Mazari, Idriss; Nadin, Grégoire; Privat, Yannick Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. (English) Zbl 07523453 Commun. Partial Differ. Equations 47, No. 4, 797-828 (2022). MSC: 35Q92 49J99 34B15 PDF BibTeX XML Cite \textit{I. Mazari} et al., Commun. Partial Differ. Equations 47, No. 4, 797--828 (2022; Zbl 07523453) Full Text: DOI OpenURL
Tehrani, Hossein A heterogeneous diffusive logistic model with constant yield harvesting in \(\mathbb{R}^N\) under strong growth rate. (English) Zbl 07522897 Topol. Methods Nonlinear Anal. 59, No. 1, 385-408 (2022). MSC: 35Jxx 35B45 35J15 35J20 35J61 PDF BibTeX XML Cite \textit{H. Tehrani}, Topol. Methods Nonlinear Anal. 59, No. 1, 385--408 (2022; Zbl 07522897) Full Text: DOI OpenURL
Cubillos, Pablo; López-Gómez, Julián; Tellini, Andrea Multiplicity of nodal solutions in classical non-degenerate logistic equations. (English) Zbl 07510614 Electron Res. Arch. 30, No. 3, 898-928 (2022). MSC: 34-XX PDF BibTeX XML Cite \textit{P. Cubillos} et al., Electron Res. Arch. 30, No. 3, 898--928 (2022; Zbl 07510614) Full Text: DOI OpenURL
Akbari, Najmeh; Asheghi, Rasoul; Nasirian, Maryam Stability and dynamic of HIV-1 mathematical model with logistic target cell growth, treatment rate, cure rate and cell-to-cell spread. (English) Zbl 07500306 Taiwanese J. Math. 26, No. 2, 411-441 (2022). MSC: 34C60 92C60 92D30 34D05 34C05 34D20 PDF BibTeX XML Cite \textit{N. Akbari} et al., Taiwanese J. Math. 26, No. 2, 411--441 (2022; Zbl 07500306) Full Text: DOI OpenURL
Cintra, Willian; Montenegro, Marcelo; Suárez, Antonio The logistic equation with nonlinear advection term. (English) Zbl 07488962 Nonlinear Anal., Real World Appl. 65, Article ID 103503, 15 p. (2022). MSC: 92D25 92D40 35K57 35B09 PDF BibTeX XML Cite \textit{W. Cintra} et al., Nonlinear Anal., Real World Appl. 65, Article ID 103503, 15 p. (2022; Zbl 07488962) Full Text: DOI OpenURL
Xu, Yang; Sun, Jian-Wen Positive solutions for nonlocal dispersal equation. (English) Zbl 07479017 Appl. Math. Lett. 128, Article ID 107894, 5 p. (2022). MSC: 45M20 45K05 45J05 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{J.-W. Sun}, Appl. Math. Lett. 128, Article ID 107894, 5 p. (2022; Zbl 07479017) Full Text: DOI OpenURL
Nieto, Juan J. Solution of a fractional logistic ordinary differential equation. (English) Zbl 1480.34011 Appl. Math. Lett. 123, Article ID 107568, 5 p. (2022). MSC: 34A34 34A08 34A12 34A05 PDF BibTeX XML Cite \textit{J. J. Nieto}, Appl. Math. Lett. 123, Article ID 107568, 5 p. (2022; Zbl 1480.34011) Full Text: DOI OpenURL
Li, Dingshi; Lin, Yusen Periodic measures of impulsive stochastic differential equations. (English) Zbl 07526938 Chaos Solitons Fractals 148, Article ID 111035, 13 p. (2021). MSC: 60H10 34F05 34A37 60G57 PDF BibTeX XML Cite \textit{D. Li} and \textit{Y. Lin}, Chaos Solitons Fractals 148, Article ID 111035, 13 p. (2021; Zbl 07526938) Full Text: DOI OpenURL
Burgos, Clara; Cortés, Juan Carlos; López-Navarro, Elena; Villanueva, Rafael Jacinto Probabilistic analysis of linear-quadratic logistic-type models with hybrid uncertainties via probability density functions. (English) Zbl 07516007 AIMS Math. 6, No. 5, 4938-4957 (2021). MSC: 34F05 60H25 37H10 34A38 PDF BibTeX XML Cite \textit{C. Burgos} et al., AIMS Math. 6, No. 5, 4938--4957 (2021; Zbl 07516007) Full Text: DOI OpenURL
Izadi, Mohammad; Srivastava, H. M. Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases. (English) Zbl 07514629 Chaos Solitons Fractals 145, Article ID 110779, 11 p. (2021). MSC: 26A33 65L60 42C05 65L05 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{H. M. Srivastava}, Chaos Solitons Fractals 145, Article ID 110779, 11 p. (2021; Zbl 07514629) Full Text: DOI OpenURL
Kurkina, E. S.; Koltsova, E. M. Mathematical modeling of the propagation of COVID-19 pandemic waves in the world. (English. Russian original) Zbl 07513594 Comput. Math. Model. 32, No. 2, 147-170 (2021); translation from Prikl. Mat. Inf. 66, 46-79 (2021). MSC: 92-XX 37-XX PDF BibTeX XML Cite \textit{E. S. Kurkina} and \textit{E. M. Koltsova}, Comput. Math. Model. 32, No. 2, 147--170 (2021; Zbl 07513594); translation from Prikl. Mat. Inf. 66, 46--79 (2021) Full Text: DOI OpenURL
Luís, Rafael; Mendonça, Sandra A stochastic study for a generalized logistic model. (English) Zbl 1478.62209 REVSTAT 19, No. 1, 71-85 (2021). MSC: 62J12 39A23 39A30 39A50 PDF BibTeX XML Cite \textit{R. Luís} and \textit{S. Mendonça}, REVSTAT 19, No. 1, 71--85 (2021; Zbl 1478.62209) Full Text: Link OpenURL
Area, I.; Nieto, J. J. Power series solution of the fractional logistic equation. (English) Zbl 07459876 Physica A 573, Article ID 125947, 9 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{I. Area} and \textit{J. J. Nieto}, Physica A 573, Article ID 125947, 9 p. (2021; Zbl 07459876) Full Text: DOI OpenURL
