Aregba-Driollet, Denise; Brull, Stéphane; Peng, Yue-Jun Global existence of smooth solutions for a nonconservative bitemperature Euler model. (English) Zbl 07332087 SIAM J. Math. Anal. 53, No. 2, 1886-1907 (2021). MSC: 35Q31 35L60 35F55 35Q31 76N10 76W05 PDF BibTeX XML Cite \textit{D. Aregba-Driollet} et al., SIAM J. Math. Anal. 53, No. 2, 1886--1907 (2021; Zbl 07332087) Full Text: DOI
Singh, Khilap; Pandey, Alok Kumar; Kumar, Manoj Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder. (English) Zbl 07330587 J. Egypt. Math. Soc. 29, Paper No. 1, 14 p. (2021). MSC: 76W05 76A05 76S05 76M20 80A19 80A22 PDF BibTeX XML Cite \textit{K. Singh} et al., J. Egypt. Math. Soc. 29, Paper No. 1, 14 p. (2021; Zbl 07330587) Full Text: DOI
Lear, Daniel On the non-diffusive magneto-geostrophic equation. (English) Zbl 07330426 J. Math. Fluid Mech. 23, No. 2, Paper No. 31, 20 p. (2021). MSC: 76W05 76U60 35Q35 35Q86 PDF BibTeX XML Cite \textit{D. Lear}, J. Math. Fluid Mech. 23, No. 2, Paper No. 31, 20 p. (2021; Zbl 07330426) Full Text: DOI
Fan, Jishan; Zhou, Yong Uniform regularity of fully compressible Hall-MHD systems. (English) Zbl 07329791 Electron. J. Differ. Equ. 2021, Paper No. 17, 10 p. (2021). MSC: 76W05 35Q80 70S15 PDF BibTeX XML Cite \textit{J. Fan} and \textit{Y. Zhou}, Electron. J. Differ. Equ. 2021, Paper No. 17, 10 p. (2021; Zbl 07329791) Full Text: Link
Zhang, Panpan; Yuan, Baoquan An improved regularity criterion for the 3D magneto-micropolar equations in homogeneous Besov space. (English) Zbl 07329659 J. Math. Anal. Appl. 499, No. 1, Article ID 125022, 11 p. (2021). MSC: 76W05 76A05 35Q35 PDF BibTeX XML Cite \textit{P. Zhang} and \textit{B. Yuan}, J. Math. Anal. Appl. 499, No. 1, Article ID 125022, 11 p. (2021; Zbl 07329659) Full Text: DOI
Huang, Xinchi Inverse coefficient problem for a magnetohydrodynamics system by Carleman estimates. (English) Zbl 07328934 Appl. Anal. 100, No. 5, 1010-1038 (2021). MSC: 35R30 35Q30 35Q61 35B35 76W05 PDF BibTeX XML Cite \textit{X. Huang}, Appl. Anal. 100, No. 5, 1010--1038 (2021; Zbl 07328934) Full Text: DOI
Zhong, Xin Local strong solutions to the Cauchy problem of two-dimensional nonhomogeneous magneto-micropolar fluid equations with nonnegative density. (English) Zbl 07327544 Anal. Appl., Singap. 19, No. 2, 245-273 (2021). MSC: 35Q35 76A05 76W05 35D35 35A02 35A01 PDF BibTeX XML Cite \textit{X. Zhong}, Anal. Appl., Singap. 19, No. 2, 245--273 (2021; Zbl 07327544) Full Text: DOI
Chamorro, Diego; Cortez, Fernando; He, Jiao; Jarrín, Oscar On the local regularity theory for the magnetohydrodynamic equations. (English) Zbl 07326850 Doc. Math. 26, 125-148 (2021). MSC: 35Q35 42B37 35B65 35D30 76W05 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Doc. Math. 26, 125--148 (2021; Zbl 07326850) Full Text: DOI
Ding, Shijin; Lin, Zhilin; Niu, Dongjuan Stability of the boundary layer expansion for the 3D plane parallel MHD flow. (English) Zbl 07326350 J. Math. Phys. 62, No. 2, 021510, 25 p. (2021). MSC: 76W05 76D10 76M45 35Q35 PDF BibTeX XML Cite \textit{S. Ding} et al., J. Math. Phys. 62, No. 2, 021510, 25 p. (2021; Zbl 07326350) Full Text: DOI
Danchin, Raphaël; Tan, Jin On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces. (English) Zbl 07324453 Commun. Partial Differ. Equations 46, No. 1, 31-65 (2021). MSC: 35Q35 76D03 86A10 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{J. Tan}, Commun. Partial Differ. Equations 46, No. 1, 31--65 (2021; Zbl 07324453) Full Text: DOI
Li, Zijin; Pan, Xinghong Liouville theorem of the 3D stationary MHD system: for D-solutions converging to non-zero constant vectors. (English) Zbl 07321627 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021). MSC: 35Q30 76D05 76W05 35B53 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Pan}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021; Zbl 07321627) Full Text: DOI
Li, Mengni; Yu, Pin On the rigidity from infinity for nonlinear Alfvén waves. (English) Zbl 07319893 J. Differ. Equations 283, 163-215 (2021). MSC: 35Q35 35B40 53C24 76W05 76X05 PDF BibTeX XML Cite \textit{M. Li} and \textit{P. Yu}, J. Differ. Equations 283, 163--215 (2021; Zbl 07319893) Full Text: DOI
Wang, Yongfu A Beale-Kato-Majda criterion for three dimensional compressible viscous non-isentropic magnetohydrodynamic flows without heat-conductivity. (English) Zbl 07319427 J. Differ. Equations 280, 66-98 (2021). MSC: 35Q35 76W05 76N10 35D35 76N06 PDF BibTeX XML Cite \textit{Y. Wang}, J. Differ. Equations 280, 66--98 (2021; Zbl 07319427) Full Text: DOI
