Liu, Ruiyang; Wang, Shun; Tan, Xuewen; Zou, Xiufen Identifying optimal adaptive therapeutic schedules for prostate cancer through combining mathematical modeling and dynamic optimization. (English) Zbl 1503.92041 Appl. Math. Modelling 107, 688-700 (2022). MSC: 92C50 34C60 90B35 PDF BibTeX XML Cite \textit{R. Liu} et al., Appl. Math. Modelling 107, 688--700 (2022; Zbl 1503.92041) Full Text: DOI
Bartha, Liza; Eftimie, Raluca Mathematical investigation into the role of macrophage heterogeneity on the temporal and spatio-temporal dynamics of non-small cell lung cancers. (English) Zbl 1497.92048 J. Theor. Biol. 549, Article ID 111207, 19 p. (2022). MSC: 92C32 92C17 34C60 35Q92 PDF BibTeX XML Cite \textit{L. Bartha} and \textit{R. Eftimie}, J. Theor. Biol. 549, Article ID 111207, 19 p. (2022; Zbl 1497.92048) Full Text: DOI
Swanson, Ellen R.; Köse, Emek; Zollinger, Elizabeth A.; Elliott, Samantha L. Mathematical modeling of tumor and cancer stem cells treated with CAR-T therapy and inhibition of TGF-\(\beta\). (English) Zbl 1486.92089 Bull. Math. Biol. 84, No. 6, Paper No. 58, 22 p. (2022). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{E. R. Swanson} et al., Bull. Math. Biol. 84, No. 6, Paper No. 58, 22 p. (2022; Zbl 1486.92089) Full Text: DOI
Ouifki, Rachid; Oke, Segun I. Mathematical model for the estrogen paradox in breast cancer treatment. (English) Zbl 1492.34060 J. Math. Biol. 84, No. 4, Paper No. 28, 32 p. (2022). MSC: 34C60 92C37 34D23 34C23 34C05 34D05 PDF BibTeX XML Cite \textit{R. Ouifki} and \textit{S. I. Oke}, J. Math. Biol. 84, No. 4, Paper No. 28, 32 p. (2022; Zbl 1492.34060) Full Text: DOI
Buhler, Cassidy K.; Terry, Rebecca S.; Link, Kathryn G.; Adler, Frederick R. Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives. (English) Zbl 1501.92042 Math. Biosci. Eng. 18, No. 5, 6305-6327 (2021). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{C. K. Buhler} et al., Math. Biosci. Eng. 18, No. 5, 6305--6327 (2021; Zbl 1501.92042) Full Text: DOI
Almuallem, Nada; Trucu, Dumitru; Eftimie, Raluca Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach. (English) Zbl 1471.92144 Math. Biosci. Eng. 18, No. 1, 764-799 (2021). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{N. Almuallem} et al., Math. Biosci. Eng. 18, No. 1, 764--799 (2021; Zbl 1471.92144) Full Text: DOI
Senekal, Noma Susan; Mahasa, Khaphetsi Joseph; Eladdadi, Amina; de Pillis, Lisette; Ouifki, Rachid Natural killer cells recruitment in oncolytic virotherapy: a mathematical model. (English) Zbl 1467.92098 Bull. Math. Biol. 83, No. 7, Paper No. 75, 51 p. (2021). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{N. S. Senekal} et al., Bull. Math. Biol. 83, No. 7, Paper No. 75, 51 p. (2021; Zbl 1467.92098) Full Text: DOI
Coletti, Roberta; Pugliese, Andrea; Marchetti, Luca Modeling the effect of immunotherapies on human castration-resistant prostate cancer. (English) Zbl 1457.92074 J. Theor. Biol. 509, Article ID 110500, 19 p. (2021). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{R. Coletti} et al., J. Theor. Biol. 509, Article ID 110500, 19 p. (2021; Zbl 1457.92074) Full Text: DOI
