russian original) Zbl 1307.32008 J. Math. Sci., New York 202, No. 4, 565-572 (2014); translation from Zap. Nauchn. Semin. POMI 416, 124-135 (2013). MSC: 32A37 PDF BibTeX XML Cite \textit{A. N. Petrov}, J. Math. Sci., New York 202, No. 4, 565--572 (2014; Zbl 1307.32008); translation from Zap. Nauchn. Semin. POMI 416, 124--135 (2013) Full Text: DOI
Khalid, Sadia; Pečarić, Josip Generalizations and improvements of an inequality of Hardy-Littlewood-Pólya. (English) Zbl 1307.26009 Rad Hrvat. Akad. Znan. Umjet. 519, Mat. Znan. 18, 73-89 (2014). MSC: 26A48 26A51 26D15 PDF BibTeX XML Cite \textit{S. Khalid} and \textit{J. Pečarić}, Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 519(18), 73--89 (2014; Zbl 1307.26009) Full Text: Link
Matejíčka, Ladislav Optimal convex combinations bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means. (English) Zbl 1305.26059 J. Math. Inequal. 8, No. 4, 939-945 (2014). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{L. Matejíčka}, J. Math. Inequal. 8, No. 4, 939--945 (2014; Zbl 1305.26059) Full Text: Link
Chunrong, Liu; Siqi, Liu Best possible inequalities between generalized logarithmic mean and weighted geometric mean of geometric, square-root, and root-square means. (English) Zbl 1305.26044 J. Math. Inequal. 8, No. 4, 899-914 (2014). MSC: 26D15 26D20 PDF BibTeX XML Cite \textit{L. Chunrong} and \textit{L. Siqi}, J. Math. Inequal. 8, No. 4, 899--914 (2014; Zbl 1305.26044) Full Text: Link
Rao, Murali; Dey, Agnish Scope of the logarithmic mean. (English) Zbl 1308.26057 Aust. J. Math. Anal. Appl. 11, No. 1, Article No. 15, 10 p. (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{M. Rao} and \textit{A. Dey}, Aust. J. Math. Anal. Appl. 11, No. 1, Article No. 15, 10 p. (2014; Zbl 1308.26057) Full Text: Link
Wada, Shuhei On some estimates for the logarithmic mean. (English) Zbl 1321.47042 Aust. J. Math. Anal. Appl. 11, No. 1, Article No. 13, 5 p. (2014). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 47A64 47A63 PDF BibTeX XML Cite \textit{S. Wada}, Aust. J. Math. Anal. Appl. 11, No. 1, Article No. 13, 5 p. (2014; Zbl 1321.47042) Full Text: Link
Sehba, Benoît F. Logarithmic mean oscillation on the polydisc, multi-parameter paraproducts and iterated commutators. (English) Zbl 1311.42057 J. Fourier Anal. Appl. 20, No. 3, 500-523 (2014). Reviewer: Dongyong Yang (Xiamen) MSC: 42B35 42B30 42B20 42B37 PDF BibTeX XML Cite \textit{B. F. Sehba}, J. Fourier Anal. Appl. 20, No. 3, 500--523 (2014; Zbl 1311.42057) Full Text: DOI
Sehba, Benoît F. An embedding relation for bounded mean oscillation on rectangles. (English) Zbl 1309.42031 Ann. Pol. Math. 112, No. 3, 287-299 (2014). MSC: 42B35 42B15 32A37 PDF BibTeX XML Cite \textit{B. F. Sehba}, Ann. Pol. Math. 112, No. 3, 287--299 (2014; Zbl 1309.42031) Full Text: DOI arXiv
Ricciardi, Tonia; Suzuki, Takashi Duality and best constant for a Trudinger-Moser inequality involving probability measures. (English) Zbl 1300.26017 J. Eur. Math. Soc. (JEMS) 16, No. 7, 1327-1348 (2014). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 26D15 35J20 35J60 PDF BibTeX XML Cite \textit{T. Ricciardi} and \textit{T. Suzuki}, J. Eur. Math. Soc. (JEMS) 16, No. 7, 1327--1348 (2014; Zbl 1300.26017) Full Text: DOI
Costin, Iulia; Toader, Gheorghe Optimal estimations of Seiffert-type means by some special Gini means. (English) Zbl 1417.26009 Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 16th international workshop, CASC 2014, Warsaw, Poland, September 8–12, 2014. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 8660, 85-98 (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{I. Costin} and \textit{G. Toader}, Lect. Notes Comput. Sci. 8660, 85--98 (2014; Zbl 1417.26009) Full Text: DOI
Chu, Yuming; Zhao, Tiehong; Liu, Baoyu Optimal bounds for Neuman-Sándor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means. (English) Zbl 1295.26030 J. Math. Inequal. 8, No. 2, 201-217 (2014). MSC: 26E60 PDF BibTeX XML Cite \textit{Y. Chu} et al., J. Math. Inequal. 8, No. 2, 201--217 (2014; Zbl 1295.26030) Full Text: DOI Link