Otunuga, Olusegun Michael Time-dependent probability density function for general stochastic logistic population model with harvesting effort. (English) Zbl 07459862 Physica A 573, Article ID 125931, 33 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{O. M. Otunuga}, Physica A 573, Article ID 125931, 33 p. (2021; Zbl 07459862) Full Text: DOI OpenURL
Rockwood, Nicholas J. Efficient likelihood estimation of generalized structural equation models with a mix of normal and nonnormal responses. (English) Zbl 1477.62350 Psychometrika 86, No. 2, 642-667 (2021). MSC: 62P15 62F10 62J12 PDF BibTeX XML Cite \textit{N. J. Rockwood}, Psychometrika 86, No. 2, 642--667 (2021; Zbl 1477.62350) Full Text: DOI OpenURL
Kolianova, T. V. The impact of management on the behavior of an isolated logistics population. (Ukrainian. English summary) Zbl 07450260 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 1, 81-84 (2021). MSC: 92D25 PDF BibTeX XML Cite \textit{T. V. Kolianova}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 1, 81--84 (2021; Zbl 07450260) Full Text: DOI OpenURL
Aniceto, Inês; Hasenbichler, Daniel; Howls, Christopher J.; Lustri, Christopher J. Capturing the cascade: a transseries approach to delayed bifurcations. (English) Zbl 07430791 Nonlinearity 34, No. 12, 8248-8282 (2021). Reviewer: Ábel Garab (Szeged) MSC: 39A28 39A12 34E17 PDF BibTeX XML Cite \textit{I. Aniceto} et al., Nonlinearity 34, No. 12, 8248--8282 (2021; Zbl 07430791) Full Text: DOI arXiv OpenURL
Alfifi, H. Y. Stability and Hopf bifurcation analysis for the diffusive delay logistic population model with spatially heterogeneous environment. (English) Zbl 07424227 Appl. Math. Comput. 408, Article ID 126362, 14 p. (2021). MSC: 35B32 92D25 92D40 35B10 35K57 34K18 34C05 35R10 PDF BibTeX XML Cite \textit{H. Y. Alfifi}, Appl. Math. Comput. 408, Article ID 126362, 14 p. (2021; Zbl 07424227) Full Text: DOI OpenURL
Tesfay, Almaz; Tesfay, Daniel; Khalaf, Anas; Brannan, James Mean exit time and escape probability for the stochastic logistic growth model with multiplicative \(\alpha\)-stable Lévy noise. (English) Zbl 1481.60116 Stoch. Dyn. 21, No. 4, Article ID 2150016, 27 p. (2021). MSC: 60H10 60G51 39A50 45K05 65N22 PDF BibTeX XML Cite \textit{A. Tesfay} et al., Stoch. Dyn. 21, No. 4, Article ID 2150016, 27 p. (2021; Zbl 1481.60116) Full Text: DOI arXiv OpenURL
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Park, Jintae; Kim, Sangkwon; Yang, Junxiang; Kim, Junseok On the evolutionary dynamics of the Cahn-Hilliard equation with cut-off mass source. (English) Zbl 07404488 Numer. Math., Theory Methods Appl. 14, No. 1, 242-260 (2021). MSC: 35K55 PDF BibTeX XML Cite \textit{C. Lee} et al., Numer. Math., Theory Methods Appl. 14, No. 1, 242--260 (2021; Zbl 07404488) Full Text: DOI OpenURL
Wang, Yan The global attraction of logistic equation with Lévy noise. (English) Zbl 07404026 J. Math. Res. Appl. 41, No. 3, 323-330 (2021). MSC: 34D45 34F05 PDF BibTeX XML Cite \textit{Y. Wang}, J. Math. Res. Appl. 41, No. 3, 323--330 (2021; Zbl 07404026) Full Text: DOI OpenURL
Kuttler, Ch.; Maslovskaya, A. Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing. (English) Zbl 1481.92084 Appl. Math. Modelling 93, 360-375 (2021). MSC: 92C70 35Q92 65M06 PDF BibTeX XML Cite \textit{Ch. Kuttler} and \textit{A. Maslovskaya}, Appl. Math. Modelling 93, 360--375 (2021; Zbl 1481.92084) Full Text: DOI OpenURL
Tesfay, Almaz; Tesfay, Daniel; Brannan, James; Duan, Jinqiao A logistic-harvest model with Allee effect under multiplicative noise. (English) Zbl 1473.37107 Stoch. Dyn. 21, No. 3, Article ID 2150044, 22 p. (2021). MSC: 37N25 37H10 60H10 92D25 PDF BibTeX XML Cite \textit{A. Tesfay} et al., Stoch. Dyn. 21, No. 3, Article ID 2150044, 22 p. (2021; Zbl 1473.37107) Full Text: DOI arXiv OpenURL
Satoh, Daisuke; Matsumura, Ryutaro Forecasting with full use of data without interpolation on logistic curve model with missing data. (English) Zbl 1470.39041 Japan J. Ind. Appl. Math. 38, No. 2, 473-488 (2021). MSC: 39A60 62J05 91B62 PDF BibTeX XML Cite \textit{D. Satoh} and \textit{R. Matsumura}, Japan J. Ind. Appl. Math. 38, No. 2, 473--488 (2021; Zbl 1470.39041) Full Text: DOI OpenURL
Sun, Jian-Wen Effects of dispersal and spatial heterogeneity on nonlocal logistic equations. (English) Zbl 1467.35055 Nonlinearity 34, No. 8, 5434-5455 (2021). MSC: 35B40 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{J.-W. Sun}, Nonlinearity 34, No. 8, 5434--5455 (2021; Zbl 1467.35055) Full Text: DOI OpenURL
Inoue, Jumpei; Kuto, Kousuke On the unboundedness of the ratio of species and resources for the diffusive logistic equation. (English) Zbl 1471.35276 Discrete Contin. Dyn. Syst., Ser. B 26, No. 5, 2441-2450 (2021). MSC: 35Q92 35B30 35B09 35B40 92D40 92D25 PDF BibTeX XML Cite \textit{J. Inoue} and \textit{K. Kuto}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 5, 2441--2450 (2021; Zbl 1471.35276) Full Text: DOI arXiv OpenURL
