Isenberg, James; Wu, Haotian; Zhang, Zhou On the precise asymptotics of type-IIb solutions to mean curvature flow. (English) Zbl 07551365 Trans. Am. Math. Soc., Ser. B 9, 564-585 (2022). MSC: 53E10 35K59 PDF BibTeX XML Cite \textit{J. Isenberg} et al., Trans. Am. Math. Soc., Ser. B 9, 564--585 (2022; Zbl 07551365) Full Text: DOI OpenURL
McLeod, Andrew D.; Topping, Peter M. Global regularity of three-dimensional Ricci limit spaces. (English) Zbl 07551362 Trans. Am. Math. Soc., Ser. B 9, 345-370 (2022). MSC: 53C44 PDF BibTeX XML Cite \textit{A. D. McLeod} and \textit{P. M. Topping}, Trans. Am. Math. Soc., Ser. B 9, 345--370 (2022; Zbl 07551362) Full Text: DOI OpenURL
Pyo, Juncheol The monotone property of the first nonzero eigenvalue of the \(p\)-Laplacian along the inverse mean curvature flow with forced term. (English) Zbl 07546432 East Asian Math. J. 38, No. 3, 331-338 (2022). MSC: 53E10 58J50 PDF BibTeX XML Cite \textit{J. Pyo}, East Asian Math. J. 38, No. 3, 331--338 (2022; Zbl 07546432) Full Text: DOI OpenURL
Paoli, Gloria An estimate for the anisotropic maximum curvature in the planar case. (English) Zbl 07545264 Ric. Mat. 71, No. 1, 121-133 (2022). MSC: 53A04 53E10 53E99 PDF BibTeX XML Cite \textit{G. Paoli}, Ric. Mat. 71, No. 1, 121--133 (2022; Zbl 07545264) Full Text: DOI OpenURL
Cesaroni, Annalisa; Kröner, Heiko; Novaga, Matteo Graphical translators for anisotropic and crystalline mean curvature flow. (English) Zbl 07545053 J. Math. Anal. Appl. 514, No. 2, Article ID 126314, 15 p. (2022). MSC: 53E10 35K55 35D40 PDF BibTeX XML Cite \textit{A. Cesaroni} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 126314, 15 p. (2022; Zbl 07545053) Full Text: DOI OpenURL
Batista, Márcio; Molica Bisci, Giovanni; de Lima, Henrique Entire translating graphs in weighted product spaces: rigidity and nonexistence results. (English) Zbl 07543672 Differ. Geom. Appl. 83, Article ID 101899, 12 p. (2022). MSC: 53C42 53E10 PDF BibTeX XML Cite \textit{M. Batista} et al., Differ. Geom. Appl. 83, Article ID 101899, 12 p. (2022; Zbl 07543672) Full Text: DOI OpenURL
Semmelmann, Uwe; Wang, Changliang; Wang, M. Y.-K. Linear instability of Sasaki Einstein and nearly parallel \(\mathrm{G}_2\) manifolds. (English) Zbl 07537345 Int. J. Math. 33, No. 6, Article ID 2250042, 17 p. (2022). MSC: 53C25 53C27 53C44 PDF BibTeX XML Cite \textit{U. Semmelmann} et al., Int. J. Math. 33, No. 6, Article ID 2250042, 17 p. (2022; Zbl 07537345) Full Text: DOI OpenURL
Bernstein, Jacob; Wang, Lu Closed hypersurfaces of low entropy in \({\mathbb{R}^4}\) are isotopically trivial. (English) Zbl 07536917 Duke Math. J. 171, No. 7, 1531-1558 (2022). MSC: 53E10 53A07 35J20 35K93 57Q37 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{L. Wang}, Duke Math. J. 171, No. 7, 1531--1558 (2022; Zbl 07536917) Full Text: DOI Link OpenURL
Schnürer, Oliver C. [Lee, Dan A.] Book review of: D. A. Lee, Geometric relativity. (English) Zbl 07534184 Jahresber. Dtsch. Math.-Ver. 124, No. 2, 123-128 (2022). MSC: 00A17 53-01 53C20 53C21 53C24 53C27 53C44 53C50 53C80 83C05 83C57 PDF BibTeX XML Cite \textit{O. C. Schnürer}, Jahresber. Dtsch. Math.-Ver. 124, No. 2, 123--128 (2022; Zbl 07534184) Full Text: DOI OpenURL
Sugai, Takeo Bifurcations of spherically asymmetric solutions to an evolution equation for curves. (English) Zbl 07531883 Interfaces Free Bound. 24, No. 2, 287-306 (2022). MSC: 35C06 35B32 35K93 35R35 PDF BibTeX XML Cite \textit{T. Sugai}, Interfaces Free Bound. 24, No. 2, 287--306 (2022; Zbl 07531883) Full Text: DOI OpenURL
Zhu, Jingze \(SO(2)\) symmetry of the translating solitons of the mean curvature flow in \(\mathbb{R}^4\). (English) Zbl 07531774 Ann. PDE 8, No. 1, Paper No. 6, 40 p. (2022). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{J. Zhu}, Ann. PDE 8, No. 1, Paper No. 6, 40 p. (2022; Zbl 07531774) Full Text: DOI OpenURL
Alías, Luis J.; de Lira, Jorge H. S.; Rigoli, Marco Stability of mean curvature flow solitons in warped product spaces. (English) Zbl 07531511 Rev. Mat. Complut. 35, No. 2, 287-309 (2022). MSC: 53C42 53C21 49Q20 PDF BibTeX XML Cite \textit{L. J. Alías} et al., Rev. Mat. Complut. 35, No. 2, 287--309 (2022; Zbl 07531511) Full Text: DOI OpenURL
Kavallaris, Nikos I.; Suzuki, Takashi Gradient inequality and convergence to steady-states of the normalized Ricci flow on surfaces. (English) Zbl 07531084 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112906, 23 p. (2022). MSC: 35B40 35K93 53E20 PDF BibTeX XML Cite \textit{N. I. Kavallaris} and \textit{T. Suzuki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112906, 23 p. (2022; Zbl 07531084) Full Text: DOI OpenURL
