Zhu, Gaili; Duan, Chunping; Zhang, Jianjun; Zhang, Huixing Ground states of coupled critical Choquard equations with weighted potentials. (English) Zbl 07485610 Opusc. Math. 42, No. 2, 337-354 (2022). Reviewer: Chao Ji (Shanghai) MSC: 35B33 35B25 35J47 35J50 35J61 PDF BibTeX XML Cite \textit{G. Zhu} et al., Opusc. Math. 42, No. 2, 337--354 (2022; Zbl 07485610) Full Text: DOI OpenURL
Wu, Huiling Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents. (English) Zbl 07509857 Bound. Value Probl. 2021, Paper No. 13, 19 p. (2021). MSC: 35J47 35J61 35A01 PDF BibTeX XML Cite \textit{H. Wu}, Bound. Value Probl. 2021, Paper No. 13, 19 p. (2021; Zbl 07509857) Full Text: DOI OpenURL
Li, Anran; Wang, Peiting; Wei, Chongqing Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent. (English) Zbl 1474.35241 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020). MSC: 35J10 35J60 35J65 PDF BibTeX XML Cite \textit{A. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020; Zbl 1474.35241) Full Text: DOI OpenURL
Tang, Xianhua; Wei, Jiuyang; Chen, Sitong Nehari-type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. (English) Zbl 1454.35089 Math. Methods Appl. Sci. 43, No. 10, 6627-6638 (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{X. Tang} et al., Math. Methods Appl. Sci. 43, No. 10, 6627--6638 (2020; Zbl 1454.35089) Full Text: DOI OpenURL
Wang, Xiaoping; Liao, Fangfang Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. (English) Zbl 1436.35118 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{X. Wang} and \textit{F. Liao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020; Zbl 1436.35118) Full Text: DOI OpenURL
Wang, Peiting; Li, Anran; Wei, Chongqing Existence of ground states for linear coupled systems of lower critical Choquard type. (Chinese. English summary) Zbl 1449.35007 J. Shandong Univ., Nat. Sci. 54, No. 8, 62-67 (2019). MSC: 35A15 35B33 35Q99 PDF BibTeX XML Cite \textit{P. Wang} et al., J. Shandong Univ., Nat. Sci. 54, No. 8, 62--67 (2019; Zbl 1449.35007) Full Text: DOI OpenURL
Afanas’eva, O. S.; Ryazanov, V. I.; Salimov, R. R. Toward the theory of the Sobolev classes with critical exponent. (Russian. English summary) Zbl 1438.30119 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 8, 3-8 (2019). MSC: 30C65 46E35 PDF BibTeX XML Cite \textit{O. S. Afanas'eva} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 8, 3--8 (2019; Zbl 1438.30119) Full Text: DOI OpenURL
Moroz, Vitaly; Van Schaftingen, Jean Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1326.35109 Commun. Contemp. Math. 17, No. 5, Article ID 1550005, 12 p. (2015). MSC: 35J20 35B33 35J91 35Q55 PDF BibTeX XML Cite \textit{V. Moroz} and \textit{J. Van Schaftingen}, Commun. Contemp. Math. 17, No. 5, Article ID 1550005, 12 p. (2015; Zbl 1326.35109) Full Text: DOI arXiv OpenURL
Molica Bisci, Giovanni; Servadei, Raffaella Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent. (English) Zbl 1322.49021 Adv. Differ. Equ. 20, No. 7-8, 635-660 (2015). MSC: 49J45 35A15 35R11 35R09 35S15 47G20 45G05 PDF BibTeX XML Cite \textit{G. Molica Bisci} and \textit{R. Servadei}, Adv. Differ. Equ. 20, No. 7--8, 635--660 (2015; Zbl 1322.49021) Full Text: Euclid OpenURL