Liu, Ning; Zhang, Ping Global small analytic solutions of MHD boundary layer equations. (English) Zbl 07319414 J. Differ. Equations 281, 199-257 (2021). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D05 76D03 76D10 76W05 42B25 35M13 35A01 PDF BibTeX XML Cite \textit{N. Liu} and \textit{P. Zhang}, J. Differ. Equations 281, 199--257 (2021; Zbl 07319414) Full Text: DOI
Yang, Jiaqi A priori estimates of the electrohydrodynamic waves with vorticity: vertical electric field. (English) Zbl 07318543 J. Math. Anal. Appl. 498, No. 2, Article ID 124973, 17 p. (2021). MSC: 76W05 35Q35 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Anal. Appl. 498, No. 2, Article ID 124973, 17 p. (2021; Zbl 07318543) Full Text: DOI
Zhao, Xu; Qin, Xulong; Zhou, Wenshu Boundary layer behavior of the non-Newtonian filtration equation with a small physical parameter. (English) Zbl 07315389 J. Math. Anal. Appl. 495, No. 1, Article ID 124723, 14 p. (2021). MSC: 35B25 35Q35 35K20 35K92 76W05 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124723, 14 p. (2021; Zbl 07315389) Full Text: DOI
Fernández-Dalgo, Pedro Gabriel; Jarrín, Oscar Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted \(L^2\) spaces. (English) Zbl 07312805 J. Math. Fluid Mech. 23, No. 1, Paper No. 22, 30 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76W05 35D30 35C06 PDF BibTeX XML Cite \textit{P. G. Fernández-Dalgo} and \textit{O. Jarrín}, J. Math. Fluid Mech. 23, No. 1, Paper No. 22, 30 p. (2021; Zbl 07312805) Full Text: DOI
Liu, Hui; Sun, Chengfeng; Xin, Jie Attractors of the 3D magnetohydrodynamics equations with damping. (English) Zbl 07311099 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 337-351 (2021). MSC: 76W05 35Q35 35Q60 37N10 PDF BibTeX XML Cite \textit{H. Liu} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 337--351 (2021; Zbl 07311099) Full Text: DOI
Chamorro, Diego; He, Jiao On the partial regularity theory for the MHD equations. (English) Zbl 07309678 J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021). MSC: 35B65 76W05 35Q35 PDF BibTeX XML Cite \textit{D. Chamorro} and \textit{J. He}, J. Math. Anal. Appl. 494, No. 1, Article ID 124449, 38 p. (2021; Zbl 07309678) Full Text: DOI
Cao, Yuebo; Peng, Yi; Sun, Ying Global existence of strong solutions to MHD with density-depending viscosity and temperature-depending heat-conductivity in unbounded domains. (English) Zbl 07306520 J. Math. Phys. 62, No. 1, 011508, 17 p. (2021). MSC: 76W05 35Q35 35Q60 80A19 PDF BibTeX XML Cite \textit{Y. Cao} et al., J. Math. Phys. 62, No. 1, 011508, 17 p. (2021; Zbl 07306520) Full Text: DOI
Bal, Guillaume; Lucas, Andrew; Luskin, Mitchell Homogenization of hydrodynamic transport in Dirac fluids. (English) Zbl 07306515 J. Math. Phys. 62, No. 1, 011503, 19 p. (2021). MSC: 82D35 82C70 82D80 76D07 76W05 PDF BibTeX XML Cite \textit{G. Bal} et al., J. Math. Phys. 62, No. 1, 011503, 19 p. (2021; Zbl 07306515) Full Text: DOI
Yamazaki, Kazuo A note on the applications of Wick products and Feynman diagrams in the study of singular partial differential equations. (English) Zbl 07305241 J. Comput. Appl. Math. 388, Article ID 113338, 16 p. (2021). MSC: 35R60 35B65 35Q35 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Comput. Appl. Math. 388, Article ID 113338, 16 p. (2021; Zbl 07305241) Full Text: DOI
An, Rong; Zhang, Chao; Li, Yuan Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. (English) Zbl 07305152 J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 76W05 76D05 35Q61 35Q35 PDF BibTeX XML Cite \textit{R. An} et al., J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021; Zbl 07305152) Full Text: DOI
Ding, Shijin; Ji, Zhijun; Lin, Zhilin Validity of Prandtl layer theory for steady magnetohydrodynamics over a moving plate with nonshear outer ideal MHD flows. (English) Zbl 07303709 J. Differ. Equations 278, 220-293 (2021). MSC: 76W05 76D10 76M45 35Q35 35Q60 PDF BibTeX XML Cite \textit{S. Ding} et al., J. Differ. Equations 278, 220--293 (2021; Zbl 07303709) Full Text: DOI
Yan, Weiping; Rădulescu, Vicenţiu D. Global small finite energy solutions for the incompressible magnetohydrodynamics equations in \(\mathbb{R}^+ \times \mathbb{R}^2\). (English) Zbl 07303696 J. Differ. Equations 277, 114-152 (2021). MSC: 76W05 35A02 35B36 35Q35 76W05 35B65 35A01 42B25 PDF BibTeX XML Cite \textit{W. Yan} and \textit{V. D. Rădulescu}, J. Differ. Equations 277, 114--152 (2021; Zbl 07303696) Full Text: DOI
Holloway, Ian; Sritharan, Sivaguru S. Ideal magnetohydrodynamic equations on a sphere and elliptic-hyperbolic property. (English) Zbl 07301464 Q. Appl. Math. 79, No. 1, 27-53 (2021). MSC: 35Q35 35M30 76J20 76K05 76W05 PDF BibTeX XML Cite \textit{I. Holloway} and \textit{S. S. Sritharan}, Q. Appl. Math. 79, No. 1, 27--53 (2021; Zbl 07301464) Full Text: DOI