Bao, Weizhu; Garcke, Harald; Nürnberg, Robert; Zhao, Quan Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. (English) Zbl 07525159 J. Comput. Phys. 460, Article ID 111180, 23 p. (2022). MSC: 65Mxx 35Kxx 53Cxx PDF BibTeX XML Cite \textit{W. Bao} et al., J. Comput. Phys. 460, Article ID 111180, 23 p. (2022; Zbl 07525159) Full Text: DOI OpenURL
Morfe, Peter S. Homogenization of the Allen-Cahn equation with periodic mobility. (English) Zbl 07523693 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 110, 45 p. (2022). MSC: 35B27 35D40 35K15 35K59 PDF BibTeX XML Cite \textit{P. S. Morfe}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 110, 45 p. (2022; Zbl 07523693) Full Text: DOI OpenURL
Scheuer, Julian; Wang, Guofang; Xia, Chao Alexandrov-Fenchel inequalities for convex hypersurfaces with free boundary in a ball. (English) Zbl 07523594 J. Differ. Geom. 120, No. 2, 345-373 (2022). MSC: 53C21 53C24 53E10 PDF BibTeX XML Cite \textit{J. Scheuer} et al., J. Differ. Geom. 120, No. 2, 345--373 (2022; Zbl 07523594) Full Text: DOI Link OpenURL
Jukić, Mia; Hupkes, Hermen Jan Curvature-driven front propagation through planar lattices in oblique directions. (English) Zbl 07517700 Commun. Pure Appl. Anal. 21, No. 6, 2189-2251 (2022). MSC: 34A33 34D05 34D20 53E10 PDF BibTeX XML Cite \textit{M. Jukić} and \textit{H. J. Hupkes}, Commun. Pure Appl. Anal. 21, No. 6, 2189--2251 (2022; Zbl 07517700) Full Text: DOI OpenURL
Azami, Shahroud Eigenvalues monotonicity of Witten-Laplacian along the mean curvature flow. (English) Zbl 07506498 Indian J. Pure Appl. Math. 53, No. 1, 144-152 (2022). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 58C40 53E10 PDF BibTeX XML Cite \textit{S. Azami}, Indian J. Pure Appl. Math. 53, No. 1, 144--152 (2022; Zbl 07506498) Full Text: DOI OpenURL
Li, Haizhong; Xu, Botong; Zhang, Ruijia Asymptotic convergence for a class of anisotropic curvature flows. (English) Zbl 07505265 J. Funct. Anal. 282, No. 12, Article ID 109460, 34 p. (2022). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{H. Li} et al., J. Funct. Anal. 282, No. 12, Article ID 109460, 34 p. (2022; Zbl 07505265) Full Text: DOI OpenURL
Gang, Zhou On the dynamics of formation of generic singularities of mean curvature flow. (English) Zbl 07505263 J. Funct. Anal. 282, No. 12, Article ID 109458, 73 p. (2022). MSC: 53E10 PDF BibTeX XML Cite \textit{Z. Gang}, J. Funct. Anal. 282, No. 12, Article ID 109458, 73 p. (2022; Zbl 07505263) Full Text: DOI OpenURL
Beneš, Michal; Kolář, Miroslav; Ševčovič, Daniel Qualitative and numerical aspects of a motion of a family of interacting curves in space. (English) Zbl 07504984 SIAM J. Appl. Math. 82, No. 2, 549-575 (2022). MSC: 53E10 35K57 35K65 65N40 65M08 53C80 PDF BibTeX XML Cite \textit{M. Beneš} et al., SIAM J. Appl. Math. 82, No. 2, 549--575 (2022; Zbl 07504984) Full Text: DOI OpenURL
Casteras, Jean-Baptiste; Heinonen, Esko; Holopainen, Ilkka; de Lira, Jorge H. Non-parametric mean curvature flow with prescribed contact angle in Riemannian products. (English) Zbl 07503663 Anal. Geom. Metr. Spaces 10, 31-39 (2022). MSC: 53C21 53E10 PDF BibTeX XML Cite \textit{J.-B. Casteras} et al., Anal. Geom. Metr. Spaces 10, 31--39 (2022; Zbl 07503663) Full Text: DOI OpenURL
Hu, Yingxiang; Li, Haizhong; Wei, Yong Locally constrained curvature flows and geometric inequalities in hyperbolic space. (English) Zbl 07503460 Math. Ann. 382, No. 3-4, 1425-1474 (2022). Reviewer: Yun Myung Oh (Berrien Springs) MSC: 53E10 53E99 53C40 52A39 PDF BibTeX XML Cite \textit{Y. Hu} et al., Math. Ann. 382, No. 3--4, 1425--1474 (2022; Zbl 07503460) Full Text: DOI OpenURL
Naff, Keaton A planarity estimate for pinched solutions of mean curvature flow. (English) Zbl 07500554 Duke Math. J. 171, No. 2, 443-482 (2022). Reviewer: Fernando Etayo Gordejuela (Santander) MSC: 53E10 53C21 PDF BibTeX XML Cite \textit{K. Naff}, Duke Math. J. 171, No. 2, 443--482 (2022; Zbl 07500554) Full Text: DOI OpenURL
Deckelnick, Klaus; Styles, Vanessa Finite element error analysis for a system coupling surface evolution to diffusion on the surface. (English) Zbl 07500328 Interfaces Free Bound. 24, No. 1, 63-93 (2022). MSC: 65M60 65M06 65N30 65M15 35R02 35R37 PDF BibTeX XML Cite \textit{K. Deckelnick} and \textit{V. Styles}, Interfaces Free Bound. 24, No. 1, 63--93 (2022; Zbl 07500328) Full Text: DOI OpenURL
Cesaroni, Annalisa; Novaga, Matteo \(K\)-mean convex and \(K\)-outward minimizing sets. (English) Zbl 07500327 Interfaces Free Bound. 24, No. 1, 35-61 (2022). MSC: 53E10 35R11 49Q20 PDF BibTeX XML Cite \textit{A. Cesaroni} and \textit{M. Novaga}, Interfaces Free Bound. 24, No. 1, 35--61 (2022; Zbl 07500327) Full Text: DOI OpenURL