Wei, Hsiu-Chuan Mathematical modeling of ER-positive breast cancer treatment with AZD9496 and palbociclib. (English) Zbl 1484.92048 AIMS Math. 5, No. 4, 3446-3455 (2020). MSC: 92C50 34C60 37N25 PDF BibTeX XML Cite \textit{H.-C. Wei}, AIMS Math. 5, No. 4, 3446--3455 (2020; Zbl 1484.92048) Full Text: DOI
Sweilam, Nasser Hassan; Al-Mekhlafi, Seham Mahyoub; Assiri, Taghreed; Atangana, Abdon Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative. (English) Zbl 1485.92053 Adv. Difference Equ. 2020, Paper No. 334, 21 p. (2020). MSC: 92C50 26A33 34A08 49N90 37N25 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Adv. Difference Equ. 2020, Paper No. 334, 21 p. (2020; Zbl 1485.92053) Full Text: DOI
Cassidy, Tyler; Humphries, Antony. A mathematical model of viral oncology as an immuno-oncology instigator. (English) Zbl 1437.92036 Math. Med. Biol. 37, No. 1, 117-151 (2020). MSC: 92C32 92C50 34K60 PDF BibTeX XML Cite \textit{T. Cassidy} and \textit{Antony. Humphries}, Math. Med. Biol. 37, No. 1, 117--151 (2020; Zbl 1437.92036) Full Text: DOI
Senotrusova, S. D.; Voropaeva, O. F. Mathematical modeling of positive connection functioning in the tumor markers p53-microRNA system. (Russian. English summary) Zbl 1508.92064 Sib. Zh. Vychisl. Mat. 22, No. 3, 325-344 (2019). MSC: 92C32 34K60 93B52 PDF BibTeX XML Cite \textit{S. D. Senotrusova} and \textit{O. F. Voropaeva}, Sib. Zh. Vychisl. Mat. 22, No. 3, 325--344 (2019; Zbl 1508.92064) Full Text: DOI MNR
Sigal, Daniel; Przedborski, Michelle; Sivaloganathan, Darshan; Kohandel, Mohammad Mathematical modelling of cancer stem cell-targeted immunotherapy. (English) Zbl 1437.92066 Math. Biosci. 318, Article ID 108269, 26 p. (2019). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{D. Sigal} et al., Math. Biosci. 318, Article ID 108269, 26 p. (2019; Zbl 1437.92066) Full Text: DOI
Guzev, Ekaterina; Halachmi, Sarel; Bunimovich-Mendrazitsky, Svetlana Additional extension of the mathematical model for BCG immunotherapy of bladder cancer and its validation by auxiliary tool. (English) Zbl 1464.92125 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 675-689 (2019). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{E. Guzev} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 675--689 (2019; Zbl 1464.92125) Full Text: DOI
Amgalan, Bayarbaatar; Tseveendorj, Ider; Lee, Hyunju An integrative model for the identification of key players of cancer networks. (English) Zbl 1480.92100 Appl. Math. Modelling 58, 65-75 (2018). MSC: 92C50 92C42 90B10 90C90 PDF BibTeX XML Cite \textit{B. Amgalan} et al., Appl. Math. Modelling 58, 65--75 (2018; Zbl 1480.92100) Full Text: DOI
