×

Identification and validation of stable ARFIMA processes with application to UMTS data. (English) Zbl 1492.62130

Summary: In this paper we present an identification and validation scheme for stable autoregressive fractionally integrated moving average (ARFIMA) time series. The identification part relies on a recently introduced estimator which is a generalization of that of Kokoszka and Taqqu and a new fractional differencing algorithm. It also incorporates a low-variance estimator for the memory parameter based on the sample mean-squared displacement. The validation part includes standard noise diagnostics and backtesting procedure. The scheme is illustrated on Universal Mobile Telecommunications System (UMTS) data collected in an urban area. We show that the stochastic component of the data can be modeled by the long memory ARFIMA. This can help to monitor possible hazards related to the electromagnetic radiation.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60E07 Infinitely divisible distributions; stable distributions
62P20 Applications of statistics to economics

Software:

longmemo; itsmr; plfit
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Klafter, J.; Lim, S.; Metzler, R., Fractional dynamics: recent advances (2012), World Scientific: World Scientific Singapore) · Zbl 1238.93005
[2] Meerschaert, M. M.; Sikorskii, A., Stochastic models for fractional calculus, De gruyter studies in mathematics, vol. 43 (2012) · Zbl 1247.60003
[3] Metzler, R.; Klafter, J., The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1-77 (2000) · Zbl 0984.82032
[4] Beran, J., Statistics for long-memory processes (1994), Chapman & Hall: Chapman & Hall New York · Zbl 0869.60045
[5] Doukham, P.; Oppenheim, G.; Taqqu, M. S., Theory and applications of long range dependence (2003), Birkhäuser: Birkhäuser Boston · Zbl 1005.00017
[6] Samorodnitsky, G., Long range dependence, Found Trends Stoch Syst, 1, 163-257 (2006) · Zbl 1242.60033
[7] Burnecki, K.; Weron, A., Algorithms for testing of fractional dynamics: a practical guide to ARFIMA modelling, J Stat Mech, P10036 (2014)
[8] Cajueiro, D. O.; Tabak, B. M., Time-varying long-range dependence in US interest rates, Chaos Solitons Fractals, 34, 360-367 (2007) · Zbl 1127.62099
[9] Souzo, S. R.; Tabak, B. M.; Cajueiro, D. O., Long memory testing for fed funds futures contracts, Chaos Solitons Fractals, 37, 180-186 (2008)
[10] Cajueiro, D. O.; Tabak, B. M., Testing for long-range dependence in the brazilian term structure of interest rates, Chaos Solitons Fractals, 40, 1559-1573 (2009) · Zbl 1198.91221
[11] Barkoulas, J. T.; Barilla, A. G.; Wells, W., Long-memory exchange rate dynamics in the euro era, Chaos Solitons Fractals, 86, 92-100 (2016) · Zbl 1415.91227
[12] Lo, A. W., Long-term memory in stock market prices, Econometrica, 59, 1279-1313 (1991) · Zbl 0781.90023
[13] Lo, A. W., Fat tails, long memory, and the stock market since the 1960s, Econ Notes, 26, 219-252 (2001)
[14] Burnecki, K., Self-similar processes as weak limits of a risk reserve process, Probab Math Statist, 20, 261-272 (2000) · Zbl 1007.60025
[15] Baillie, R. T., Long memory processes and fractional integration in econometrics, J Econ, 73, 5-59 (1996) · Zbl 0854.62099
[16] Beran, J.; Sherman, R.; Taqqu, M. S.; Willinger, W., Long-range dependence in variable-bit-rate video traffic, IEEE Trans Commun, 43, 1566-1579 (1995)
[17] Norros, I., On the use of fractional brownian motion in the theory of connectionless networks, IEEE J Sel Areas Commun, 13, 953-962 (1995)