Li, Haozhao; Wang, Bing On Ilmanen’s multiplicity-one conjecture for mean curvature flow with type-\(I\) mean curvature. (English) Zbl 07499428 J. Eur. Math. Soc. (JEMS) 24, No. 1, 37-135 (2022). MSC: 53E10 53A05 35K93 PDF BibTeX XML Cite \textit{H. Li} and \textit{B. Wang}, J. Eur. Math. Soc. (JEMS) 24, No. 1, 37--135 (2022; Zbl 07499428) Full Text: DOI OpenURL
Li, Haozhao; Wang, Zhen Self-shrinkers with bounded \(|HA|\). (English) Zbl 07496959 J. Math. Anal. Appl. 512, No. 1, Article ID 126124, 20 p. (2022). MSC: 53E10 53A07 35K55 PDF BibTeX XML Cite \textit{H. Li} and \textit{Z. Wang}, J. Math. Anal. Appl. 512, No. 1, Article ID 126124, 20 p. (2022; Zbl 07496959) Full Text: DOI OpenURL
Choi, Kyeongsu; Mantoulidis, Christos Ancient gradient flows of elliptic functionals and Morse index. (English) Zbl 07496844 Am. J. Math. 144, No. 2, 541-573 (2022). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{K. Choi} and \textit{C. Mantoulidis}, Am. J. Math. 144, No. 2, 541--573 (2022; Zbl 07496844) Full Text: DOI OpenURL
Bernstein, Jacob; Wang, Lu Relative expander entropy in the presence of a two-sided obstacle and applications. (English) Zbl 07496431 Adv. Math. 399, Article ID 108284, 48 p. (2022). MSC: 53E10 53A10 35J93 35K93 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{L. Wang}, Adv. Math. 399, Article ID 108284, 48 p. (2022; Zbl 07496431) Full Text: DOI OpenURL
Chen, Wei; Li, Guanghan A two-point function, non-collapsing property and pinching estimates for inverse curvature flow in space forms. (English) Zbl 07491596 Ann. Global Anal. Geom. 61, No. 3, 663-678 (2022). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{W. Chen} and \textit{G. Li}, Ann. Global Anal. Geom. 61, No. 3, 663--678 (2022; Zbl 07491596) Full Text: DOI OpenURL
Chen, Cai-peng; Guo, Hong-xin; Zhu, Cheng-zhe A note on Harnack type inequality for the Gaussian curvature flow. (English) Zbl 07490413 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 1-4 (2022). MSC: 53E10 PDF BibTeX XML Cite \textit{C.-p. Chen} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 1--4 (2022; Zbl 07490413) Full Text: DOI OpenURL
Stryker, Douglas; Sun, Ao Codimension bounds and rigidity of ancient mean curvature flows by the tangent flow at \(-\infty\). (English) Zbl 07489736 Commun. Contemp. Math. 24, No. 1, Article ID 2050088, 18 p. (2022). MSC: 53E10 PDF BibTeX XML Cite \textit{D. Stryker} and \textit{A. Sun}, Commun. Contemp. Math. 24, No. 1, Article ID 2050088, 18 p. (2022; Zbl 07489736) Full Text: DOI arXiv OpenURL
Chang, Jui-En; Lue, Yang-Kai Uniqueness of regular shrinkers with two enclosed regions. (English) Zbl 07489675 Geom. Dedicata 216, No. 2, Paper No. 17, 34 p. (2022). MSC: 53A04 53E10 53E99 PDF BibTeX XML Cite \textit{J.-E. Chang} and \textit{Y.-K. Lue}, Geom. Dedicata 216, No. 2, Paper No. 17, 34 p. (2022; Zbl 07489675) Full Text: DOI arXiv OpenURL
Choi, Kyeongsu; Daskalopoulos, Panagiota The \(Q_k\) flow on complete non-compact graphs. (English) Zbl 07488410 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 73, 19 p. (2022). MSC: 53E10 53E99 35K55 53A07 PDF BibTeX XML Cite \textit{K. Choi} and \textit{P. Daskalopoulos}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 73, 19 p. (2022; Zbl 07488410) Full Text: DOI arXiv OpenURL
Daskalopoulos, Panagiota; Huisken, Gerhard Inverse mean curvature evolution of entire graphs. (English) Zbl 07488390 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 53, 37 p. (2022). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53A07 53E10 PDF BibTeX XML Cite \textit{P. Daskalopoulos} and \textit{G. Huisken}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 53, 37 p. (2022; Zbl 07488390) Full Text: DOI arXiv OpenURL
Bourni, Theodora; Clutterbuck, Julie; Nguyen, Xuan Hien; Stancu, Alina; Wei, Guofang; Wheeler, Valentina-Mira Ancient solutions for flow by powers of the curvature in \(\mathbb{R}^2\). (English) Zbl 07488381 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 44, 14 p. (2022). MSC: 53E10 53A04 PDF BibTeX XML Cite \textit{T. Bourni} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 44, 14 p. (2022; Zbl 07488381) Full Text: DOI arXiv OpenURL
Li, Ruixuan; Xiong, Changwei Sharp bounds for the anisotropic \(p\)-capacity of Euclidean compact sets. (English) Zbl 1483.31024 J. Differ. Equations 317, 196-224 (2022). MSC: 31B15 53C21 74G65 49Q10 PDF BibTeX XML Cite \textit{R. Li} and \textit{C. Xiong}, J. Differ. Equations 317, 196--224 (2022; Zbl 1483.31024) Full Text: DOI arXiv OpenURL