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 07301372 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 07301372) Full Text: DOI
Boldrini, José Luiz; Bravo-Olivares, Jonathan; Notte-Cuello, Eduardo; Rojas-Medar, Marko A. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. (English) Zbl 07300782 Electron Res. Arch. 29, No. 1, 1783-1801 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 76E25 35Q30 35Q60 76W05 35B40 PDF BibTeX XML Cite \textit{J. L. Boldrini} et al., Electron Res. Arch. 29, No. 1, 1783--1801 (2021; Zbl 07300782) Full Text: DOI
Lorenz, Jens; Melo, Wilberclay G.; de Souza, Suelen C. P. Regularity criteria for weak solutions of the magneto-micropolar equations. (English) Zbl 07300774 Electron Res. Arch. 29, No. 1, 1625-1639 (2021). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{J. Lorenz} et al., Electron Res. Arch. 29, No. 1, 1625--1639 (2021; Zbl 07300774) Full Text: DOI
Trakhinin, Yuri; Wang, Tao Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics. (English) Zbl 07300731 Arch. Ration. Mech. Anal. 239, No. 2, 1131-1176 (2021). MSC: 35Q35 76W05 76N10 76Y05 76X05 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{Y. Trakhinin} and \textit{T. Wang}, Arch. Ration. Mech. Anal. 239, No. 2, 1131--1176 (2021; Zbl 07300731) Full Text: DOI
Bae, Myoungjean; Duan, Ben; Xiao, Jingjing; Xie, Chunjing Structural stability of supersonic solutions to the Euler-Poisson system. (English) Zbl 07300722 Arch. Ration. Mech. Anal. 239, No. 2, 679-731 (2021). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L65 76W05 35Q35 35L04 35B35 35Q31 PDF BibTeX XML Cite \textit{M. Bae} et al., Arch. Ration. Mech. Anal. 239, No. 2, 679--731 (2021; Zbl 07300722) Full Text: DOI
Ren, Xiaoxia; Xiang, Zhaoyin Low regularity well-posedness for the 3D viscous non-resistive MHD system with internal surface wave. (English) Zbl 07299350 J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021). MSC: 35Q35 76W05 35A01 35A02 35D35 35B65 PDF BibTeX XML Cite \textit{X. Ren} and \textit{Z. Xiang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021; Zbl 07299350) Full Text: DOI
Gong, Shengbo; Wang, Xiang On a global weak solution and back flow of the mixed Prandtl-Hartmann boundary layer problem. (English) Zbl 1455.76206 J. Math. Fluid Mech. 23, No. 1, Paper No. 11, 16 p. (2021). MSC: 76W05 76D10 35Q35 PDF BibTeX XML Cite \textit{S. Gong} and \textit{X. Wang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 11, 16 p. (2021; Zbl 1455.76206) Full Text: DOI
Grün, G.; Weiß, P. On the field-induced transport of magnetic nanoparticles in incompressible flow: existence of global solutions. (English) Zbl 07299346 J. Math. Fluid Mech. 23, No. 1, Paper No. 10, 54 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q60 76W05 76T20 35D30 35B65 35A01 65M60 PDF BibTeX XML Cite \textit{G. Grün} and \textit{P. Weiß}, J. Math. Fluid Mech. 23, No. 1, Paper No. 10, 54 p. (2021; Zbl 07299346) Full Text: DOI
Pan, Mingyang; Wang, Qinghe; He, Dongdong; Pan, Kejia Positive-definiteness preserving and energy stable time-marching scheme for a diffusive Oldroyd-B electrohydrodynamic model. (English) Zbl 1455.76130 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105630, 19 p. (2021). MSC: 76M20 76A10 76W05 65M12 PDF BibTeX XML Cite \textit{M. Pan} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105630, 19 p. (2021; Zbl 1455.76130) Full Text: DOI
Faraco, Daniel; Lindberg, Sauli; Székelyhidi, László jun. Bounded solutions of ideal MHD with compact support in space-time. (English) Zbl 07298821 Arch. Ration. Mech. Anal. 239, No. 1, 51-93 (2021). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{D. Faraco} et al., Arch. Ration. Mech. Anal. 239, No. 1, 51--93 (2021; Zbl 07298821) Full Text: DOI
Fan, Jishan; Li, Fucai; Nakamura, Gen Uniform regularity of the compressible full Navier-Stokes-Maxwell system. (English) Zbl 07298440 Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021). MSC: 76W05 35Q30 35Q60 PDF BibTeX XML Cite \textit{J. Fan} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 3, 10 p. (2021; Zbl 07298440) Full Text: DOI
Ma, Liangliang Stability of hydrostatic equilibrium for the 2D magnetic Bénard fluid equations with mixed partial dissipation, magnetic diffusion and thermal diffusivity. (English) Zbl 07298438 Z. Angew. Math. Phys. 72, No. 1, Paper No. 1, 7 p. (2021). MSC: 35Q35 76W05 76R10 76D03 35B35 PDF BibTeX XML Cite \textit{L. Ma}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 1, 7 p. (2021; Zbl 07298438) Full Text: DOI