Hamidoğlu, Ali; Taghiyev, Mustafa H. On construction of almost periodic sequences and applications to some discrete population models. (English) Zbl 1467.92154 J. Difference Equ. Appl. 27, No. 1, 118-131 (2021). Reviewer: Wan-Tong Li (Lanzhou) MSC: 92D25 11J72 39A24 PDF BibTeX XML Cite \textit{A. Hamidoğlu} and \textit{M. H. Taghiyev}, J. Difference Equ. Appl. 27, No. 1, 118--131 (2021; Zbl 1467.92154) Full Text: DOI OpenURL
Phan, Tin; Pell, Bruce; Kendig, Amy E.; Borer, Elizabeth T.; Kuang, Yang Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. (English) Zbl 1468.34114 Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 515-539 (2021). MSC: 34K60 34K20 92C80 92D25 92D40 34K13 34K21 34K18 PDF BibTeX XML Cite \textit{T. Phan} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 515--539 (2021; Zbl 1468.34114) Full Text: DOI OpenURL
Han, Dongxiao; He, Haijin; Sun, Liuquan; Song, Xinyuan; Xu, Wei Inference in a mixture additive hazards cure model. (English) Zbl 07342199 Stat. Interface 14, No. 3, 323-338 (2021). MSC: 62G08 62N01 PDF BibTeX XML Cite \textit{D. Han} et al., Stat. Interface 14, No. 3, 323--338 (2021; Zbl 07342199) Full Text: DOI OpenURL
Mazari, Idriss; Ruiz-Balet, Domènec A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models. (English) Zbl 1458.35425 SIAM J. Appl. Math. 81, No. 1, 153-172 (2021). MSC: 35Q92 92D25 49J10 49Q10 92-08 PDF BibTeX XML Cite \textit{I. Mazari} and \textit{D. Ruiz-Balet}, SIAM J. Appl. Math. 81, No. 1, 153--172 (2021; Zbl 1458.35425) Full Text: DOI arXiv OpenURL
Aleja, D.; Molina-Meyer, M. Nonlinear finite elements: sub- and supersolutions for the heterogeneous logistic equation. (English) Zbl 1458.65097 J. Differ. Equations 278, 189-219 (2021). MSC: 65N30 65N12 35J25 35B50 PDF BibTeX XML Cite \textit{D. Aleja} and \textit{M. Molina-Meyer}, J. Differ. Equations 278, 189--219 (2021; Zbl 1458.65097) Full Text: DOI OpenURL
Chen, Hong-Yi; Gupta, Manak C.; Lee, Alice C.; Lee, Cheng Few Sustainable growth rate, optimal growth rate, and optimal payout ratio: a joint optimization approach. (English) Zbl 1451.91225 Lee, Cheng Few (ed.) et al., Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 3. Hackensack, NJ: World Scientific. 3413-3464 (2021). MSC: 91G50 91B62 PDF BibTeX XML Cite \textit{H.-Y. Chen} et al., in: Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 3. Hackensack, NJ: World Scientific. 3413--3464 (2021; Zbl 1451.91225) Full Text: DOI OpenURL
Delgado, Manuel; Molina-Becerra, Mónica; Suárez, Antonio A logistic type equation in \(\mathbb{R}^N\) with a nonlocal reaction term via bifurcation method. (English) Zbl 1450.35046 J. Math. Anal. Appl. 493, No. 1, Article ID 124532, 19 p. (2021). MSC: 35B32 35J61 35R09 35B09 PDF BibTeX XML Cite \textit{M. Delgado} et al., J. Math. Anal. Appl. 493, No. 1, Article ID 124532, 19 p. (2021; Zbl 1450.35046) Full Text: DOI OpenURL
Pelinovsky, Efim; Kurkin, Andrey; Kurkina, Oxana; Kokoulina, Maria; Epifanova, Anastasia Logistic equation and COVID-19. (English) Zbl 07508307 Chaos Solitons Fractals 140, Article ID 110241, 14 p. (2020). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{E. Pelinovsky} et al., Chaos Solitons Fractals 140, Article ID 110241, 14 p. (2020; Zbl 07508307) Full Text: DOI OpenURL
Hasan, Shatha; El-Ajou, Ahmad; Hadid, Samir; Al-Smadi, Mohammed; Momani, Shaher Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. (English) Zbl 1483.92110 Chaos Solitons Fractals 133, Article ID 109624, 10 p. (2020). MSC: 92D25 26A33 34A08 65L10 PDF BibTeX XML Cite \textit{S. Hasan} et al., Chaos Solitons Fractals 133, Article ID 109624, 10 p. (2020; Zbl 1483.92110) Full Text: DOI OpenURL
Pinto, Manuel; Torres, Ricardo; Campillay-Llanos, William; Guevara-Morales, Felipe Applications of proportional calculus and a non-Newtonian logistic growth model. (English) Zbl 1481.26009 Proyecciones 39, No. 6, 1471-1513 (2020). Reviewer: Antonín Slavík (Praha) MSC: 26A99 34A99 35A99 PDF BibTeX XML Cite \textit{M. Pinto} et al., Proyecciones 39, No. 6, 1471--1513 (2020; Zbl 1481.26009) Full Text: DOI OpenURL
Alfifi, H. Y. Semi-analytical solutions for the diffusive logistic equation with mixed instantaneous and delayed density dependence. (English) Zbl 1482.35114 Adv. Difference Equ. 2020, Paper No. 162, 15 p. (2020). MSC: 35K57 65M60 35B32 PDF BibTeX XML Cite \textit{H. Y. Alfifi}, Adv. Difference Equ. 2020, Paper No. 162, 15 p. (2020; Zbl 1482.35114) Full Text: DOI OpenURL
Pan, Xuejun; Shu, Hongying; Chen, Yuming Dirichlet problem for a diffusive logistic population model with two delays. (English) Zbl 1471.92262 Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3139-3155 (2020). MSC: 92D25 35K57 34K18 PDF BibTeX XML Cite \textit{X. Pan} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 11, 3139--3155 (2020; Zbl 1471.92262) Full Text: DOI OpenURL