Giga, Mi-Ho; Giga, Yoshikazu; Kuroda, Ryo; Ochiai, Yusuke Crystalline flow starting from a general polygon. (English) Zbl 07481830 Discrete Contin. Dyn. Syst. 42, No. 4, 2027-2051 (2022). Reviewer: Svetlin Georgiev (Sofia) MSC: 53E99 34A12 53E10 74E15 PDF BibTeX XML Cite \textit{M.-H. Giga} et al., Discrete Contin. Dyn. Syst. 42, No. 4, 2027--2051 (2022; Zbl 07481830) Full Text: DOI OpenURL
De, Uday Chand; Siddigi, Mohhamad Danish; Chaubey, Sudhakar K. \(r\)-almost Newton-Ricci solitons on Legendrian submanifolds of Sasakian space forms. (English) Zbl 07479502 Period. Math. Hung. 84, No. 1, 76-88 (2022). MSC: 53C44 53B21 53C15 58J05 PDF BibTeX XML Cite \textit{U. C. De} et al., Period. Math. Hung. 84, No. 1, 76--88 (2022; Zbl 07479502) Full Text: DOI OpenURL
Lee, Man-Chun; Ma, John Man Shun Uniqueness theorems for non-compact mean curvature flow with possibly unbounded curvatures. (English) Zbl 07473919 Commun. Anal. Geom. 29, No. 6, 1475-1508 (2021). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53E10 53E20 PDF BibTeX XML Cite \textit{M.-C. Lee} and \textit{J. M. S. Ma}, Commun. Anal. Geom. 29, No. 6, 1475--1508 (2022; Zbl 07473919) Full Text: DOI arXiv OpenURL
Wei, Yong; Xiong, Changwei A fully nonlinear locally constrained anisotropic curvature flow. (English) Zbl 07472468 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112760, 29 p. (2022). MSC: 53E10 53A07 53C21 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{C. Xiong}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112760, 29 p. (2022; Zbl 07472468) Full Text: DOI arXiv OpenURL
Choi, Beomjun; Choi, Kyeongsu; Daskalopoulos, Panagiota Convergence of Gauss curvature flows to translating solitons. (English) Zbl 07472331 Adv. Math. 397, Article ID 108207, 30 p. (2022). MSC: 53E10 53A07 35K55 PDF BibTeX XML Cite \textit{B. Choi} et al., Adv. Math. 397, Article ID 108207, 30 p. (2022; Zbl 07472331) Full Text: DOI arXiv OpenURL
Fusco, Nicola; Julin, Vesa; Morini, Massimiliano Stationary sets and asymptotic behavior of the mean curvature flow with forcing in the plane. (English) Zbl 07471800 J. Geom. Anal. 32, No. 2, Paper No. 53, 29 p. (2022). MSC: 53E10 PDF BibTeX XML Cite \textit{N. Fusco} et al., J. Geom. Anal. 32, No. 2, Paper No. 53, 29 p. (2022; Zbl 07471800) Full Text: DOI arXiv OpenURL
Li, Ze Global and local theory of skew mean curvature flows. (English) Zbl 07471781 J. Geom. Anal. 32, No. 1, Paper No. 34, 40 p. (2022). MSC: 53E10 35Q55 PDF BibTeX XML Cite \textit{Z. Li}, J. Geom. Anal. 32, No. 1, Paper No. 34, 40 p. (2022; Zbl 07471781) Full Text: DOI arXiv OpenURL
Berchenko-Kogan, Yakov Numerically computing the index of mean curvature flow self-shrinkers. (English) Zbl 07464302 Result. Math. 77, No. 1, Paper No. 17, 27 p. (2022). MSC: 53E10 53A05 65L15 PDF BibTeX XML Cite \textit{Y. Berchenko-Kogan}, Result. Math. 77, No. 1, Paper No. 17, 27 p. (2022; Zbl 07464302) Full Text: DOI arXiv OpenURL
Ho, Pak Tung; Shin, Jinwoo Evolution of the Steklov eigenvalue along the conformal mean curvature flow. (English) Zbl 1485.53108 J. Geom. Phys. 173, Article ID 104436, 15 p. (2022). MSC: 53E10 58C40 58J50 35R01 53C21 PDF BibTeX XML Cite \textit{P. T. Ho} and \textit{J. Shin}, J. Geom. Phys. 173, Article ID 104436, 15 p. (2022; Zbl 1485.53108) Full Text: DOI OpenURL
Cheng, Qing-Ming; Li, Zhi; Wei, Guoxin Complete self-shrinkers with constant norm of the second fundamental form. (English) Zbl 07463815 Math. Z. 300, No. 1, 995-1018 (2022). Reviewer: Yun Myung Oh (Berrien Springs) MSC: 53E10 53C24 53C40 PDF BibTeX XML Cite \textit{Q.-M. Cheng} et al., Math. Z. 300, No. 1, 995--1018 (2022; Zbl 07463815) Full Text: DOI arXiv OpenURL
Grande, Raffaele A stochastic representation for the solution of approximated mean curvature flow. (English) Zbl 1481.35221 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 9, 21 p. (2022). MSC: 35J70 35D40 53C17 PDF BibTeX XML Cite \textit{R. Grande}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 9, 21 p. (2022; Zbl 1481.35221) Full Text: DOI arXiv OpenURL
Abels, Helmut; Moser, Maximilian Convergence of the Allen-Cahn equation with a nonlinear Robin boundary condition to mean curvature flow with contact angle close to \(90^\circ\). (English) Zbl 1485.35020 SIAM J. Math. Anal. 54, No. 1, 114-172 (2022). Reviewer: Kelei Wang (Wuhan) MSC: 35B25 35B36 35K57 35K61 35R37 53E10 PDF BibTeX XML Cite \textit{H. Abels} and \textit{M. Moser}, SIAM J. Math. Anal. 54, No. 1, 114--172 (2022; Zbl 1485.35020) Full Text: DOI arXiv OpenURL