Li, Chaoying; Wu, Jiahong; Xu, Xiaojing Smoothing and stabilization effects of magnetic field on electrically conducting fluids. (English) Zbl 07297754 J. Differ. Equations 276, 368-403 (2021). MSC: 35Q35 35B35 76W05 35B40 76E25 PDF BibTeX XML Cite \textit{C. Li} et al., J. Differ. Equations 276, 368--403 (2021; Zbl 07297754) Full Text: DOI
Lin, Xueyun; Zhang, Ting Local well-posedness for 2D incompressible magneto-micropolar boundary layer system. (English) Zbl 07291041 Appl. Anal. 100, No. 1, 206-227 (2021). Reviewer: Panagiotis Koumantos (Athína) MSC: 76W05 76A05 76D10 35Q35 PDF BibTeX XML Cite \textit{X. Lin} and \textit{T. Zhang}, Appl. Anal. 100, No. 1, 206--227 (2021; Zbl 07291041) Full Text: DOI
Wu, Jiahong; Zhu, Yi Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. (English) Zbl 1455.35207 Adv. Math. 377, Article ID 107466, 27 p. (2021). MSC: 35Q35 76W05 76D05 76E25 76D03 35A01 35A02 35B35 35B65 PDF BibTeX XML Cite \textit{J. Wu} and \textit{Y. Zhu}, Adv. Math. 377, Article ID 107466, 27 p. (2021; Zbl 1455.35207) Full Text: DOI
Liu, Lvqiao; Tan, Jin Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces. (English) Zbl 1454.35291 J. Differ. Equations 274, 382-413 (2021). MSC: 35Q35 76D03 76W05 35B35 35A01 35A02 86A10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Tan}, J. Differ. Equations 274, 382--413 (2021; Zbl 1454.35291) Full Text: DOI
Shen, Lin; Wang, Shu; Yang, Rong Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. (English) Zbl 1454.35261 J. Differ. Equations 272, 473-543 (2021). MSC: 35Q30 74F10 76D03 76D05 76W05 35D35 PDF BibTeX XML Cite \textit{L. Shen} et al., J. Differ. Equations 272, 473--543 (2021; Zbl 1454.35261) Full Text: DOI
Kalousek, Martin; Schlömerkemper, Anja Dissipative solutions to a system for the flow of magnetoviscoelastic materials. (English) Zbl 1454.35286 J. Differ. Equations 271, 1023-1057 (2021). MSC: 35Q35 35Q56 35A01 35B65 76A10 76W05 74F15 PDF BibTeX XML Cite \textit{M. Kalousek} and \textit{A. Schlömerkemper}, J. Differ. Equations 271, 1023--1057 (2021; Zbl 1454.35286) Full Text: DOI
Fernández-Dalgo, Pedro Gabriel; Jarrín, Oscar Weak-strong uniqueness in weighted \(L^2\) spaces and weak suitable solutions in local Morrey spaces for the MHD equations. (English) Zbl 1454.35255 J. Differ. Equations 271, 864-915 (2021). MSC: 35Q30 76D05 76W05 35D30 35A01 PDF BibTeX XML Cite \textit{P. G. Fernández-Dalgo} and \textit{O. Jarrín}, J. Differ. Equations 271, 864--915 (2021; Zbl 1454.35255) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 1455.35201 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 1455.35201) Full Text: DOI
Patrone, Paul N.; Li, Amy Q. H.; Cooksey, Gregory A.; Kearsley, Anthony J. Measuring microfluidic flow rates: monotonicity, convexity, and uncertainty. (English) Zbl 1455.35203 Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35R09 76A99 76W05 78A60 45G10 PDF BibTeX XML Cite \textit{P. N. Patrone} et al., Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021; Zbl 1455.35203) Full Text: DOI
Cao, Limei; Zhang, Peipei; Li, Botong; Zhu, Jing; Si, Xinhui Numerical study of rotating electro-osmotic flow of double layers with a layer of fractional second-order fluid in a microchannel. (English) Zbl 1448.76185 Appl. Math. Lett. 111, Article ID 106633, 8 p. (2021). MSC: 76W05 76A10 76U05 76T06 76M20 PDF BibTeX XML Cite \textit{L. Cao} et al., Appl. Math. Lett. 111, Article ID 106633, 8 p. (2021; Zbl 1448.76185) Full Text: DOI
Deng, Lihua; Shang, Haifeng Global well-posedness for \(n\)-dimensional magneto-micropolar equations with hyperdissipation. (English) Zbl 1451.35129 Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021). MSC: 35Q35 76A05 76W05 35B65 35A01 35A02 35R11 26A33 PDF BibTeX XML Cite \textit{L. Deng} and \textit{H. Shang}, Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021; Zbl 1451.35129) Full Text: DOI
Oyekunle, T. L.; Agunbiade, S. A. Diffusion-thermo and thermal-diffusion effects with inclined magnetic field on unsteady MHD slip flow over a permeable vertical plate. (English) Zbl 07330514 J. Egypt. Math. Soc. 28, Paper No. 51, 19 p. (2020). MSC: 65L60 76A05 76M55 76Sxx 76W05 PDF BibTeX XML Cite \textit{T. L. Oyekunle} and \textit{S. A. Agunbiade}, J. Egypt. Math. Soc. 28, Paper No. 51, 19 p. (2020; Zbl 07330514) Full Text: DOI
Gbadeyan, Jacob A.; Abubakar, J. U.; Oyekunle, T. L. Effects of Navier slip on a steady flow of an incompressible viscous fluid confined within spirally enhanced channel. (English) Zbl 07329943 J. Egypt. Math. Soc. 28, Paper No. 32, 24 p. (2020). MSC: 76W05 76M25 76D05 76A10 65N99 PDF BibTeX XML Cite \textit{J. A. Gbadeyan} et al., J. Egypt. Math. Soc. 28, Paper No. 32, 24 p. (2020; Zbl 07329943) Full Text: DOI