[18] Willinger, W.; Taqqu, M. S.; Sherman, R.; Wilson, D., Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Trans Net, 5, 71-96 (1997)
[19] Karagiannis, T.; Molle, M.; Faloutsos, M., Long-range dependence ten years of internet traffic modeling, IEEE Internet Comput, 8, 57-64 (2004)
[20] Coulon, M.; Chabert, M.; Swami, A., Detection of multiple changes in fractional integrated ARMA processes, IEEE Trans Signal Process, 57, 48-61 (2009) · Zbl 1391.93207
[21] Stoev, S. A.; Michailidis, G.; Taqqu, M. S., Estimating heavy-tail exponents through max self “similarity”, IEEE Trans Inf Theory, 57 (2011) · Zbl 1366.62041
[23] Varotsos, C.; Kirk-Davidoff, D., Long-memory processes in ozone and temperature variations at the region 60° S-60° N, Atmos Chem Phys, 6, 4096-4100 (2006)
[24] Alvarez-Lacalle, E.; Dorow, B.; Eckmann, J. P.; Moses, E., Hierarchical structures induce long-range dynamical correlations in written texts, PNAS, 103, 7956-7961 (2006)
[25] Karmeshu, D.; Krishnamachari, A., Sequence variability and long-range dependence in DNA: an information theoretic perspective, (Pal, N.; etal., Neural information processing (2004), Berlin: Berlin Springer), 1354-1361
[26] Peng, C. K.; Mietus, J.; Hausdorff, J.; Havlin, S.; Stanley, H. E.; Goldberger, A., Long-range anticorrelations and non-Gaussian behaviour of the heartbeat, Phys Rev Lett, 70, 1343-1346 (1993)
[27] Szymanski, J.; Weiss, M., Elucidating the origin of anomalous diffusion in crowded fluids, Phys Rev Lett, 103, 038102 (2009)
[28] Burnecki, K.; Weron, A., Fractional lévy stable motion can model subdiffusive dynamics, Phys Rev E, 82, 021130 (2010)
[29] Kepten, E.; Bronshtein, I.; Garini, Y., Ergodicity convergence test suggests telomere motion obeys fractional dynamics, Phys Rev E, 83, 041919 (2011)
[30] Burnecki, K., FARIMA processes with application to biophysical data, J Stat Mech, P05015 (2012)
[31] Burnecki, K.; Muszkieta, M.; Sikora, G.; Weron, A., Statistical modelling of subdiffusive dynamics in the cytoplasm of living cells: a FARIMA approach, EPL, 98, 10004 (2012)
[32] Burnecki, K.; Kepten, E.; Garini, Y.; Sikora, G.; Weron, A., Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - an alternative approach, Sci Rep, 5, 11306 (2015)
[33] Stanislavsky, A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K., FARIMA modeling of solar flare activity from empirical time series of soft X-ray solar emission, Astrophys J, 693, 1877-1882 (2009)
[34] Stoev, S.; Taqqu, M. S., Simulation methods for linear fractional stable motion and FARIMA using the fast fourier transform, Fractals, 12, 95-121 (2004) · Zbl 1083.65005
[35] Guo, H.; Lim, C. Y.; Meerschaert, M. M., Local whittle estimator for anisotropic random fields, J Multivariate Anal, 100, 993-1028 (2009) · Zbl 1167.62465
[36] Graves, T.; Gramacy, R. B.; Franzke, C. L.; Watkins, N. W., Efficient bayesian inference for natural time series using ARFIMA processes, Nonlin Processes Geophys, 22, 679-700 (2015)
[37] Lanoiselée, Y.; Grebenkov, D. S., Revealing nonergodic dynamics in living cells from a single particle trajectory, Phys Rev E, 93, 052146 (2016)
[38] Burnecki, K.; Sikora, G.; Weron, A., Fractional process as a unified model for subdiffusive dynamics in experimental data, Phys Rev E, 86, 041912 (2012)
[39] Meerschaert, M. M.; Scheffler, H. P., Limit theorems for continuous time random walks with infinite mean waiting times, J Appl Probab, 41, 623-638 (2004) · Zbl 1065.60042