Yuan, Lixia; Zhao, Wei On a curvature flow in a band domain with unbounded boundary slopes. (English) Zbl 1480.35292 Discrete Contin. Dyn. Syst. 42, No. 1, 261-283 (2022). MSC: 35K93 35B40 35C07 35K20 53E10 PDF BibTeX XML Cite \textit{L. Yuan} and \textit{W. Zhao}, Discrete Contin. Dyn. Syst. 42, No. 1, 261--283 (2022; Zbl 1480.35292) Full Text: DOI arXiv OpenURL
Ding, Shanwei; Li, Guanghan A class of curvature flows expanded by support function and curvature function in the Euclidean space and hyperbolic space. (English) Zbl 07436525 J. Funct. Anal. 282, No. 3, Article ID 109305, 38 p. (2022). Reviewer: Yakov Berchenko-Kogan (University Park) MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{S. Ding} and \textit{G. Li}, J. Funct. Anal. 282, No. 3, Article ID 109305, 38 p. (2022; Zbl 07436525) Full Text: DOI arXiv OpenURL
Wu, Di; Wu, Chuanxi; Tu, Qiang Flow expanding by Gauss curvature to \(L_p\) dual Minkowski problems. (English) Zbl 07423254 Proc. Am. Math. Soc. 150, No. 1, 305-318 (2022). Reviewer: Jiguang Bao (Beijing) MSC: 53E10 35K96 PDF BibTeX XML Cite \textit{D. Wu} et al., Proc. Am. Math. Soc. 150, No. 1, 305--318 (2022; Zbl 07423254) Full Text: DOI OpenURL
De Luca, L.; Kubin, A.; Ponsiglione, M. The core-radius approach to supercritical fractional perimeters, curvatures and geometric flows. (English) Zbl 1476.35091 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112585, 48 p. (2022). MSC: 35D40 49J45 35K93 35R11 35Q74 35B40 PDF BibTeX XML Cite \textit{L. De Luca} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112585, 48 p. (2022; Zbl 1476.35091) Full Text: DOI OpenURL
Calvaruso, Giovanni; Zaeim, Amirhesam Conformal geometry of semi-direct extensions of the Heisenberg group. (English) Zbl 07552154 J. Math. Phys. Anal. Geom. 17, No. 4, 407-421 (2021). MSC: 53C20 53C50 53C44 PDF BibTeX XML Cite \textit{G. Calvaruso} and \textit{A. Zaeim}, J. Math. Phys. Anal. Geom. 17, No. 4, 407--421 (2021; Zbl 07552154) Full Text: DOI OpenURL
Zeng, Fanqi Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds. (English) Zbl 07536346 AIMS Math. 6, No. 10, 10506-10522 (2021). MSC: 35B09 35B45 35R01 53C44 PDF BibTeX XML Cite \textit{F. Zeng}, AIMS Math. 6, No. 10, 10506--10522 (2021; Zbl 07536346) Full Text: DOI OpenURL
Bernstein, Jacob; Wang, Shengwen The level set flow of a hypersurface in \(\mathbb{R}^4\) of low entropy does not disconnect. (English) Zbl 07531027 Commun. Anal. Geom. 29, No. 7, 1523-1543 (2021). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{S. Wang}, Commun. Anal. Geom. 29, No. 7, 1523--1543 (2021; Zbl 07531027) Full Text: DOI OpenURL
Barrett, John W.; Deckelnick, Klaus; Nürnberg, Robert A finite element error analysis for axisymmetric mean curvature flow. (English) Zbl 07528290 IMA J. Numer. Anal. 41, No. 3, 1641-1667 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{J. W. Barrett} et al., IMA J. Numer. Anal. 41, No. 3, 1641--1667 (2021; Zbl 07528290) Full Text: DOI OpenURL
Abolarinwa, Abimbola; Taheri, Ali Elliptic gradient estimates for a nonlinear \(f\)-heat equation on weighted manifolds with evolving metrics and potentials. (English) Zbl 07511290 Chaos Solitons Fractals 142, Article ID 110329, 15 p. (2021). MSC: 53C44 58J60 58J35 60J60 PDF BibTeX XML Cite \textit{A. Abolarinwa} and \textit{A. Taheri}, Chaos Solitons Fractals 142, Article ID 110329, 15 p. (2021; Zbl 07511290) Full Text: DOI OpenURL
Laurain, Antoine; Walker, Shawn W. Optimal control of volume-preserving mean curvature flow. (English) Zbl 07505967 J. Comput. Phys. 438, Article ID 110373, 39 p. (2021). MSC: 35Kxx 65Fxx 65Nxx PDF BibTeX XML Cite \textit{A. Laurain} and \textit{S. W. Walker}, J. Comput. Phys. 438, Article ID 110373, 39 p. (2021; Zbl 07505967) Full Text: DOI OpenURL
Chini, Francesco; Møller, Niels Martin Bi-halfspace and convex hull theorems for translating solitons. (English) Zbl 07500485 Int. Math. Res. Not. 2021, No. 17, 13011-13045 (2021). MSC: 53E10 53A07 35K55 35C08 PDF BibTeX XML Cite \textit{F. Chini} and \textit{N. M. Møller}, Int. Math. Res. Not. 2021, No. 17, 13011--13045 (2021; Zbl 07500485) Full Text: DOI OpenURL
Massamba, Fortune; Ssekajja, Samuel Singularities of null mean curvature flow of null hypersurfaces in Lorentzian manifolds. (English) Zbl 07487871 Balkan J. Geom. Appl. 26, No. 2, 67-84 (2021). Reviewer: Mohammad Nazrul Islam Khan (Buraidah) MSC: 53E20 53B25 53B30 PDF BibTeX XML Cite \textit{F. Massamba} and \textit{S. Ssekajja}, Balkan J. Geom. Appl. 26, No. 2, 67--84 (2021; Zbl 07487871) Full Text: Link OpenURL
Timonov, A. Regularization of the boundary control method for numerical solutions of the inverse problem for an acoustic wave equation. (English) Zbl 07479293 Inverse Probl. Sci. Eng. 29, No. 10, 1477-1496 (2021). MSC: 35L05 35L20 35R30 65D25 65F10 65F22 65M30 PDF BibTeX XML Cite \textit{A. Timonov}, Inverse Probl. Sci. Eng. 29, No. 10, 1477--1496 (2021; Zbl 07479293) Full Text: DOI OpenURL