Khan, M.; Sarfraz, M.; Ahmed, J.; Ahmad, L.; Fetecau, C. Non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid over a cylindrical disk. (English) Zbl 07328250 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 725-740 (2020). MSC: 76A10 76A05 80A20 76W05 PDF BibTeX XML Cite \textit{M. Khan} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 725--740 (2020; Zbl 07328250) Full Text: DOI
Abdelsalam, S. I.; Bhatti, M. M. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. (English) Zbl 07328249 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 711-724 (2020). MSC: 76Z05 76Z10 76W05 76S05 76A05 PDF BibTeX XML Cite \textit{S. I. Abdelsalam} and \textit{M. M. Bhatti}, AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 711--724 (2020; Zbl 07328249) Full Text: DOI
Wang, Anyang; Xu, Hang; Yu, Qiang Homotopy coiflets wavelet solution of electrohydrodynamic flows in a circular cylindrical conduit. (English) Zbl 07328247 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 681-698 (2020). MSC: 76M25 76W05 65L99 65T60 PDF BibTeX XML Cite \textit{A. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 681--698 (2020; Zbl 07328247) Full Text: DOI
Khan, M.; Ahmed, A.; Ahmed, J. Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: modeling and simulation. (English) Zbl 07328246 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 667-680 (2020). MSC: 76A10 76D10 76W05 76-10 PDF BibTeX XML Cite \textit{M. Khan} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 667--680 (2020; Zbl 07328246) Full Text: DOI
Zhang, Lijun; Arain, M. B.; Bhatti, M. M.; Zeeshan, A.; Hal-Sulami, H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. (English) Zbl 07328244 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 637-654 (2020). MSC: 76Z10 76W05 76U05 PDF BibTeX XML Cite \textit{L. Zhang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 637--654 (2020; Zbl 07328244) Full Text: DOI
Bendoukha, Berrabah; Gala, Sadek; Ragusa, Maria Alessandra A note on the regularity criterion of weak solutions for the micropolar fluid equations. (English) Zbl 07328083 N. Z. J. Math. 50, 101-108 (2020). MSC: 35B65 35D30 35Q35 76W05 PDF BibTeX XML Cite \textit{B. Bendoukha} et al., N. Z. J. Math. 50, 101--108 (2020; Zbl 07328083) Full Text: Link
Li, Zilai; Wang, Huaqiao; Ye, Yulin Global strong solutions to the Cauchy problem of 1D compressible MHD equations with no resistivity. (English) Zbl 07327473 Commun. Math. Sci. 18, No. 3, 851-873 (2020). MSC: 35Q35 35D35 76N10 76W05 PDF BibTeX XML Cite \textit{Z. Li} et al., Commun. Math. Sci. 18, No. 3, 851--873 (2020; Zbl 07327473) Full Text: DOI
Zhong, Xin The local well-posedness to the density-dependent magnetic Bénard system with nonnegative density. (English) Zbl 07327468 Commun. Math. Sci. 18, No. 3, 725-750 (2020). MSC: 35Q35 76D03 76R10 76W05 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{X. Zhong}, Commun. Math. Sci. 18, No. 3, 725--750 (2020; Zbl 07327468) Full Text: DOI
Wen, Zhihong; Ye, Zhuan Regularity results for the Navier-Stokes-Maxwell system. (English) Zbl 07327452 Commun. Math. Sci. 18, No. 2, 339-358 (2020). MSC: 35Q 35B45 35B65 35Q35 76W05 PDF BibTeX XML Cite \textit{Z. Wen} and \textit{Z. Ye}, Commun. Math. Sci. 18, No. 2, 339--358 (2020; Zbl 07327452) Full Text: DOI
Trakhinin, Yuri On violent instability of a plasma-vacuum interface for an incompressible plasma flow and a nonzero displacement current in vacuum. (English) Zbl 07327451 Commun. Math. Sci. 18, No. 2, 321-337 (2020). MSC: 35Q 35L45 35M33 35Q35 76B03 76W05 PDF BibTeX XML Cite \textit{Y. Trakhinin}, Commun. Math. Sci. 18, No. 2, 321--337 (2020; Zbl 07327451) Full Text: DOI
Kumar, R.; Kumar, R.; Shehzad, S. A.; Chamkha, A. J. Optimal treatment of stratified Carreau and Casson nanofluids flows in Darcy-Forchheimer porous space over porous matrix. (English) Zbl 07327141 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1651-1670 (2020). MSC: 76S05 76W05 PDF BibTeX XML Cite \textit{R. Kumar} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1651--1670 (2020; Zbl 07327141) Full Text: DOI
Xu, Yaxin; Zhu, Jing; Zheng, Liancun; Si, Xinhui Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condition. (English) Zbl 07327139 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1611-1630 (2020). MSC: 76Z05 76W05 76A05 PDF BibTeX XML Cite \textit{Y. Xu} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1611--1630 (2020; Zbl 07327139) Full Text: DOI