[40] Magdziarz, M.; Weron, A., Ergodic properties of anomalous diffusion processes, Ann Phys, 326, 2431-2443 (2011) · Zbl 1227.82058
[41] Janczura, J.; Weron, A., Ergodicity testing for anomalous diffusion: small sample statistics, J Chem Phys, 142, 144103 (2015)
[42] Clauset, A.; Shalizi, C. R.; Newman, M. E.J., Power-law distributions in empirical data, SIAM Rev, 51, 661-703 (2009) · Zbl 1176.62001
[43] Nolan, J., Stable distributions. Models for heavy-Tailed data (2007), Birkhäuser: Birkhäuser Boston
[44] Rachev, S.; Mittnik, S., Stable paretian models in finance (2000), Wiley and Sons: Wiley and Sons New York · Zbl 0972.91060
[45] Tankov, P.; Cont, R., Financial modelling with jump processes (2003), Chapman and Hall/CRC Financial Mathematics Series: Chapman and Hall/CRC Financial Mathematics Series London
[46] (Rachev, S., Handbook of heavy tailed distributions in finance (2003), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam)
[47] Weron, A.; Weron, R., Fractal market hypothesis and two power-laws, Chaos Solitons Fractals, 11, 289-296 (2000) · Zbl 1160.91363
[48] Li, H.; Wu, M.; Wang, X. T., Fractional-moment capital asset pricing model, Chaos Solitons Fractals, 42, 412-421 (2009) · Zbl 1198.91249
[49] Burnecki, K.; Wyłomańska, A.; Chechkin, A., Discriminating between light- and heavy-tailed distributions with limit theorem, PLoS ONE, 10, 12, e0145604 (2015)
[50] Gonchar, V. Y.; Chechkin, A. V.; Sorokovoi, E. L.; Chechkin, V. V.; Grigoreva, L. I.; Volkov, E. D., Stable lévy distributions of the density and potential fluctuations in the edge plasma of the u-3m torsatron, Plasma Phys Rep, 29, 380-390 (2003)
[51] Burnecki, K.; Wyłomańska, A.; Beletskii, A.; Gonchar, V.; Chechkin, A., Recognition of stable distribution with lévy index alpha close to 2, Phys Rev E, 85, 056711 (2012)
[52] Joelson, M.; Golder, J.; Beltrame, P.; Néel, M. C.; Pietro, L. D., On fractal nature of groundwater level fluctuations due to rainfall process, Chaos Solitons Fractals, 82, 103-115 (2016) · Zbl 1355.37094
[53] Ditlevsen, P. D., Observation of alpha-stable noise induces millenial climate changes from an ice record, Geophys Res Lett, 26, 1441-1444 (1999)
[54] Ditlevsen, P. D., Anomalous jumping in a double-well potential, Phys Rev E, 60, 172-179 (1990)
[55] Peng, C. K.; Mietus, J.; Hausdorff, J. M.; Havlin, S.; Stanley, H. E.; Goldberger, A. L., Long-range anticorrelations and non-gaussian behavior of the heartbeat, Phys Rev Lett, 70, 1343-1346 (1993)
[56] Nikias, C. L.; Shao, M., Signal processing with alpha-stable distributions and applications (1995), Wiley: Wiley New York
[57] Mantegna, R. N.; Stanley, H. E., An introduction to econophysics (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1138.91300
[58] Burnecki, K.; Gajda, J.; Sikora, G., Stability and lack of memory of the returns of the hang seng index, Phys A, 390, 3136-3146 (2011)
[59] Brockmann, D.; Hufnagel, L.; Geisel, T., The scaling laws of human travel, Nature, 439, 462-465 (2006)
[60] Sims, D. W.; Southall, E. J.; Humphries, N. E.; Hays, G. C.; Bradshaw, C. J.A.; Pitchford, J. W., Scaling laws of marine predator search behaviour, Nature, 451, 1098-1103 (2008)
[61] Burnecki, K.; Sikora, G., Estimation of FARIMA parameters in the case of negative memory and stable noise, IEEE Trans Signal Process, 61, 2825-2835 (2013) · Zbl 1393.94182
[62] Granger, C. W.J.; Joyeux, R., An introduction to long-memory time series and fractional differencing, J Time Series Anal, 1, 1, 15-30 (1980) · Zbl 0503.62079