Moazzaf, Ghodrat; Abedi, Esmaiel Evolution of convex hypersurfaces by a fully nonlinear mixed volume preserving curvature flow. (English) Zbl 07477944 Ann. Acad. Rom. Sci., Math. Appl. 13, No. 1-2, 93-110 (2021). MSC: 53C44 PDF BibTeX XML Cite \textit{G. Moazzaf} and \textit{E. Abedi}, Ann. Acad. Rom. Sci., Math. Appl. 13, No. 1--2, 93--110 (2021; Zbl 07477944) Full Text: Link OpenURL
Arslan, Kadri; Sütveren, Alim; Bulca, Betül Rotational \(\lambda\)-hypersurfaces in Euclidean spaces. (English) Zbl 07473728 Creat. Math. Inform. 30, No. 1, 29-40 (2021). MSC: 53C40 53C42 PDF BibTeX XML Cite \textit{K. Arslan} et al., Creat. Math. Inform. 30, No. 1, 29--40 (2021; Zbl 07473728) Full Text: DOI OpenURL
Fukui, Yuki Construction of weak solutions of a weighted inverse mean curvature flow. (English) Zbl 07470513 Adv. Math. Sci. Appl. 30, No. 1, 23-37 (2021). MSC: 53E10 35D30 35J92 35Q75 PDF BibTeX XML Cite \textit{Y. Fukui}, Adv. Math. Sci. Appl. 30, No. 1, 23--37 (2021; Zbl 07470513) Full Text: Link OpenURL
Koiso, Miyuki Uniqueness problem for closed non-smooth hypersurfaces with constant anisotropic mean curvature and self-similar solutions of anisotropic mean curvature flow. (English) Zbl 1484.53027 Hoffmann, Tim (ed.) et al., Minimal surfaces: integrable systems and visualisation. M:iv workshops, 2016–19. Cham: Springer. Springer Proc. Math. Stat. 349, 169-185 (2021). MSC: 53A07 53C42 PDF BibTeX XML Cite \textit{M. Koiso}, Springer Proc. Math. Stat. 349, 169--185 (2021; Zbl 1484.53027) Full Text: DOI OpenURL
Hoffman, David; Ilmanen, Tom; Martín, Francisco; White, Brian Notes on translating solitons for mean curvature flow. (English) Zbl 1484.53009 Hoffmann, Tim (ed.) et al., Minimal surfaces: integrable systems and visualisation. M:iv workshops, 2016–19. Cham: Springer. Springer Proc. Math. Stat. 349, 147-168 (2021). MSC: 53-02 53E10 35K55 PDF BibTeX XML Cite \textit{D. Hoffman} et al., Springer Proc. Math. Stat. 349, 147--168 (2021; Zbl 1484.53009) Full Text: DOI arXiv OpenURL
Bourni, Theodora; Langford, Mat; Tinaglia, Giuseppe Translating solutions to mean curvature flow. (English) Zbl 1484.53004 Hoffmann, Tim (ed.) et al., Minimal surfaces: integrable systems and visualisation. M:iv workshops, 2016–19. Cham: Springer. Springer Proc. Math. Stat. 349, 1-12 (2021). MSC: 53-02 53E10 35K55 PDF BibTeX XML Cite \textit{T. Bourni} et al., Springer Proc. Math. Stat. 349, 1--12 (2021; Zbl 1484.53004) Full Text: DOI OpenURL
Kuwert, Ernst; Scheuer, Julian Asymptotic estimates for the Willmore flow with small energy. (English) Zbl 07456421 Int. Math. Res. Not. 2021, No. 18, 14252-14266 (2021). Reviewer: Maria Aparecida Soares Ruas (São Carlos) MSC: 53E10 53A05 49Q10 PDF BibTeX XML Cite \textit{E. Kuwert} and \textit{J. Scheuer}, Int. Math. Res. Not. 2021, No. 18, 14252--14266 (2021; Zbl 07456421) Full Text: DOI arXiv OpenURL
Pan, Shu Jing Singularities of the curve shortening flow in a Riemannian manifold. (English) Zbl 1484.53125 Acta Math. Sin., Engl. Ser. 37, No. 11, 1783-1793 (2021). MSC: 53E99 53E10 PDF BibTeX XML Cite \textit{S. J. Pan}, Acta Math. Sin., Engl. Ser. 37, No. 11, 1783--1793 (2021; Zbl 1484.53125) Full Text: DOI OpenURL
Jin, Yu Han; Wang, Xian Feng; Wei, Yong Inverse curvature flows of rotation hypersurfaces. (English) Zbl 1484.53124 Acta Math. Sin., Engl. Ser. 37, No. 11, 1692-1708 (2021). MSC: 53E99 53E10 53B25 PDF BibTeX XML Cite \textit{Y. H. Jin} et al., Acta Math. Sin., Engl. Ser. 37, No. 11, 1692--1708 (2021; Zbl 1484.53124) Full Text: DOI OpenURL
Guilfoyle, Brendan; Klingenberg, Wilhelm Evolving to non-round Weingarten spheres: integer linear Hopf flows. (English) Zbl 1480.35276 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 72, 26 p. (2021). MSC: 35K10 35C08 53A05 53E10 PDF BibTeX XML Cite \textit{B. Guilfoyle} and \textit{W. Klingenberg}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 72, 26 p. (2021; Zbl 1480.35276) Full Text: DOI arXiv OpenURL
Qiu, Hongbing; Zhu, Anqiang Ricci-Bourguignon flow on manifolds with boundary. (English) Zbl 1484.53119 Chin. Ann. Math., Ser. B 42, No. 6, 953-968 (2021). MSC: 53E20 35K10 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{A. Zhu}, Chin. Ann. Math., Ser. B 42, No. 6, 953--968 (2021; Zbl 1484.53119) Full Text: DOI OpenURL
Berchenko-Kogan, Yakov The entropy of the angenent torus is approximately 1.85122. (English) Zbl 1483.53106 Exp. Math. 30, No. 4, 587-594 (2021). MSC: 53E10 70H25 65-04 65P99 PDF BibTeX XML Cite \textit{Y. Berchenko-Kogan}, Exp. Math. 30, No. 4, 587--594 (2021; Zbl 1483.53106) Full Text: DOI arXiv OpenURL