Kashchenko, S. A.; Loginov, D. O. Estimation of the region of global stability of the equilibrium state of the logistic equation with delay. (English. Russian original) Zbl 1472.34134 Russ. Math. 64, No. 9, 34-49 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 9, 39-55 (2020). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K20 34K21 92D25 PDF BibTeX XML Cite \textit{S. A. Kashchenko} and \textit{D. O. Loginov}, Russ. Math. 64, No. 9, 34--49 (2020; Zbl 1472.34134); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 9, 39--55 (2020) Full Text: DOI OpenURL
Taira, Kazuaki Logistic Neumann problems with discontinuous coefficients. (English) Zbl 1466.92160 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 409-485 (2020). MSC: 92D25 35R05 42B20 PDF BibTeX XML Cite \textit{K. Taira}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 409--485 (2020; Zbl 1466.92160) Full Text: DOI OpenURL
Xu, Haiyan; Ge, Jing; Lin, Zhigui The diffusive characteristics of the generalized logistic model on an evolving domain. (Chinese. English summary) Zbl 1474.35401 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 345-349 (2020). MSC: 35K57 35B40 35B10 PDF BibTeX XML Cite \textit{H. Xu} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 345--349 (2020; Zbl 1474.35401) Full Text: DOI OpenURL
Zhao, Jiandong; Zhang, Tonghua Permanence and extinction of a single species model in polluted environment. (English) Zbl 1461.92104 Int. J. Biomath. 13, No. 4, Article ID 2050031, 14 p. (2020). MSC: 92D25 92D40 34D05 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{T. Zhang}, Int. J. Biomath. 13, No. 4, Article ID 2050031, 14 p. (2020; Zbl 1461.92104) Full Text: DOI OpenURL
Molina-Meyer, Marcela; Prieto Medina, Frank Richard A collocation-spectral method to solve the bi-dimensional degenerate diffusive logistic equation with spatial heterogeneities in circular domains. (English) Zbl 1459.35180 Rend. Ist. Mat. Univ. Trieste 52, 311-343 (2020). MSC: 35J61 35J70 65N35 65P30 92D25 PDF BibTeX XML Cite \textit{M. Molina-Meyer} and \textit{F. R. Prieto Medina}, Rend. Ist. Mat. Univ. Trieste 52, 311--343 (2020; Zbl 1459.35180) Full Text: DOI Link OpenURL
Borysenko, O. D.; Borysenko, D. O. Asymptotic behavior of a solution of the non-autonomous logistic stochastic differential equation. (English. Ukrainian original) Zbl 1455.60075 Theory Probab. Math. Stat. 101, 39-50 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 40-48 (2019). MSC: 60H10 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Theory Probab. Math. Stat. 101, 39--50 (2020; Zbl 1455.60075); translation from Teor. Jmovirn. Mat. Stat. 101, 40--48 (2019) Full Text: DOI OpenURL
Kashchenko, S. A. Local dynamics of chains of van der Pol coupled systems. (English. Russian original) Zbl 1455.35278 Math. Notes 108, No. 6, 901-905 (2020); translation from Mat. Zametki 108, No. 6, 936-940 (2020). MSC: 35R09 35K20 35K58 35B35 PDF BibTeX XML Cite \textit{S. A. Kashchenko}, Math. Notes 108, No. 6, 901--905 (2020; Zbl 1455.35278); translation from Mat. Zametki 108, No. 6, 936--940 (2020) Full Text: DOI OpenURL
Shen, Bo-Wen Homoclinic orbits and solitary waves within the nondissipative Lorenz model and KdV equation. (English) Zbl 1471.34084 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020). Reviewer: Yingxin Guo (Qufu) MSC: 34C37 35C07 92D25 PDF BibTeX XML Cite \textit{B.-W. Shen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020; Zbl 1471.34084) Full Text: DOI OpenURL
Yao, Ting; Guo, Yongfeng; Fan, Shunhou; Wei, Fang The non-stationary state solution of nonlinear drift Fokker-Planck equation with non-Gaussian noise and its application. (Chinese. English summary) Zbl 1463.35478 Chin. J. Eng. Math. 37, No. 3, 303-313 (2020). MSC: 35Q84 93C10 93E03 PDF BibTeX XML Cite \textit{T. Yao} et al., Chin. J. Eng. Math. 37, No. 3, 303--313 (2020; Zbl 1463.35478) Full Text: DOI OpenURL
Cintra, Willian; Santos Júnior, João R.; Siciliano, Gaetano; Suárez, Antonio Existence results of positive solutions for Kirchhoff type equations via bifurcation methods. (English) Zbl 1448.35216 Math. Z. 295, No. 3-4, 1143-1161 (2020). MSC: 35J62 35J25 PDF BibTeX XML Cite \textit{W. Cintra} et al., Math. Z. 295, No. 3--4, 1143--1161 (2020; Zbl 1448.35216) Full Text: DOI arXiv OpenURL
Khader, M. M.; Sweilam, N. H.; Kharrat, B. N. Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation. (English) Zbl 1448.65071 Appl. Appl. Math. 15, No. 1, 655-665 (2020). MSC: 65L06 41A30 34A08 26A33 65D25 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Appl. Math. 15, No. 1, 655--665 (2020; Zbl 1448.65071) Full Text: Link OpenURL
Zhang, Zhiqiang; Yang, Xiangfeng Uncertain population model. (English) Zbl 1436.92012 Soft Comput. 24, No. 4, 2417-2423 (2020). MSC: 92D25 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{X. Yang}, Soft Comput. 24, No. 4, 2417--2423 (2020; Zbl 1436.92012) Full Text: DOI OpenURL