[63] Hosking, J. R.M., Fractional differencing, Biometrika, 68, 1, 165-176 (1981) · Zbl 0464.62088
[64] Samorodnitsky, G.; Taqqu, M. S., Stable non-aussian random processes: stochastic models with infinite variance, (1994), Chapman & Hall: Chapman & Hall London · Zbl 0925.60027
[65] Kokoszka, P. S.; Taqqu, M. S., Fractional ARIMA with stable innovations, Stochastic Process Appl, 60, 1, 19-47 (1995) · Zbl 0846.62066
[66] Geweke, J.; Porter-Hudak, S., The estimation and application of long memory time series models, J Time Ser-Anal, 4, 221-238 (1983) · Zbl 0534.62062
[67] Hurst, H. E., Long-term storage capacity of reservoirs, Trans Am Soc Civ Eng, 116, 770-799 (1951)
[68] Taqqu, M. S.; Teverovsky, V., On estimating the intensity of long-range dependence in finite and infinite variance time series, (Adler, R.; Feldman, R.; Taqqu, M. S., A practical guide to heavy tails: statistical techniques and applications (1998), Birkhäuser: Birkhäuser Boston) · Zbl 0922.62091
[69] Taqqu, M. S.; Teverovsky, V.; Willinger, W., A critical look at lo’s modified RS statistic, J Statist Plann Inference, 80, 211-227 (1999) · Zbl 1044.60508
[70] Frigo, M.; Johnson, S. G., A modified split-radix FFT with fewer arithmetic operations, IEEE Trans Signal Process, 55, 1, 111-119 (2007) · Zbl 1390.65168
[71] Liu, J.; Shu, Y.; Zhang, L.; Xue, F., Traffic modeling based on FARIMA models, Electrical and computer engineering, 1999 IEEE canadian conference, vol. 1, 162-167 (1999)
[72] McCarthy, J.; DiSario, R.; Saraoglu, H., A recursive algorithm for fractionally differencing long data series, J Mod App Stat Meth, 2, 272-278 (2003)
[73] Xiu, J.; Jin, Y., Empirical study of ARFIMA model based on fractional differencing, Phys A, 377, 138-152 (2007)
[74] Hannan, E. J., The asymptotic theory of linear time-series models, J Appl Probab, 10, 130-145 (1973) · Zbl 0261.62073
[75] Brockwell, P.; Davis, R., Introduction to time series and forecasting (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0994.62085
[76] Kokoszka, P. S.; Taqqu, M. S., Parameter estimation for infinite variance fractional ARIMA, Ann Statist, 24, 5, 1880-1913 (1996) · Zbl 0896.62092
[77] Ljung, G. M.; Box, G. E.P., On a measure of lack of fit in time series models, Biometrika, 65, 297-303 (1978) · Zbl 0386.62079
[78] Ross, S., Simulation (2002), Academic Press: Academic Press San Diego
[79] Barndorff-Nielsen, O. E., Normal inverse gaussian processes and the modelling of stock returns, Research Report 300 (1995), Department of Theoretical Statistics, University of Aarhus · Zbl 0830.62002
[81] Rosiski, J., Tempering stable processes, Stochastic Process Appl, 117, 6, 677-707 (2007) · Zbl 1118.60037
[82] Baeumer, B.; Meerschaert, M. M., Tempered stable lvy motion and transient super-diffusion, J Comput Appl Math, 233, 2438-2448 (2010) · Zbl 1423.60079
[83] Kokoszka, P. S., Prediction of infinite variance fractional ARIMA, Probab Math Statist, 16, 65-83 (1996) · Zbl 0857.60032
[84] Ling, S.; Li, W. K., On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity, J Amer Statist Assoc, 92, 1184-1194 (1997) · Zbl 1067.62572
[85] Bronstein, I., Transient anomalous diffusion of telomeres in the nucleus of mammalian cells, Phys Rev Lett, 103, 018102 (2009)
[86] Godec, A.; Bauer, M.; Metzler, R., Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks, New J Phys, 16, 092002 (2014)
[87] Manzo, C., Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity, Phys Rev X, 5, 011021 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.