Saleem, A.; Kiani, M. N.; Nadeem, S.; Issakhov, A. Heat transfer and Helmholtz-Smoluchowski velocity in Bingham fluid flow. (English) Zbl 07327131 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1167-1178 (2020). MSC: 76W05 76A05 80A19 PDF BibTeX XML Cite \textit{A. Saleem} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1167--1178 (2020; Zbl 07327131) Full Text: DOI
Ishaq, M.; Xu, Hang Nonlinear dynamical magnetosonic wave interactions and collisions in magnetized plasma. (English) Zbl 07327129 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1139-1156 (2020). MSC: 76W05 76X05 35Q53 76E25 PDF BibTeX XML Cite \textit{M. Ishaq} and \textit{H. Xu}, AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1139--1156 (2020; Zbl 07327129) Full Text: DOI
Hafeez, A.; Khan, M.; Ahmed, A.; Ahmed, J. Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory. (English) Zbl 07327125 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1083-1094 (2020). MSC: 76A10 76U05 76W05 PDF BibTeX XML Cite \textit{A. Hafeez} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1083--1094 (2020; Zbl 07327125) Full Text: DOI
Mohan, M. T. An extension of the Beale-Kato-Majda criterion for the 3D Navier-Stokes equation with hereditary viscosity. (English) Zbl 07326957 Pure Appl. Funct. Anal. 5, No. 2, 407-425 (2020). MSC: 35Q30 35B65 35B44 76A05 76A10 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{M. T. Mohan}, Pure Appl. Funct. Anal. 5, No. 2, 407--425 (2020; Zbl 07326957) Full Text: Link
Wang, Yongfu Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible magnetohydrodynamic equations. (English) Zbl 07326921 Commun. Pure Appl. Anal. 19, No. 10, 4973-4994 (2020). MSC: 35Q35 76W05 76N10 35D35 35B44 PDF BibTeX XML Cite \textit{Y. Wang}, Commun. Pure Appl. Anal. 19, No. 10, 4973--4994 (2020; Zbl 07326921) Full Text: DOI
Peng, Xuhui; Huang, Jianhua; Zheng, Yan Exponential mixing for the fractional magneto-hydrodynamic equations with degenerate stochastic forcing. (English) Zbl 07326901 Commun. Pure Appl. Anal. 19, No. 9, 4479-4506 (2020). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 60H07 76W05 PDF BibTeX XML Cite \textit{X. Peng} et al., Commun. Pure Appl. Anal. 19, No. 9, 4479--4506 (2020; Zbl 07326901) Full Text: DOI
Han, Bin; Zhao, Na Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. (English) Zbl 07326900 Commun. Pure Appl. Anal. 19, No. 9, 4455-4478 (2020). MSC: 35Q35 76D03 76W05 35B44 35B65 42B25 PDF BibTeX XML Cite \textit{B. Han} and \textit{N. Zhao}, Commun. Pure Appl. Anal. 19, No. 9, 4455--4478 (2020; Zbl 07326900) Full Text: DOI
Zhai, Xiaoping Global wellposedness and large time behavior of solutions to the Hall-magnetohydrodynamics equations. (English) Zbl 07326796 Z. Anal. Anwend. 39, No. 4, 395-419 (2020). MSC: 35Q30 35B40 35B65 76W05 PDF BibTeX XML Cite \textit{X. Zhai}, Z. Anal. Anwend. 39, No. 4, 395--419 (2020; Zbl 07326796) Full Text: DOI
Loganathan, P.; Deepa, K. Stratified Casson fluid flow past a Riga-plate with generative/destructive heat energy. (English) Zbl 07322737 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 113, 20 p. (2020). MSC: 76A05 76W05 76V05 76M20 80A21 PDF BibTeX XML Cite \textit{P. Loganathan} and \textit{K. Deepa}, Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 113, 20 p. (2020; Zbl 07322737) Full Text: DOI
Sharma, Kalpna; Bhaskar, Khushbu Influence of Soret and Dufour on three-dimensional MHD flow considering thermal radiation and chemical reaction. (English) Zbl 07322668 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 3, 17 p. (2020). MSC: 80A21 80A19 80A32 76W05 76V05 80M99 PDF BibTeX XML Cite \textit{K. Sharma} and \textit{K. Bhaskar}, Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 3, 17 p. (2020; Zbl 07322668) Full Text: DOI
Idowu, A. S.; Falodun, B. O. Variable thermal conductivity and viscosity effects on non-Newtonian fluids flow through a vertical porous plate under Soret-Dufour influence. (English) Zbl 07318106 Math. Comput. Simul. 177, 358-384 (2020). MSC: 80A 76S 35Q PDF BibTeX XML Cite \textit{A. S. Idowu} and \textit{B. O. Falodun}, Math. Comput. Simul. 177, 358--384 (2020; Zbl 07318106) Full Text: DOI
Wang, Yong On a class of new generalized Poisson-Nernst-Planck-Navier-Stokes equations. (English) Zbl 07315519 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 674-681 (2020). MSC: 35Q35 35Q92 76W05 PDF BibTeX XML Cite \textit{Y. Wang}, AIMS Ser. Appl. Math. 10, 674--681 (2020; Zbl 07315519)
Marroquin, Daniel R. Recent progress on the study of the short wave-long wave interactions system for aurora-type phenomena. (English) Zbl 07315505 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 554-561 (2020). MSC: 76W05 76N10 76N30 35Q35 35Q55 PDF BibTeX XML Cite \textit{D. R. Marroquin}, AIMS Ser. Appl. Math. 10, 554--561 (2020; Zbl 07315505)