Izadi, Mohammad A comparative study of two Legendre-collocation schemes applied to fractional logistic equation. (English) Zbl 1442.65117 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 71, 18 p. (2020). MSC: 65L03 65L05 26A33 33C45 42C10 PDF BibTeX XML Cite \textit{M. Izadi}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 71, 18 p. (2020; Zbl 1442.65117) Full Text: DOI OpenURL
Hu, Yuanyang; Hao, Xinan; Song, Xianfa; Du, Yihong A free boundary problem for spreading under shifting climate. (English) Zbl 1448.35584 J. Differ. Equations 269, No. 7, 5931-5958 (2020). MSC: 35R35 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Hu} et al., J. Differ. Equations 269, No. 7, 5931--5958 (2020; Zbl 1448.35584) Full Text: DOI arXiv OpenURL
Glyzin, S. D.; Kashchenko, S. A. Family of finite-dimensional maps induced by a logistic equation with a delay. (Russian. English summary) Zbl 1447.65178 Mat. Model. 32, No. 3, 19-46 (2020). MSC: 65N99 35B32 35R07 92D25 92D40 35Q92 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{S. A. Kashchenko}, Mat. Model. 32, No. 3, 19--46 (2020; Zbl 1447.65178) Full Text: DOI MNR OpenURL
Heihoff, Frederic Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term. (English) Zbl 1434.35246 Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020). MSC: 35Q91 35B40 35K55 91D10 PDF BibTeX XML Cite \textit{F. Heihoff}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020; Zbl 1434.35246) Full Text: DOI arXiv OpenURL
Aleja, D.; Antón, I.; López-Gómez, J. Solution components in a degenerate weighted BVP. (English) Zbl 1439.35256 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111690, 20 p. (2020). MSC: 35K57 35B09 35J25 PDF BibTeX XML Cite \textit{D. Aleja} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111690, 20 p. (2020; Zbl 1439.35256) Full Text: DOI OpenURL
He, Tieshan; He, Lang; Huang, Yehui Infinitely many nodal solutions for generalized logistic equations without odd symmetry on reaction. (English) Zbl 1436.35116 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111741, 20 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 35J92 PDF BibTeX XML Cite \textit{T. He} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111741, 20 p. (2020; Zbl 1436.35116) Full Text: DOI OpenURL
Chen, Chuang-Xin; Chen, Zong-Xuan Some results concerning meromorphic solutions for the Pielou logistic equation. (English) Zbl 1445.39015 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1775-1797 (2020). Reviewer: Risto Korhonen (Joensuu) MSC: 39A45 30D35 30D30 PDF BibTeX XML Cite \textit{C.-X. Chen} and \textit{Z.-X. Chen}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1775--1797 (2020; Zbl 1445.39015) Full Text: DOI OpenURL
Morris, Quinn; Nash, Jessica; Payne, Catherine Analysis of steady states for classes of reaction-diffusion equations with hump-shaped density-dependent dispersal on the boundary. (English) Zbl 1440.34021 Involve 13, No. 1, 9-19 (2020). MSC: 34B09 34B18 34C60 92D25 34B08 PDF BibTeX XML Cite \textit{Q. Morris} et al., Involve 13, No. 1, 9--19 (2020; Zbl 1440.34021) Full Text: DOI OpenURL
Sun, Jian-Wen Sharp profiles for periodic logistic equation with nonlocal dispersal. (English) Zbl 1432.35010 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020). MSC: 35B10 35B40 35K57 35P05 35B09 35R09 PDF BibTeX XML Cite \textit{J.-W. Sun}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020; Zbl 1432.35010) Full Text: DOI OpenURL
Lois-Prados, Cristina; Precup, Radu Positive periodic solutions for Lotka-Volterra systems with a general attack rate. (English) Zbl 1433.34066 Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020). MSC: 34C60 92D25 37C60 34C25 PDF BibTeX XML Cite \textit{C. Lois-Prados} and \textit{R. Precup}, Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020; Zbl 1433.34066) Full Text: DOI OpenURL
Mazari, Idriss; Nadin, Grégoire; Privat, Yannick Optimal location of resources maximizing the total population size in logistic models. (English. French summary) Zbl 1433.92038 J. Math. Pures Appl. (9) 134, 1-35 (2020). Reviewer: Attila Dénes (Szeged) MSC: 92D25 49K20 35Q92 PDF BibTeX XML Cite \textit{I. Mazari} et al., J. Math. Pures Appl. (9) 134, 1--35 (2020; Zbl 1433.92038) Full Text: DOI arXiv OpenURL
Saraçli, Sinan; Erdoğmuş, Atılgan Determining the effects of information security knowledge on information security awareness via structural equation modelings. (English) Zbl 07411429 Hacet. J. Math. Stat. 48, No. 4, 1201-1212 (2019). MSC: 62J99 62H99 62-07 62J12 PDF BibTeX XML Cite \textit{S. Saraçli} and \textit{A. Erdoğmuş}, Hacet. J. Math. Stat. 48, No. 4, 1201--1212 (2019; Zbl 07411429) Full Text: Link OpenURL