Bahouri, Hajer; Marachli, Alaa; Perelman, Galina Blow up dynamics for the hyperbolic vanishing mean curvature flow of surfaces asymptotic to the Simons cone. (English) Zbl 07445596 J. Eur. Math. Soc. (JEMS) 23, No. 12, 3801-3887 (2021). MSC: 53E10 53A35 53A10 PDF BibTeX XML Cite \textit{H. Bahouri} et al., J. Eur. Math. Soc. (JEMS) 23, No. 12, 3801--3887 (2021; Zbl 07445596) Full Text: DOI arXiv OpenURL
Hamamuki, Nao; Liu, Qing A game-theoretic approach to dynamic boundary problems for level-set curvature flow equations and applications. (English) Zbl 1479.35226 SN Partial Differ. Equ. Appl. 2, No. 2, Paper No. 30, 27 p. (2021). MSC: 35D40 35K61 35K93 49N90 53E10 PDF BibTeX XML Cite \textit{N. Hamamuki} and \textit{Q. Liu}, SN Partial Differ. Equ. Appl. 2, No. 2, Paper No. 30, 27 p. (2021; Zbl 1479.35226) Full Text: DOI OpenURL
Chodosh, Otis; Schulze, Felix Uniqueness of asymptotically conical tangent flows. (English) Zbl 07442562 Duke Math. J. 170, No. 16, 3601-3657 (2021). MSC: 53E10 53A05 35B35 PDF BibTeX XML Cite \textit{O. Chodosh} and \textit{F. Schulze}, Duke Math. J. 170, No. 16, 3601--3657 (2021; Zbl 07442562) Full Text: DOI arXiv OpenURL
Cesaroni, A.; Kröner, H.; Novaga, M. Anisotropic mean curvature flow of Lipschitz graphs and convergence to self-similar solutions. (English) Zbl 1483.53107 ESAIM, Control Optim. Calc. Var. 27, Paper No. 97, 17 p. (2021). MSC: 53E10 35K93 PDF BibTeX XML Cite \textit{A. Cesaroni} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 97, 17 p. (2021; Zbl 1483.53107) Full Text: DOI arXiv OpenURL
Palmer, Joseph; Woodward, Chris Invariance of immersed Floer cohomology under Maslov flows. (English) Zbl 07432512 Algebr. Geom. Topol. 21, No. 5, 2313-2410 (2021). MSC: 53D40 53E10 PDF BibTeX XML Cite \textit{J. Palmer} and \textit{C. Woodward}, Algebr. Geom. Topol. 21, No. 5, 2313--2410 (2021; Zbl 07432512) Full Text: DOI arXiv OpenURL
Dong, Guozhi; Hintermueller, Michael; Zhang, Ye A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging. (English) Zbl 1478.35150 SIAM J. Imaging Sci. 14, No. 2, 645-688 (2021). MSC: 35L72 35L80 49K20 49J52 65M12 PDF BibTeX XML Cite \textit{G. Dong} et al., SIAM J. Imaging Sci. 14, No. 2, 645--688 (2021; Zbl 1478.35150) Full Text: DOI arXiv OpenURL
Chen, Letian Rigidity and stability of submanifolds with entropy close to one. (English) Zbl 1481.53109 Geom. Dedicata 215, 133-145 (2021). MSC: 53E10 PDF BibTeX XML Cite \textit{L. Chen}, Geom. Dedicata 215, 133--145 (2021; Zbl 1481.53109) Full Text: DOI arXiv OpenURL
Cesaroni, A.; De Luca, L.; Novaga, M.; Ponsiglione, M. Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows. (English) Zbl 1480.53105 Commun. Partial Differ. Equations 46, No. 7, 1344-1371 (2021). MSC: 53E10 35D40 35K93 35R11 PDF BibTeX XML Cite \textit{A. Cesaroni} et al., Commun. Partial Differ. Equations 46, No. 7, 1344--1371 (2021; Zbl 1480.53105) Full Text: DOI arXiv OpenURL
Scheuer, Julian The Minkowski inequality in de Sitter space. (English) Zbl 1480.53018 Pac. J. Math. 314, No. 2, 425-449 (2021). MSC: 53B25 53B30 53E10 39B62 PDF BibTeX XML Cite \textit{J. Scheuer}, Pac. J. Math. 314, No. 2, 425--449 (2021; Zbl 1480.53018) Full Text: DOI arXiv OpenURL
Bousquet, Arthur; Li, Yukun; Wang, Guanqian Some algorithms for the mean curvature flow under topological changes. (English) Zbl 1476.65238 Comput. Appl. Math. 40, No. 4, Paper No. 104, 21 p. (2021). MSC: 65M60 35K57 53E10 65M12 65M22 65M55 PDF BibTeX XML Cite \textit{A. Bousquet} et al., Comput. Appl. Math. 40, No. 4, Paper No. 104, 21 p. (2021; Zbl 1476.65238) Full Text: DOI arXiv OpenURL
Deckelnick, Klaus; Nürnberg, Robert Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces. (English) Zbl 1479.65003 SIAM J. Numer. Anal. 59, No. 5, 2698-2721 (2021). MSC: 65M06 65M12 65M15 53E10 35K55 PDF BibTeX XML Cite \textit{K. Deckelnick} and \textit{R. Nürnberg}, SIAM J. Numer. Anal. 59, No. 5, 2698--2721 (2021; Zbl 1479.65003) Full Text: DOI arXiv OpenURL
White, Brian Mean curvature flow with boundary. (English) Zbl 1485.53109 Ars Inven. Anal. 2021, Paper No. 4, 34 p. (2021). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53E10 35K55 53C40 53A07 PDF BibTeX XML Cite \textit{B. White}, Ars Inven. Anal. 2021, Paper No. 4, 34 p. (2021; Zbl 1485.53109) Full Text: DOI arXiv OpenURL
Wang, Yamin A heat flow for a weighted Kazdan-Warner equation. (English) Zbl 1476.58021 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 192, 19 p. (2021). MSC: 58J05 58J35 53E10 PDF BibTeX XML Cite \textit{Y. Wang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 4, Paper No. 192, 19 p. (2021; Zbl 1476.58021) Full Text: DOI OpenURL