Klingenberg, Christian; Markfelder, Simon Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations. (English) Zbl 07315497 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 491-498 (2020). MSC: 76W05 76N10 35Q35 PDF BibTeX XML Cite \textit{C. Klingenberg} and \textit{S. Markfelder}, AIMS Ser. Appl. Math. 10, 491--498 (2020; Zbl 07315497)
Anh, Cung The; Toai, Nguyen Thi Minh; Toi, Vu Manh Upper bounds on the number of determining modes, nodes, and volume elements for a 3D magenetohydrodynamic-\(\alpha\) model. (English) Zbl 1455.76204 J. Appl. Anal. Comput. 10, No. 2, 624-648 (2020). MSC: 76W05 35Q35 35B40 PDF BibTeX XML Cite \textit{C. T. Anh} et al., J. Appl. Anal. Comput. 10, No. 2, 624--648 (2020; Zbl 1455.76204) Full Text: DOI
Proskurin, A. V. Stability of a pressure-driven flow between coaxial cylinders in a longitudinal magnetic field. (English. Russian original) Zbl 1454.76109 J. Appl. Mech. Tech. Phys. 61, No. 6, 917-924 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 6, 16-23 (2020). MSC: 76W05 76E25 PDF BibTeX XML Cite \textit{A. V. Proskurin}, J. Appl. Mech. Tech. Phys. 61, No. 6, 917--924 (2020; Zbl 1454.76109); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 6, 16--23 (2020) Full Text: DOI
Arifin, N. S.; Zokri, S. M.; Ariffin, N. A. S.; Kasim, A. R. M.; Salleh, M. Z. Modified magnetic field flow of Casson fluid and solid particles with non-linear thermal radiation effect. (English) Zbl 07314134 Malays. J. Math. Sci. 14, Spec. Iss.: 2nd International Conference on Applied & Industrial Mathematics and Statistics 2019 (ICoAIMS 2019), 171-184 (2020). MSC: 76W05 76A05 76T20 76M20 80A19 PDF BibTeX XML Cite \textit{N. S. Arifin} et al., Malays. J. Math. Sci. 14, 171--184 (2020; Zbl 07314134) Full Text: Link
Aramaki, Junichi Existence of a solution for a stationary Maxwell-Stokes type system. (English) Zbl 07307702 Commun. Math. Anal. 23, No. 1, 1-16 (2020). MSC: 35Q30 35A15 35A01 35D30 76W05 35Q60 78A30 PDF BibTeX XML Cite \textit{J. Aramaki}, Commun. Math. Anal. 23, No. 1, 1--16 (2020; Zbl 07307702) Full Text: Euclid
Ashraf, Muhammad; Saif, Amna Computational analysis of magnetohydrodynamic mixed convection flow Along vertical cylinder in the presence of aligned magnetic field. (English) Zbl 1453.76185 Int. J. Comput. Sci. Math. 11, No. 3, 222-239 (2020). MSC: 76M55 76W05 PDF BibTeX XML Cite \textit{M. Ashraf} and \textit{A. Saif}, Int. J. Comput. Sci. Math. 11, No. 3, 222--239 (2020; Zbl 1453.76185) Full Text: DOI
Shang, Zhaoyang Global existence and large time behavior of solutions for full compressible Hall-MHD equations. (English) Zbl 07304797 Appl. Anal. 99, No. 11, 1865-1888 (2020). MSC: 35Q35 35D35 76W05 76N10 35A01 PDF BibTeX XML Cite \textit{Z. Shang}, Appl. Anal. 99, No. 11, 1865--1888 (2020; Zbl 07304797) Full Text: DOI
Wei, Ruiying; Li, Yin; Guo, Boling Global existence and convergence rates of solutions for the 3D compressible magnetohydrodynamic equations without heat conductivity. (English) Zbl 07304780 Appl. Anal. 99, No. 10, 1661-1684 (2020). MSC: 35Q30 76N10 76N15 76W05 82C40 PDF BibTeX XML Cite \textit{R. Wei} et al., Appl. Anal. 99, No. 10, 1661--1684 (2020; Zbl 07304780) Full Text: DOI
Li, Zhouyu; Liu, Pan; Niu, Pengcheng Remarks on Liouville type theorems for the 3D stationary MHD equations. (English) Zbl 07304225 Bull. Korean Math. Soc. 57, No. 5, 1151-1164 (2020). MSC: 35Q35 35B65 35B53 76W05 76D05 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Korean Math. Soc. 57, No. 5, 1151--1164 (2020; Zbl 07304225) Full Text: DOI
Rathore, Kuldeep S.; Goyal, Mamta Numerical solution of magnetohydrodynamic (MHD) radiative boundary layer flow and heat transfer along a wedge in the presence of suction/injection. (English) Zbl 07303938 Jñānābha 50, No. 1, 279-290 (2020). MSC: 76D10 76E25 76S05 76W05 80A20 PDF BibTeX XML Cite \textit{K. S. Rathore} and \textit{M. Goyal}, Jñānābha 50, No. 1, 279--290 (2020; Zbl 07303938) Full Text: Link
Reynolds-Barredo, J. M.; Peraza-Rodríguez, H.; Sanchez, R.; Tribaldos, V. A novel efficient solver for Ampere’s equation in general toroidal topologies based on singular value decomposition techniques. (English) Zbl 1453.78011 J. Comput. Phys. 406, Article ID 109214, 15 p. (2020). MSC: 78M12 78A30 76W05 PDF BibTeX XML Cite \textit{J. M. Reynolds-Barredo} et al., J. Comput. Phys. 406, Article ID 109214, 15 p. (2020; Zbl 1453.78011) Full Text: DOI
Zou, Shijun; Yu, Xijun; Dai, Zihuan A positivity-preserving Lagrangian discontinuous Galerkin method for ideal magnetohydrodynamics equations in one-dimension. (English) Zbl 1453.76087 J. Comput. Phys. 405, Article ID 109144, 22 p. (2020). MSC: 76M10 76W05 65M60 PDF BibTeX XML Cite \textit{S. Zou} et al., J. Comput. Phys. 405, Article ID 109144, 22 p. (2020; Zbl 1453.76087) Full Text: DOI