Zhu, Ling The asymptotic behavior of a logistic SIR epidemic model with stochastic perturbation. (English) Zbl 1463.34216 J. Univ. Sci. Technol. China 49, No. 11, 902-911 (2019). MSC: 34C60 34D05 34D20 60H10 92D30 34C05 34F05 34D10 PDF BibTeX XML Cite \textit{L. Zhu}, J. Univ. Sci. Technol. China 49, No. 11, 902--911 (2019; Zbl 1463.34216) Full Text: DOI OpenURL
Nudee, K.; Chinviriyasit, S.; Chinviriyasit, W. The effect of backward bifurcation in controlling measles transmission by vaccination. (English) Zbl 1448.92327 Chaos Solitons Fractals 123, 400-412 (2019). MSC: 92D30 34C60 34D05 34C23 PDF BibTeX XML Cite \textit{K. Nudee} et al., Chaos Solitons Fractals 123, 400--412 (2019; Zbl 1448.92327) Full Text: DOI OpenURL
Abdeljawad, Thabet; Al-Mdallal, Qasem M.; Jarad, Fahd Fractional logistic models in the frame of fractional operators generated by conformable derivatives. (English) Zbl 1448.34006 Chaos Solitons Fractals 119, 94-101 (2019). MSC: 34A08 34A12 34D20 34C60 65L03 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Chaos Solitons Fractals 119, 94--101 (2019; Zbl 1448.34006) Full Text: DOI OpenURL
Cortés, J.-C.; Navarro-Quiles, Ana; Romero, J.-V.; Roselló, M.-D. Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loève expansion and the random variable transformation technique. (English) Zbl 1464.60059 Commun. Nonlinear Sci. Numer. Simul. 72, 121-138 (2019). MSC: 60H10 34F05 60G12 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 121--138 (2019; Zbl 1464.60059) Full Text: DOI arXiv OpenURL
Yamaka, Woraphon; Maneejuk, Paravee Bayesian empirical likelihood estimation of smooth kink regression. (English) Zbl 1463.35290 Thai J. Math., Spec. Iss.: Structural change modeling and optimization in econometrics 2018, 217-233 (2019). MSC: 35K05 91G20 PDF BibTeX XML Cite \textit{W. Yamaka} and \textit{P. Maneejuk}, Thai J. Math., 217--233 (2019; Zbl 1463.35290) Full Text: Link OpenURL
Maneejuk, Paravee; Yamaka, Woraphon; Leeahtam, Pisit Modeling nonlinear dependence structure using logistic smooth transition copula model. (English) Zbl 1463.35284 Thai J. Math., Spec. Iss.: Structural change modeling and optimization in econometrics 2018, 121-134 (2019). MSC: 35K05 91G20 PDF BibTeX XML Cite \textit{P. Maneejuk} et al., Thai J. Math., 121--134 (2019; Zbl 1463.35284) Full Text: Link OpenURL
Borysenko, O. D.; Borysenko, D. O. Stochastic permanence of solution to stochastic non-autonomous logistic equation with jumps. (Ukrainian. English summary) Zbl 1449.60097 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10-13 (2019). MSC: 60H10 34F05 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10--13 (2019; Zbl 1449.60097) OpenURL
Buedo-Fernández, Sebastián On the gamma-logistic map and applications to a delayed neoclassical model of economic growth. (English) Zbl 1437.91288 Nonlinear Dyn. 96, No. 1, 219-227 (2019). MSC: 91B62 34K20 PDF BibTeX XML Cite \textit{S. Buedo-Fernández}, Nonlinear Dyn. 96, No. 1, 219--227 (2019; Zbl 1437.91288) Full Text: DOI Link OpenURL
Yoshioka, Hidekazu A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity. (English) Zbl 1448.92388 J. Biol. Dyn. 13, No. 1, 148-176 (2019). MSC: 92D40 92D25 93E20 34H05 35D40 65M06 PDF BibTeX XML Cite \textit{H. Yoshioka}, J. Biol. Dyn. 13, No. 1, 148--176 (2019; Zbl 1448.92388) Full Text: DOI OpenURL
Borysenko, O. D.; Borysenko, D. O. Persistence and extinction in a stochastic nonautonomous logistic model of population dynamics. (English. Ukrainian original) Zbl 1447.60083 Theory Probab. Math. Stat. 99, 67-75 (2019); translation from Teor. Jmovirn. Mat. Stat. 99, 63-70 (2018). MSC: 60H10 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Theory Probab. Math. Stat. 99, 67--75 (2019; Zbl 1447.60083); translation from Teor. Jmovirn. Mat. Stat. 99, 63--70 (2018) Full Text: DOI OpenURL
Tarasov, Vasily E.; Tarasova, Valentina V. Logistic equation with continuously distributed lag and application in economics. (English) Zbl 1430.37128 Nonlinear Dyn. 97, No. 2, 1313-1328 (2019). MSC: 37N40 91B55 PDF BibTeX XML Cite \textit{V. E. Tarasov} and \textit{V. V. Tarasova}, Nonlinear Dyn. 97, No. 2, 1313--1328 (2019; Zbl 1430.37128) Full Text: DOI OpenURL
Cortés, Juan Carlos; Navarro-Quiles, Ana; Romero, José-Vicente; Roselló, María-Dolores (CMMSE2018 paper) Solving the random Pielou logistic equation with the random variable transformation technique: theory and applications. (English) Zbl 1431.60125 Math. Methods Appl. Sci. 42, No. 17, 5708-5717 (2019). MSC: 60K37 34F05 60H35 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Math. Methods Appl. Sci. 42, No. 17, 5708--5717 (2019; Zbl 1431.60125) Full Text: DOI arXiv OpenURL
Calatayud, Julia; Cortés, Juan Carlos; Jornet, Marc Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations. (English) Zbl 1432.60060 Math. Methods Appl. Sci. 42, No. 18, 7259-7267 (2019). MSC: 60H10 34F05 60H35 PDF BibTeX XML Cite \textit{J. Calatayud} et al., Math. Methods Appl. Sci. 42, No. 18, 7259--7267 (2019; Zbl 1432.60060) Full Text: DOI OpenURL