López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F. Bifurcation analysis and nonlinear decay of a tumor in the presence of an immune response. (English) Zbl 1383.34073 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 14, Article ID 1750223, 7 p. (2017). MSC: 34C60 34C23 92C37 PDF BibTeX XML Cite \textit{Á. G. López} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 14, Article ID 1750223, 7 p. (2017; Zbl 1383.34073) Full Text: DOI
Paul, Subhadip; Roy, Prasun Kumar Strategy for stochastic dose-rate induced enhanced elimination of malignant tumour without dose escalation. (English) Zbl 1400.92278 Math. Med. Biol. 33, No. 3, 319-328 (2016). MSC: 92C50 60H10 PDF BibTeX XML Cite \textit{S. Paul} and \textit{P. K. Roy}, Math. Med. Biol. 33, No. 3, 319--328 (2016; Zbl 1400.92278) Full Text: DOI
Foryś, U.; Bodnar, M.; Kogan, Y. Asymptotic dynamics of some \(t\)-periodic one-dimensional model with application to prostate cancer immunotherapy. (English) Zbl 1360.92055 J. Math. Biol. 73, No. 4, 867-883 (2016). MSC: 92C50 34A37 34C25 34C60 PDF BibTeX XML Cite \textit{U. Foryś} et al., J. Math. Biol. 73, No. 4, 867--883 (2016; Zbl 1360.92055) Full Text: DOI
Li, Xuefang; Xu, Jian-Xin A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy. (English) Zbl 1344.92072 J. Theor. Biol. 406, 42-51 (2016). MSC: 92C50 34C60 PDF BibTeX XML Cite \textit{X. Li} and \textit{J.-X. Xu}, J. Theor. Biol. 406, 42--51 (2016; Zbl 1344.92072) Full Text: DOI
Kuang, Yang; Nagy, John D.; Eikenberry, Steffen E. Introduction to mathematical oncology. (English) Zbl 1341.92002 Chapman & Hall/CRC Mathematical and Computational Biology. Boca Raton, FL: CRC Press (ISBN 978-1-58488-990-8/hbk). xi, 470 p. (2016). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92-02 92B05 92C50 PDF BibTeX XML Cite \textit{Y. Kuang} et al., Introduction to mathematical oncology. Boca Raton, FL: CRC Press (2016; Zbl 1341.92002)
Liu, Zijian; Yang, Chenxue A mathematical model of cancer treatment by radiotherapy. (English) Zbl 1423.92101 Comput. Math. Methods Med. 2014, Article ID 172923, 12 p. (2014). MSC: 92C50 34C60 34D20 34C25 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{C. Yang}, Comput. Math. Methods Med. 2014, Article ID 172923, 12 p. (2014; Zbl 1423.92101) Full Text: DOI
Wilson, Shelby; Levy, Doron A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy. (English) Zbl 1251.92023 Bull. Math. Biol. 74, No. 7, 1485-1500 (2012). MSC: 92C50 93A30 65C20 PDF BibTeX XML Cite \textit{S. Wilson} and \textit{D. Levy}, Bull. Math. Biol. 74, No. 7, 1485--1500 (2012; Zbl 1251.92023) Full Text: DOI Link
Kolev, Mikhail; Zubnik-Kowal, Barbara Numerical experiments with model equations of cancer invasion of tissue. (English) Zbl 1318.92024 Control Cybern. 40, No. 3, 779-791 (2011). MSC: 92C50 92C17 93A30 PDF BibTeX XML Cite \textit{M. Kolev} and \textit{B. Zubnik-Kowal}, Control Cybern. 40, No. 3, 779--791 (2011; Zbl 1318.92024)
Rodica Rădulescu, Ileana Optimal control for a delay differential system of Chronic Myelogenous Leukemia. (English) Zbl 1264.49025 J. Dyn. Syst. Geom. Theor. 9, No. 2, 99-114 (2011). MSC: 49K21 49K35 93A30 93C23 93C95 92C50 PDF BibTeX XML Cite \textit{I. Rodica Rădulescu}, J. Dyn. Syst. Geom. Theor. 9, No. 2, 99--114 (2011; Zbl 1264.49025) Full Text: DOI