Shi, Jinxin; Shen, Juanjuan The Fujita exponent for the fast diffusion system with potential. (Chinese. English summary) Zbl 1313.35172 J. Yangzhou Univ., Nat. Sci. Ed. 17, No. 2, 20-24 (2014). MSC: 35K57 35B44 35B33 PDF BibTeX XML Cite \textit{J. Shi} and \textit{J. Shen}, J. Yangzhou Univ., Nat. Sci. Ed. 17, No. 2, 20--24 (2014; Zbl 1313.35172) OpenURL
Aouaoui, Sami On some one-dimensional eigenvalue problem involving variable exponents. (English) Zbl 1309.34019 Commun. Appl. Nonlinear Anal. 21, No. 1, 77-86 (2014). Reviewer: Ekin Uğurlu (Ankara) MSC: 34B09 34L15 58E05 PDF BibTeX XML Cite \textit{S. Aouaoui}, Commun. Appl. Nonlinear Anal. 21, No. 1, 77--86 (2014; Zbl 1309.34019) OpenURL
Ruiz, David On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. (English) Zbl 1235.35232 Arch. Ration. Mech. Anal. 198, No. 1, 349-368 (2010). Reviewer: Vincent Lescarret (Gif-sur-Yvette) MSC: 35Q40 35Q83 81V55 PDF BibTeX XML Cite \textit{D. Ruiz}, Arch. Ration. Mech. Anal. 198, No. 1, 349--368 (2010; Zbl 1235.35232) Full Text: DOI arXiv OpenURL
de Figueiredo, Djairo G.; Gossez, Jean-Pierre; Ubilla, Pedro Local “superlinearity” and “sublinearity” for the \(p\)-Laplacian. (English) Zbl 1178.35176 J. Funct. Anal. 257, No. 3, 721-752 (2009). Reviewer: Enrico Valdinoci (Roma) MSC: 35J62 35J25 35B51 35B45 35B33 35J20 PDF BibTeX XML Cite \textit{D. G. de Figueiredo} et al., J. Funct. Anal. 257, No. 3, 721--752 (2009; Zbl 1178.35176) Full Text: DOI OpenURL
de Figueiredo, Djairo G.; Gossez, Jean-Pierre; Ubilla, Pedro Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity. (English) Zbl 1245.35048 J. Eur. Math. Soc. (JEMS) 8, No. 2, 269-286 (2006). MSC: 35J61 35J20 35J25 PDF BibTeX XML Cite \textit{D. G. de Figueiredo} et al., J. Eur. Math. Soc. (JEMS) 8, No. 2, 269--286 (2006; Zbl 1245.35048) Full Text: DOI OpenURL
Abreu, Emerson A. M.; do Ó, João Marcos; Medeiros, Everaldo S. Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems. (English) Zbl 1151.35366 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60, No. 8, 1443-1471 (2005). MSC: 35J65 35J20 PDF BibTeX XML Cite \textit{E. A. M. Abreu} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60, No. 8, 1443--1471 (2005; Zbl 1151.35366) Full Text: DOI OpenURL
Xuan, Benjin; Chen, Zuchi Existence, multiplicity and bifurcation for critical polyharmonic equations. (English) Zbl 0984.35067 Syst. Sci. Math. Sci. 12, No. 1, 59-69 (1999). Reviewer: Messoud Efendiev (Berlin) MSC: 35J65 35B33 58E05 35B32 PDF BibTeX XML Cite \textit{B. Xuan} and \textit{Z. Chen}, Syst. Sci. Math. Sci. 12, No. 1, 59--69 (1999; Zbl 0984.35067) OpenURL
Jung, Yoon-Tae On the elliptic equation \(\frac {4(n-1)}{n-2} \Delta u + K(x)u^{(n+2)/(n-2)} = 0\) and the conformal deformation of Riemannian metrics. (English) Zbl 0818.35026 Indiana Univ. Math. J. 43, No. 3, 737-746 (1994). MSC: 35J60 53C21 58J05 PDF BibTeX XML Cite \textit{Y.-T. Jung}, Indiana Univ. Math. J. 43, No. 3, 737--746 (1994; Zbl 0818.35026) Full Text: DOI OpenURL