Gao, Jianzhong; Zhang, Tailei An SIRS epidemic model with pulse vaccination, birth pulse and Logistic death rate. (English) Zbl 1449.34132 Commun. Math. Res. 35, No. 3, 247-263 (2019). MSC: 34C60 34A37 34C25 34D23 92D30 34D05 PDF BibTeX XML Cite \textit{J. Gao} and \textit{T. Zhang}, Commun. Math. Res. 35, No. 3, 247--263 (2019; Zbl 1449.34132) Full Text: DOI OpenURL
Wang, Jiangli; Chen, Yu; Zhang, Weiping Parsimonious mean-covariance modeling for longitudinal data with ARMA errors. (English) Zbl 1434.62101 J. Syst. Sci. Complex. 32, No. 6, 1675-1692 (2019). MSC: 62H12 62M10 62J12 62P10 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Syst. Sci. Complex. 32, No. 6, 1675--1692 (2019; Zbl 1434.62101) Full Text: DOI OpenURL
Srivastav, Akhil Kumar; Ghosh, Mini Assessing the impact of treatment on the dynamics of dengue fever: a case study of India. (English) Zbl 1433.92063 Appl. Math. Comput. 362, Article ID 124533, 17 p. (2019). MSC: 92D30 34D23 34C60 34D05 92C60 62P10 PDF BibTeX XML Cite \textit{A. K. Srivastav} and \textit{M. Ghosh}, Appl. Math. Comput. 362, Article ID 124533, 17 p. (2019; Zbl 1433.92063) Full Text: DOI OpenURL
Conejero, J. Alberto; Lizama, Carlos; Mira-Iglesias, Ainara; Rodero, Cristóbal Visibility graphs of fractional Wu-Baleanu time series. (English) Zbl 1429.37046 J. Difference Equ. Appl. 25, No. 9-10, 1321-1331 (2019). MSC: 37M10 26A33 94A24 PDF BibTeX XML Cite \textit{J. A. Conejero} et al., J. Difference Equ. Appl. 25, No. 9--10, 1321--1331 (2019; Zbl 1429.37046) Full Text: DOI OpenURL
Glyzin, S. D.; Kashchenko, S. A. Finite-dimensional mappings describing the dynamics of a logistic equation with delay. (English. Russian original) Zbl 1427.37027 Dokl. Math. 100, No. 1, 380-384 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 6, 611-616 (2019). MSC: 37D45 37M05 37N25 39A10 39A33 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{S. A. Kashchenko}, Dokl. Math. 100, No. 1, 380--384 (2019; Zbl 1427.37027); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 6, 611--616 (2019) Full Text: DOI OpenURL
Chauhan, Vijeyata; Srivastava, Pankaj Kumar A numeric three stage trio-geometric mean Runge-Kutta approach over Verhulst equation on population dynamics. (English) Zbl 1431.65108 Nonlinear Stud. 26, No. 2, 379-389 (2019). MSC: 65L06 65L05 65L20 PDF BibTeX XML Cite \textit{V. Chauhan} and \textit{P. K. Srivastava}, Nonlinear Stud. 26, No. 2, 379--389 (2019; Zbl 1431.65108) Full Text: Link OpenURL
Satoh, Daisuke Model selection among growth curve models that have the same number of parameters. (English) Zbl 1428.62502 Cogent Math. Stat. 6, Article ID 1660503, 18 p. (2019). MSC: 62P20 91B62 PDF BibTeX XML Cite \textit{D. Satoh}, Cogent Math. Stat. 6, Article ID 1660503, 18 p. (2019; Zbl 1428.62502) Full Text: DOI OpenURL
Satoh, Daisuke Property of logistic data exposed with Gompertz model and resistance to noise in actual data. (English) Zbl 1426.39021 Japan J. Ind. Appl. Math. 36, No. 3, 937-957 (2019). MSC: 39A60 62J05 91B62 PDF BibTeX XML Cite \textit{D. Satoh}, Japan J. Ind. Appl. Math. 36, No. 3, 937--957 (2019; Zbl 1426.39021) Full Text: DOI OpenURL
Mondal, Debashis; Wang, Chunxiao A matrix-free method for spatial-temporal Gaussian state-space models. (English) Zbl 1442.62203 Stat. Sin. 29, No. 4, 2205-2227 (2019). Reviewer: Mikhail P. Moklyachuk (Kyïv) MSC: 62M10 62M30 62M40 62H35 62J12 62P12 PDF BibTeX XML Cite \textit{D. Mondal} and \textit{C. Wang}, Stat. Sin. 29, No. 4, 2205--2227 (2019; Zbl 1442.62203) Full Text: DOI OpenURL
Gao, Jianzhong; Zhang, Tailei Analysis on an SEIR epidemic model with logistic death rate of virus mutation. (English) Zbl 1438.34143 J. Math. Res. Appl. 39, No. 3, 259-268 (2019). MSC: 34C60 34D23 92D30 PDF BibTeX XML Cite \textit{J. Gao} and \textit{T. Zhang}, J. Math. Res. Appl. 39, No. 3, 259--268 (2019; Zbl 1438.34143) Full Text: DOI OpenURL
Yang, Jinji; Tian, Yanling Traveling wave solutions for a non-monotone logistic equation in a cylinder. (English) Zbl 1423.35062 Appl. Math. Lett. 96, 126-130 (2019). MSC: 35C07 35K58 35R10 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Y. Tian}, Appl. Math. Lett. 96, 126--130 (2019; Zbl 1423.35062) Full Text: DOI OpenURL
Markov, Svetoslav Reaction networks reveal new links between Gompertz and Verhulst growth functions. (English) Zbl 1425.92216 Biomath 8, No. 1, 43-56 (2019). MSC: 92D40 92C42 PDF BibTeX XML Cite \textit{S. Markov}, Biomath 8, No. 1, 43--56 (2019; Zbl 1425.92216) Full Text: DOI Link OpenURL
Delgado, M.; Molina-Becerra, M.; Santos Júnior, J. R.; Suárez, A. A non-local perturbation of the logistic equation in \(\mathbb{R}^N\). (English) Zbl 1425.35024 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 147-158 (2019). MSC: 35J15 35J60 PDF BibTeX XML Cite \textit{M. Delgado} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 147--158 (2019; Zbl 1425.35024) Full Text: DOI OpenURL