Martin, Natasha K.; Gaffney, Eamonn A.; Gatenby, Robert A.; Gillies, Robert J.; Robey, Ian F.; Maini, Philip K. A mathematical model of tumour and blood pHe regulation: the \(\mathrm{HCO}^-_3/\mathrm{CO}_2\) buffering system. (English) Zbl 1215.92032 Math. Biosci. 230, No. 1, 1-11 (2011). MSC: 92C50 93A30 37N25 34A99 65C20 PDF BibTeX XML Cite \textit{N. K. Martin} et al., Math. Biosci. 230, No. 1, 1--11 (2011; Zbl 1215.92032) Full Text: DOI Link
Calmelet, C.; Prokop, A.; Mensah, J.; McCawley, L. J.; Crooke, P. S. Modeling the cancer stem cell hypothesis. (English) Zbl 1187.92050 Math. Model. Nat. Phenom. 5, No. 3, 40-62 (2010). MSC: 92C50 93A30 65C20 92C37 37N25 PDF BibTeX XML Cite \textit{C. Calmelet} et al., Math. Model. Nat. Phenom. 5, No. 3, 40--62 (2010; Zbl 1187.92050) Full Text: DOI EuDML
Freedman, H. I.; Belostotski, G. Perturbed models for cancer treatment by radiotherapy. (English) Zbl 1207.34057 Differ. Equ. Dyn. Syst. 17, No. 1-2, 115-133 (2009). MSC: 34C60 34D05 34D20 34C25 34H05 92C37 92C50 PDF BibTeX XML Cite \textit{H. I. Freedman} and \textit{G. Belostotski}, Differ. Equ. Dyn. Syst. 17, No. 1--2, 115--133 (2009; Zbl 1207.34057) Full Text: DOI
Petunin, Yu. I.; Klyushin, D. A.; Golubeva, E. N.; Naleskina, L. A.; Kunskaya, L. N.; Chekhun, V. F. Group-membership recognition methods based on confidence boundaries and their testing in clinical oncology. (English. Russian original) Zbl 1185.62190 Cybern. Syst. Anal. 45, No. 4, 517-527 (2009); translation from Kibern. Sist. Anal. 2009, No. 4, 19-30 (2009). MSC: 62P10 62H20 62J05 65C60 PDF BibTeX XML Cite \textit{Yu. I. Petunin} et al., Cybern. Syst. Anal. 45, No. 4, 517--527 (2009; Zbl 1185.62190); translation from Kibern. Sist. Anal. 2009, No. 4, 19--30 (2009) Full Text: DOI
Page, K. M. Mathematical modelling of tumour dormancy. (English) Zbl 1165.92024 Math. Model. Nat. Phenom. 4, No. 3, 68-96 (2009). MSC: 92C50 93A30 35Q92 PDF BibTeX XML Cite \textit{K. M. Page}, Math. Model. Nat. Phenom. 4, No. 3, 68--96 (2009; Zbl 1165.92024) Full Text: DOI EuDML
Preziosi, L.; Tosin, A. Multiphase and multiscale trends in cancer modelling. (English) Zbl 1166.92030 Math. Model. Nat. Phenom. 4, No. 3, 1-11 (2009). MSC: 92C50 93A30 PDF BibTeX XML Cite \textit{L. Preziosi} and \textit{A. Tosin}, Math. Model. Nat. Phenom. 4, No. 3, 1--11 (2009; Zbl 1166.92030) Full Text: DOI EuDML
Bianchini, Lorenzo; Fasano, Antonio A model combining acid-mediated tumour invasion and nutrient dynamics. (English) Zbl 1163.92319 Nonlinear Anal., Real World Appl. 10, No. 4, 1955-1975 (2009). MSC: 92C50 35R35 PDF BibTeX XML Cite \textit{L. Bianchini} and \textit{A. Fasano}, Nonlinear Anal., Real World Appl. 10, No. 4, 1955--1975 (2009; Zbl 1163.92319) Full Text: DOI
