×

Malcev products of monoids and varieties of bands. (English) Zbl 1374.20049

The study is motivated by the fact that the class of completely regular semigroups can be written as a Malcev product \(({\mathcal G} \circ {\mathcal RB}) \circ {\mathcal S}\), where \({\mathcal G}\), \({\mathcal RB}\) and \({\mathcal S}\) are the varieties of groups, rectangular bands and semilattices, respectively. The author describes the structure of semigroups that belong to the different classes obtained when replacing \({\mathcal G}\) above by the class \({\mathcal M}\) of monoids. For classes of semigroups \({\mathcal X}\) and \({\mathcal Y}\), \({\mathcal X} \square{\mathcal S}\) denotes a special case of Malcev product – the class of all strong semilattices of semigroups \([Y; S_{\alpha}, \chi_{\alpha,\beta}]\) where \(Y \in {\mathcal S}\) and \(S_{\alpha}\in {\mathcal X}\) for all \(\alpha \in Y\). A subclass of the latter consisting of all unary semigroups isomorphic to some \([Y; S_{\alpha}, \chi_{\alpha,\beta}]\) where \(\chi_{\alpha,\beta}\) is injective for all \(\alpha \geq\beta\) is denoted by \({\mathcal X} \bigtriangleup{\mathcal S}\). For nonempty sets \(I,\Lambda\) and a \(\Lambda \times I\)-matrix \(P\), the class of all semigroups isomorphic to Rees matrix semigroups \({\mathcal M}(I,T, \Lambda;P)\), \(T\in {\mathcal X}\), is denoted by \({\mathcal X} \ast {\mathcal RB}\). The author describes the elements of several classes including the following: \(({\mathcal G} \circ {\mathcal S}) \circ {\mathcal RB} (= {\mathcal G} \circ ({\mathcal S} \circ {\mathcal RB}))\), \({\mathcal M} \circ {\mathcal B}\) (\({\mathcal B}\) denotes the variety of bands), \({\mathcal M} \ast {\mathcal RB}\), \({\mathcal M} \square{\mathcal S}\), \(({\mathcal M} \circ {\mathcal RB}) \circ{\mathcal S}\), \(({\mathcal M} \circ {\mathcal RB}) \square{\mathcal S}\), \(({\mathcal M} \times {\mathcal RB}) \square{\mathcal S}\), \(({\mathcal M} \circ {\mathcal S}) \circ {\mathcal RB}\), \({\mathcal M} \circ ({\mathcal S} \circ {\mathcal RB})\), \(({\mathcal M} \times {\mathcal RB}) \bigtriangleup {\mathcal S}\). Based on the obtained results, a \(\cap\)-semilattice of the classes considered above is constructed. For example, it turns out that \(({\mathcal M} \circ {\mathcal B})\cap(({\mathcal M} \circ {\mathcal S}) \circ {\mathcal RB})={\mathcal M} \circ ({\mathcal S} \circ {\mathcal RB})\).

MSC:

20M07 Varieties and pseudovarieties of semigroups
20M10 General structure theory for semigroups
08B15 Lattices of varieties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lalllement G., Petrich M.: A generalization of the Rees theorem in semigroups. Acta Scic. Math. (Szeged), 30, 113-132 (1969) · Zbl 0205.01703
[2] Petrich M.: Lectures in Semigroups, Akademie-Verlag, Berlin (1977) · Zbl 0353.20048
[3] Petrich M.: Malcev products of unipotent monoids and varieties of bands. Semigroup Forum, 83, 161-189 (2011) · Zbl 1247.20067 · doi:10.1007/s00233-011-9318-6
[4] M. Petrich, Malcev products of weakly cancelative monoids and varieties of bands, Semigroup Forum, 90, (2015) 339-373. · Zbl 1328.20078 · doi:10.1007/s00233-014-9592-1
[5] Petrich M., Reilly N. R.: Completely Regular Semigroups. Wiley, New York (1999) · Zbl 0967.20034
[6] B. Schein, Bands of monoids, Acta Sci. Math. (Szeged), 36 (1974), 145-154. · Zbl 0285.20049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.