Zhang, Shen; Zhao, Peixin; Li, Gaorong; Xu, Wangli Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data. (English) Zbl 1417.62105 J. Multivariate Anal. 171, 37-52 (2019). MSC: 62G08 62J12 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Multivariate Anal. 171, 37--52 (2019; Zbl 1417.62105) Full Text: DOI OpenURL
Little, John B. Modeling and data analysis. An introduction with environmental applications. (English) Zbl 1419.00010 Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4869-1/hbk; 978-1-4704-5200-1/ebook). xv, 323 p. (2019). Reviewer: Ludwig Paditz (Dresden) MSC: 00A71 62-01 62-07 39A06 62P12 97-01 97A40 26A06 54C30 PDF BibTeX XML Cite \textit{J. B. Little}, Modeling and data analysis. An introduction with environmental applications. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1419.00010) OpenURL
Satoh, Daisuke; Matsumura, Ryutaro Monotonic decrease of upper limit estimated with Gompertz model for data described using logistic model. (English) Zbl 1408.39015 Japan J. Ind. Appl. Math. 36, No. 1, 79-96 (2019). MSC: 39A60 62J05 91B62 PDF BibTeX XML Cite \textit{D. Satoh} and \textit{R. Matsumura}, Japan J. Ind. Appl. Math. 36, No. 1, 79--96 (2019; Zbl 1408.39015) Full Text: DOI OpenURL
Yameni Noupoue, Yves Yannick; Tandoğdu, Yücel; Awadalla, Muath On numerical techniques for solving the fractional logistic differential equation. (English) Zbl 1414.39005 Adv. Difference Equ. 2019, Paper No. 108, 13 p. (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 39A13 26A33 34A08 65L12 PDF BibTeX XML Cite \textit{Y. Y. Yameni Noupoue} et al., Adv. Difference Equ. 2019, Paper No. 108, 13 p. (2019; Zbl 1414.39005) Full Text: DOI OpenURL
Jiang, Hong-Yan; Yue, Rong-Xian Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors. (English) Zbl 1417.62220 Comput. Stat. 34, No. 1, 71-87 (2019). MSC: 62K05 62J12 62P10 65C60 PDF BibTeX XML Cite \textit{H.-Y. Jiang} and \textit{R.-X. Yue}, Comput. Stat. 34, No. 1, 71--87 (2019; Zbl 1417.62220) Full Text: DOI OpenURL
Shi, Qingyan; Shi, Junping; Song, Yongli Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. (English) Zbl 1404.35262 Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 467-486 (2019). MSC: 35K57 35B10 35B32 35B36 35R10 92B05 92D40 PDF BibTeX XML Cite \textit{Q. Shi} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 467--486 (2019; Zbl 1404.35262) Full Text: DOI OpenURL
Delgado, M.; Duarte, I. B. M.; Suárez, A. Positive solutions of a nonlocal singular elliptic equation by means of a non-standard bifurcation theory. (English) Zbl 1401.35074 J. Math. Anal. Appl. 469, No. 2, 897-915 (2019). MSC: 35J60 35B09 35B32 PDF BibTeX XML Cite \textit{M. Delgado} et al., J. Math. Anal. Appl. 469, No. 2, 897--915 (2019; Zbl 1401.35074) Full Text: DOI OpenURL
Zhou, Jianhua; Gao, Ge; Yan, Baoqiang Study of a generalized logistic equation with nonlocal reaction term. (English) Zbl 07509606 Bound. Value Probl. 2018, Paper No. 150, 20 p. (2018). MSC: 35R09 45K05 35J60 35J25 PDF BibTeX XML Cite \textit{J. Zhou} et al., Bound. Value Probl. 2018, Paper No. 150, 20 p. (2018; Zbl 07509606) Full Text: DOI OpenURL
Wang, Aili; Li, Yanying; Tian, Bing A class of H7N9 avian influenza models with media coverage. (Chinese. English summary) Zbl 1424.92048 Math. Pract. Theory 48, No. 20, 165-172 (2018). MSC: 92D30 PDF BibTeX XML Cite \textit{A. Wang} et al., Math. Pract. Theory 48, No. 20, 165--172 (2018; Zbl 1424.92048) OpenURL
da Silva, José Luis; Kondratiev, Yuri; Tkachov, Pasha Fractional kinetics in a spatial ecology model. (English) Zbl 1424.92055 Methods Funct. Anal. Topol. 24, No. 3, 275-287 (2018). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 92D40 60K35 PDF BibTeX XML Cite \textit{J. L. da Silva} et al., Methods Funct. Anal. Topol. 24, No. 3, 275--287 (2018; Zbl 1424.92055) Full Text: Link OpenURL
Kashchenko, S. A. Dynamics of a delay logistic equation with slowly varying coefficients. (English. Russian original) Zbl 1421.34048 Comput. Math. Math. Phys. 58, No. 12, 1926-1936 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 1999-2013 (2018). Reviewer: Zhanyuan Hou (London) MSC: 34K26 34K20 34K18 34K17 34K13 34K12 PDF BibTeX XML Cite \textit{S. A. Kashchenko}, Comput. Math. Math. Phys. 58, No. 12, 1926--1936 (2018; Zbl 1421.34048); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 1999--2013 (2018) Full Text: DOI OpenURL
Dawson, Matthew; Müller, Hans-Georg Dynamic modeling of conditional quantile trajectories, with application to longitudinal snippet data. (English) Zbl 1409.62070 J. Am. Stat. Assoc. 113, No. 524, 1612-1624 (2018). MSC: 62G05 62J12 62P10 PDF BibTeX XML Cite \textit{M. Dawson} and \textit{H.-G. Müller}, J. Am. Stat. Assoc. 113, No. 524, 1612--1624 (2018; Zbl 1409.62070) Full Text: DOI arXiv OpenURL