Yamazaki, Kazuo Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system. (English) Zbl 1453.76182 Physica D 401, Article ID 132199, 21 p. (2020). MSC: 76M35 76W05 76M30 37A25 PDF BibTeX XML Cite \textit{K. Yamazaki}, Physica D 401, Article ID 132199, 21 p. (2020; Zbl 1453.76182) Full Text: DOI
Xu, Jian-Jun; Shi, Weidong; Hu, Wei-Fan; Huang, Jun-Jie A level-set immersed interface method for simulating the electrohydrodynamics. (English) Zbl 1453.76144 J. Comput. Phys. 400, Article ID 108956, 18 p. (2020). MSC: 76M20 76W05 PDF BibTeX XML Cite \textit{J.-J. Xu} et al., J. Comput. Phys. 400, Article ID 108956, 18 p. (2020; Zbl 1453.76144) Full Text: DOI
Poirier, Julien; Seloula, Nour Regularity results for a model in magnetohydrodynamics with imposed pressure. (Résultats de régularité pour un modèle en magnétohydrodynamique avec des conditions aux limites sur la pression.) (English. French summary) Zbl 07299535 C. R., Math., Acad. Sci. Paris 358, No. 9-10, 1033-1043 (2020). MSC: 35J60 35Q35 35Q60 35A01 35B65 PDF BibTeX XML Cite \textit{J. Poirier} and \textit{N. Seloula}, C. R., Math., Acad. Sci. Paris 358, No. 9--10, 1033--1043 (2020; Zbl 07299535) Full Text: DOI
Qiu, Hailong Error analysis of Euler semi-implicit scheme for the nonstationary magneto-hydrodynamics problem with temperature dependent parameters. (English) Zbl 07299272 J. Sci. Comput. 85, No. 2, Paper No. 47, 25 p. (2020). MSC: 65M60 65M06 65N30 65M12 65M15 76M10 78M20 76W05 35Q35 PDF BibTeX XML Cite \textit{H. Qiu}, J. Sci. Comput. 85, No. 2, Paper No. 47, 25 p. (2020; Zbl 07299272) Full Text: DOI
Qiu, Hailong Well-posedness and finite element approximation for the stationary magneto-hydrodynamics problem with temperature-dependent parameters. (English) Zbl 07299087 J. Sci. Comput. 85, No. 3, Paper No. 58, 24 p. (2020). MSC: 65N30 65N12 65N15 35D30 35A01 35A02 76M10 76W05 PDF BibTeX XML Cite \textit{H. Qiu}, J. Sci. Comput. 85, No. 3, Paper No. 58, 24 p. (2020; Zbl 07299087) Full Text: DOI
Ma, Caochuan Global well-posedness of the 3D incompressible Hall-MHD equations for small initial data in certain Besov spaces. (English) Zbl 07297918 Rocky Mt. J. Math. 50, No. 6, 2127-2139 (2020). MSC: 35Q35 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{C. Ma}, Rocky Mt. J. Math. 50, No. 6, 2127--2139 (2020; Zbl 07297918) Full Text: DOI Euclid
Alessa, Nazek Transformation magnetohydrodynamics in presence of a channel filled with porous medium and heat transfer of non-Newtonian fluid by using Lie group transformations. (English) Zbl 07297439 J. Funct. Spaces 2020, Article ID 8840287, 6 p. (2020). MSC: 76W05 76S05 76A10 76M60 80A19 80A21 PDF BibTeX XML Cite \textit{N. Alessa}, J. Funct. Spaces 2020, Article ID 8840287, 6 p. (2020; Zbl 07297439) Full Text: DOI
Yang, Xinguang; Shi, Wei; Lu, Yongjin Blow-up solution of the 3D viscous incompressible MHD system. (English) Zbl 07295596 J. Partial Differ. Equations 33, No. 2, 109-118 (2020). MSC: 35B44 35Q35 76W05 PDF BibTeX XML Cite \textit{X. Yang} et al., J. Partial Differ. Equations 33, No. 2, 109--118 (2020; Zbl 07295596) Full Text: DOI
Chen, Dongxiang; Ren, Siqi; Wang, Yuxi; Zhang, Zhifei Long time well-posedness of the MHD boundary layer equation in Sobolev space. (English) Zbl 07294981 Anal. Theory Appl. 36, No. 1, 1-18 (2020). MSC: 35Q35 76D10 76W05 PDF BibTeX XML Cite \textit{D. Chen} et al., Anal. Theory Appl. 36, No. 1, 1--18 (2020; Zbl 07294981) Full Text: DOI
Li, Yatao Local well-posedness for the non-resistive MHD equations in Sobolev spaces. (Chinese. English summary) Zbl 07294935 Acta Math. Sin., Chin. Ser. 63, No. 4, 335-348 (2020). MSC: 35Q35 76W05 46E35 PDF BibTeX XML Cite \textit{Y. Li}, Acta Math. Sin., Chin. Ser. 63, No. 4, 335--348 (2020; Zbl 07294935)
Oyelakin, I. S.; Sibanda, P. Analysis of exponentially varying viscosity and thermal conductivity on a tangent hyperbolic fluid. (English) Zbl 1452.76270 S\(\vec{\text{e}}\)MA J. 77, No. 3, 257-273 (2020). MSC: 76W05 80A21 PDF BibTeX XML Cite \textit{I. S. Oyelakin} and \textit{P. Sibanda}, S\(\vec{\text{e}}\)MA J. 77, No. 3, 257--273 (2020; Zbl 1452.76270) Full Text: DOI
Aziz, Asim; Jamshed, Wasim; Ali, Yasir; Shams, Moniba Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. (English) Zbl 1451.76005 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2667-2690 (2020). MSC: 76A05 76W05 82D80 PDF BibTeX XML Cite \textit{A. Aziz} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2667--2690 (2020; Zbl 1451.76005) Full Text: DOI