Lollini, P.-L.; Motta, S.; Pappalardo, F. Modeling tumor immunology. (English) Zbl 1099.92036 Math. Models Methods Appl. Sci. 16, No. 7, Suppl., 1091-1124 (2006). MSC: 92C50 93A30 65C20 PDF BibTeX XML Cite \textit{P. L. Lollini} et al., Math. Models Methods Appl. Sci. 16, No. 7, 1091--1124 (2006; Zbl 1099.92036) Full Text: DOI
Moore, Helen; Li, Natasha K. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. (English) Zbl 1439.92068 J. Theor. Biol. 227, No. 4, 513-523 (2004). MSC: 92C32 34C60 PDF BibTeX XML Cite \textit{H. Moore} and \textit{N. K. Li}, J. Theor. Biol. 227, No. 4, 513--523 (2004; Zbl 1439.92068) Full Text: DOI
Kimmel, Marek; Świerniak, Andrzej Using control theory to make cancer chemotherapy beneficial from phase dependence and resistant to drug resistance. (English) Zbl 1151.93310 Arch. Control Sci. 14, No. 2, 105-145 (2004). MSC: 93A30 92C40 92C50 PDF BibTeX XML Cite \textit{M. Kimmel} and \textit{A. Świerniak}, Arch. Control Sci. 14, No. 2, 105--145 (2004; Zbl 1151.93310)
de Pillis, L. G.; Radunskaya, A. The dynamics of an optimally controlled tumor model: A case study. (English) Zbl 1043.92018 Math. Comput. Modelling 37, No. 11, 1221-1244 (2003). MSC: 92C50 49N90 34C60 34C05 37N25 PDF BibTeX XML Cite \textit{L. G. de Pillis} and \textit{A. Radunskaya}, Math. Comput. Modelling 37, No. 11, 1221--1244 (2003; Zbl 1043.92018) Full Text: DOI
Cressie, Noel; Hulting, Frederick L. A spatial statistical analysis of tumor growth. (English) Zbl 0781.62172 J. Am. Stat. Assoc. 87, No. 418, 272-283 (1992). MSC: 62P10 60D05 PDF BibTeX XML Cite \textit{N. Cressie} and \textit{F. L. Hulting}, J. Am. Stat. Assoc. 87, No. 418, 272--283 (1992; Zbl 0781.62172) Full Text: DOI
Martin, R. B.; Fisher, M. E.; Minchin, R. F.; Teo, K. L. A mathematical model of cancer chemotherapy with an optimal selection of parameters. (English) Zbl 0724.92016 Math. Biosci. 99, No. 2, 205-230 (1990). MSC: 92C50 49M37 93C15 93C95 65K05 49J15 PDF BibTeX XML Cite \textit{R. B. Martin} et al., Math. Biosci. 99, No. 2, 205--230 (1990; Zbl 0724.92016) Full Text: DOI
Knolle, Helmut Cell kinetic modelling and the chemotherapy of cancer. (English) Zbl 0658.92001 Lecture Notes in Biomathematics, 75. Berlin etc.: Springer-Verlag. viii, 157 p. (1988). Reviewer: T.Postelnicu MSC: 92C50 92-02 92Cxx PDF BibTeX XML Cite \textit{H. Knolle}, Cell kinetic modelling and the chemotherapy of cancer. Berlin etc.: Springer-Verlag (1988; Zbl 0658.92001)
Baianu, Ion C. Computer models and automata theory in biology and medicine. (English) Zbl 0608.92001 Math. Modelling 7, 1513-1577 (1986). Reviewer: V.Aladyev MSC: 92C50 92Cxx 68U99 92B05 68Q45 68U20 PDF BibTeX XML Cite \textit{I. C. Baianu}, Math. Modelling 7, 1513--1577 (1986; Zbl 0608.92001) Full Text: DOI
Eisen, Martin Mathematical models in cell biology and cancer chemotherapy. (English) Zbl 0414.92005 Lecture Notes in Biomathematics. 30. Berlin-Heidelberg-New York: Springer-Verlag. IX, 431 p. DM 39.00; $ 21.50 (1979). MSC: 92C50 92Cxx 92-02 93C99 PDF BibTeX XML