Huang, Xian-Tao Almost rigidity of convex hypersurfaces via the extinction time of mean curvature flow. (English) Zbl 1480.53107 Bull. Korean Math. Soc. 58, No. 4, 877-884 (2021). MSC: 53E10 53A07 53C24 PDF BibTeX XML Cite \textit{X.-T. Huang}, Bull. Korean Math. Soc. 58, No. 4, 877--884 (2021; Zbl 1480.53107) Full Text: DOI OpenURL
Du, Wenkui Bounded diameter under mean curvature flow. (English) Zbl 1480.53106 J. Geom. Anal. 31, No. 11, 11114-11138 (2021). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{W. Du}, J. Geom. Anal. 31, No. 11, 11114--11138 (2021; Zbl 1480.53106) Full Text: DOI arXiv OpenURL
Lambert, Ben; Lotay, Jason D.; Schulze, Felix Ancient solutions in Lagrangian mean curvature flow. (English) Zbl 1485.53067 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 3, 1169-1205 (2021). Reviewer: Antonella Nannicini (Firenze) MSC: 53C38 53E30 53D12 PDF BibTeX XML Cite \textit{B. Lambert} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 3, 1169--1205 (2021; Zbl 1485.53067) Full Text: DOI arXiv OpenURL
Ma, Li Interior gradient estimates for mean curvature type equations and related flows. (English) Zbl 1479.53095 Grigor’yan, Alexander (ed.) et al., Analysis and partial differential equations on manifolds, fractals and graphs. Contributions of the conference, Tianjin, China, September 2019. Berlin: De Gruyter. Adv. Anal. Geom. 3, 421-441 (2021). MSC: 53E10 53A10 35B65 58J50 PDF BibTeX XML Cite \textit{L. Ma}, Adv. Anal. Geom. 3, 421--441 (2021; Zbl 1479.53095) Full Text: DOI OpenURL
Garcke, H.; Gößwein, M. Non-linear stability of double bubbles under surface diffusion. (English) Zbl 1482.35110 J. Differ. Equations 302, 617-661 (2021). Reviewer: Dimitra Antonopoulou (Chester) MSC: 35K55 53C42 35R35 35K93 35B40 PDF BibTeX XML Cite \textit{H. Garcke} and \textit{M. Gößwein}, J. Differ. Equations 302, 617--661 (2021; Zbl 1482.35110) Full Text: DOI arXiv OpenURL
Datar, Ved V.; Pingali, Vamsi Pritham A numerical criterion for generalised Monge-Ampère equations on projective manifolds. (English) Zbl 07405887 Geom. Funct. Anal. 31, No. 4, 767-814 (2021). MSC: 32Q15 53C55 53C44 35J96 PDF BibTeX XML Cite \textit{V. V. Datar} and \textit{V. P. Pingali}, Geom. Funct. Anal. 31, No. 4, 767--814 (2021; Zbl 07405887) Full Text: DOI arXiv OpenURL
Barrett, John W.; Garcke, Harald; Nürnberg, Robert Stable approximations for axisymmetric Willmore flow for closed and open surfaces. (English) Zbl 07405585 ESAIM, Math. Model. Numer. Anal. 55, No. 3, 833-885 (2021). MSC: 65M60 65M12 35K55 53E10 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 3, 833--885 (2021; Zbl 07405585) Full Text: DOI arXiv OpenURL
Liu, Huaqiao Variational formulas for translating solitons with density. (English) Zbl 07403724 Chin. Q. J. Math. 36, No. 1, 32-40 (2021). MSC: 53C17 53C42 53E10 PDF BibTeX XML Cite \textit{H. Liu}, Chin. Q. J. Math. 36, No. 1, 32--40 (2021; Zbl 07403724) Full Text: DOI OpenURL
Choi, Kyeongsu; Daskalopoulos, Panagiota; Lee, Ki-Ahm Translating solutions to the Gauss curvature flow with flat sides. (English) Zbl 07403060 Anal. PDE 14, No. 2, 595-616 (2021). MSC: 53E10 53A05 PDF BibTeX XML Cite \textit{K. Choi} et al., Anal. PDE 14, No. 2, 595--616 (2021; Zbl 07403060) Full Text: DOI arXiv OpenURL
Bryan, Paul; Kröner, Heiko; Scheuer, Julian Li-Yau gradient estimates for curvature flows in positively curved manifolds. (English) Zbl 1477.53116 Methods Appl. Anal. 27, No. 4, 341-358 (2021). MSC: 53E10 53C21 PDF BibTeX XML Cite \textit{P. Bryan} et al., Methods Appl. Anal. 27, No. 4, 341--358 (2021; Zbl 1477.53116) Full Text: DOI arXiv OpenURL
Novaga, Matteo; Pozzi, Paola Uniqueness for a second order gradient flow of elastic networks. (English) Zbl 1478.35004 Vermolen, Fred J. (ed.) et al., Numerical mathematics and advanced applications. ENUMATH 2019. Proceedings of the European conference, Egmond aan Zee, The Netherlands, September 30 – October 4, 2019. Cham: Springer. Lect. Notes Comput. Sci. Eng. 139, 785-792 (2021). MSC: 35A02 35K51 35K92 35Q74 35R02 53A04 53E10 PDF BibTeX XML Cite \textit{M. Novaga} and \textit{P. Pozzi}, Lect. Notes Comput. Sci. Eng. 139, 785--792 (2021; Zbl 1478.35004) Full Text: DOI OpenURL
López, Rafael Ruled surfaces of generalized self-similar solutions of the mean curvature flow. (English) Zbl 1477.53119 Mediterr. J. Math. 18, No. 5, Paper No. 197, 12 p. (2021). MSC: 53E20 53C42 53A05 PDF BibTeX XML Cite \textit{R. López}, Mediterr. J. Math. 18, No. 5, Paper No. 197, 12 p. (2021; Zbl 1477.53119) Full Text: DOI arXiv OpenURL