Qi, Feng; Zhang, Xiao-Jing; Li, Wen-Hui Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean. (English) Zbl 1290.30043 Mediterr. J. Math. 11, No. 2, 315-327 (2014). MSC: 30E20 26A48 26E60 PDF BibTeX XML Cite \textit{F. Qi} et al., Mediterr. J. Math. 11, No. 2, 315--327 (2014; Zbl 1290.30043) Full Text: DOI arXiv
Neuman, Edward On some means derived from the Schwab-Borchardt mean. (English) Zbl 1294.26033 J. Math. Inequal. 8, No. 1, 171-183 (2014). MSC: 26E60 26D05 26D07 PDF BibTeX XML Cite \textit{E. Neuman}, J. Math. Inequal. 8, No. 1, 171--183 (2014; Zbl 1294.26033) Full Text: DOI Link
Lyu, Shu-Lin On the Hermite-Hadamard inequality for convex functions of two variables. (English) Zbl 1290.26033 Numer. Algebra Control Optim. 4, No. 1, 1-8 (2014). MSC: 26D15 26E60 26B25 65F60 PDF BibTeX XML Cite \textit{S.-L. Lyu}, Numer. Algebra Control Optim. 4, No. 1, 1--8 (2014; Zbl 1290.26033) Full Text: DOI
Papadimitrakis, Michael (Weak) compactness of Hankel operators on \(BMOA\). (English) Zbl 1303.47042 Publ. Mat., Barc. 58, No. 1, 221-231 (2014). Reviewer: Boo Rim Choe (Seoul) MSC: 47B35 30H35 30H10 PDF BibTeX XML Cite \textit{M. Papadimitrakis}, Publ. Mat., Barc. 58, No. 1, 221--231 (2014; Zbl 1303.47042) Full Text: DOI Euclid arXiv
Wei, Li; Yang, Yuanhua A new approach to quantized stabilization of a stochastic system with multiplicative noise. (English) Zbl 1365.93273 Adv. Difference Equ. 2013, Paper No. 20, 11 p. (2013). MSC: 93C55 90B18 93B52 93C05 93D15 PDF BibTeX XML Cite \textit{L. Wei} and \textit{Y. Yang}, Adv. Difference Equ. 2013, Paper No. 20, 11 p. (2013; Zbl 1365.93273) Full Text: DOI
Neuman, Edward Inequalities involving certain bivariate means. (English) Zbl 1446.26019 Bull. Int. Math. Virtual Inst. 3, No. 1, 49-57 (2013). MSC: 26E60 26D07 26D05 PDF BibTeX XML Cite \textit{E. Neuman}, Bull. Int. Math. Virtual Inst. 3, No. 1, 49--57 (2013; Zbl 1446.26019)
Neuman, Edward Inequalities involving certain bivariate means. II. (English) Zbl 1312.26057 J. Inequal. Spec. Funct. 4, No. 4, 12-20 (2013). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{E. Neuman}, J. Inequal. Spec. Funct. 4, No. 4, 12--20 (2013; Zbl 1312.26057) Full Text: Link
Neuman, Edward An inequality involving multivariate logarithmic mean. (English) Zbl 1312.26056 J. Inequal. Spec. Funct. 4, No. 2, 40-42 (2013). MSC: 26E60 26D07 26D20 PDF BibTeX XML Cite \textit{E. Neuman}, J. Inequal. Spec. Funct. 4, No. 2, 40--42 (2013; Zbl 1312.26056) Full Text: Link
Kryczka, Andrzej Mean separations in Banach spaces under abstract interpolation and extrapolation. (English) Zbl 1377.46005 J. Math. Anal. Appl. 407, No. 2, 281-289 (2013). MSC: 46B03 46B42 46E30 46B70 PDF BibTeX XML Cite \textit{A. Kryczka}, J. Math. Anal. Appl. 407, No. 2, 281--289 (2013; Zbl 1377.46005) Full Text: DOI
Khalid, Sadia; Pečarić, Josip; Praljak, Marjan 3-convex functions and generalizations of an inequality of Hardy-Littlewood-Pólya. (English) Zbl 1303.26021 Glas. Mat., III. Ser. 48, No. 2, 335-356 (2013). MSC: 26D15 26A51 26A24 26A48 PDF BibTeX XML Cite \textit{S. Khalid} et al., Glas. Mat., III. Ser. 48, No. 2, 335--356 (2013; Zbl 1303.26021) Full Text: DOI
Shen, Xu-Hui; Gong, Wei-Ming; Chu, Yu-Ming Optimal Lehmer mean bounds for the combinations of identric and logarithmic means. (English) Zbl 1298.26097 Chin. J. Math. (New York) 2013, Article ID 852516, 7 p. (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{X.-H. Shen} et al., Chin. J. Math. (New York) 2013, Article ID 852516, 7 p. (2013; Zbl 1298.26097) Full Text: DOI
Chu, Y. M.; Hou, S. W.; Xia, W. F. Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means. (English) Zbl 1298.26091 Bull. Iran. Math. Soc. 39, No. 2, 259-269 (2013). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{Y. M. Chu} et al., Bull. Iran. Math. Soc. 39, No. 2, 259--269 (2013; Zbl 1298.26091) Full Text: Link
Guo, Zhijun; Shen, Xuhui; Chu, Yuming The best possible Lehmer mean bounds for a convex combination of logarithmic and harmonic means. (English) Zbl 1297.26067 Int. Math. Forum 8, No. 29-32, 1539-1551 (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{Z. Guo} et al., Int. Math. Forum 8, No. 29--32, 1539--1551 (2013; Zbl 1297.26067) Full Text: DOI