Kumar, Surendra On approximate controllability of non-autonomous measure driven systems with non-instantaneous impulse. (English) Zbl 07627680 Appl. Math. Comput. 441, Article ID 127695, 13 p. (2023). MSC: 26A42 34A38 34K30 34K45 93B05 93C25 PDF BibTeX XML Cite \textit{S. Kumar}, Appl. Math. Comput. 441, Article ID 127695, 13 p. (2023; Zbl 07627680) Full Text: DOI OpenURL
Kumar, Vipin; Debbouche, Amar; Nieto, Juan J. Existence, stability and controllability results for a class of switched evolution system with impulses over arbitrary time domain. (English) Zbl 07645478 Comput. Appl. Math. 41, No. 8, Paper No. 399, 31 p. (2022). MSC: 34N05 34K20 93B05 34A37 93C30 PDF BibTeX XML Cite \textit{V. Kumar} et al., Comput. Appl. Math. 41, No. 8, Paper No. 399, 31 p. (2022; Zbl 07645478) Full Text: DOI OpenURL
Mishra, Kamla Kant; Dubey, Shruti; Baleanu, Dumitru Existence and controllability of a class of non-autonomous nonlinear evolution fractional integrodifferential equations with delay. (English) Zbl 07636953 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022). MSC: 34K30 34K37 34K35 93B05 PDF BibTeX XML Cite \textit{K. K. Mishra} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022; Zbl 07636953) Full Text: DOI OpenURL
Sreenivasulu, A.; Rao, B. V. Appa Stability and controllability for Volterra integro-dynamical matrix Sylvester impulsive system on time scales. (English) Zbl 1499.34106 J. Appl. Math. Comput. 68, No. 6, 3705-3720 (2022). MSC: 34A37 34N05 39A12 93B05 PDF BibTeX XML Cite \textit{A. Sreenivasulu} and \textit{B. V. A. Rao}, J. Appl. Math. Comput. 68, No. 6, 3705--3720 (2022; Zbl 1499.34106) Full Text: DOI OpenURL
Andrade da Silva, F.; Federson, M.; Toon, E. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron \(\Delta\)-integrals. (English) Zbl 07630895 Bull. Math. Sci. 12, No. 3, Article ID 2150011, 47 p. (2022). MSC: 34N05 34A30 93B05 45D05 26A39 26A45 26E70 PDF BibTeX XML Cite \textit{F. Andrade da Silva} et al., Bull. Math. Sci. 12, No. 3, Article ID 2150011, 47 p. (2022; Zbl 07630895) Full Text: DOI OpenURL
Jiang, Yi-rong Topological properties of solution sets for Riemann-Liouville fractional nonlocal delay control systems with noncompact semigroups and applications to approximate controllability. (English) Zbl 1498.35581 Bull. Sci. Math. 180, Article ID 103195, 22 p. (2022). MSC: 35R11 35R12 93B05 93C10 PDF BibTeX XML Cite \textit{Y.-r. Jiang}, Bull. Sci. Math. 180, Article ID 103195, 22 p. (2022; Zbl 1498.35581) Full Text: DOI OpenURL
Liu, Xin; Chen, Zhijing Rank one perturbation of unitary operators with full measure of hypercyclic vectors. (English) Zbl 07596057 Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2475-2492 (2022). MSC: 47A16 37A05 47A35 PDF BibTeX XML Cite \textit{X. Liu} and \textit{Z. Chen}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2475--2492 (2022; Zbl 07596057) Full Text: DOI OpenURL
Cardinali, Tiziana; Matucci, Serena; Rubbioni, Paola Controllability of nonlinear integral equations of Chandrasekhar type. (English) Zbl 1498.45006 J. Fixed Point Theory Appl. 24, No. 3, Paper No. 58, 21 p. (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47H08 47N20 93B05 93B52 PDF BibTeX XML Cite \textit{T. Cardinali} et al., J. Fixed Point Theory Appl. 24, No. 3, Paper No. 58, 21 p. (2022; Zbl 1498.45006) Full Text: DOI OpenURL
Sooppy Nisar, Kottakkaran; Ravichandran, C.; Abdel-Aty, Abdel-Haleem; Yahia, Ibrahim S.; Park, Choonkil Case study on total controllability and optimal control of Hilfer neutral non-instantaneous fractional derivative. (English) Zbl 07578043 Fractals 30, No. 5, Article ID 2240187, 17 p. (2022). MSC: 34K30 34K34 34K40 34K45 34K35 93B05 47N20 49J27 PDF BibTeX XML Cite \textit{K. Sooppy Nisar} et al., Fractals 30, No. 5, Article ID 2240187, 17 p. (2022; Zbl 07578043) Full Text: DOI OpenURL
Liu, Hsiang; Guu, Sy-Ming; Pang, Chin-Tzong Existence and approximate controllability of a class of impulsive neutral differential inclusions with infinite delay. (English) Zbl 07574088 Linear Nonlinear Anal. 8, No. 1, 1-29 (2022). MSC: 28B20 34A60 34K09 34G25 40D25 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{H. Liu} et al., Linear Nonlinear Anal. 8, No. 1, 1--29 (2022; Zbl 07574088) Full Text: Link OpenURL
Kumar, Ankit; Jeet, Kamal; Vats, Ramesh Kumar Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. (English) Zbl 1483.34104 Evol. Equ. Control Theory 11, No. 2, 605-619 (2022). MSC: 34K30 34K37 35R11 45G10 93B05 PDF BibTeX XML Cite \textit{A. Kumar} et al., Evol. Equ. Control Theory 11, No. 2, 605--619 (2022; Zbl 1483.34104) Full Text: DOI OpenURL
Son, Nguyen Thi Kim; Dong, Nguyen Phuong; Son, Le Hoang; Khastan, Alireza; Long, Hoang Viet Complete controllability for a class of fractional evolution equations with uncertainty. (English) Zbl 1485.93078 Evol. Equ. Control Theory 11, No. 1, 95-124 (2022). MSC: 93B05 93C42 93C15 34A07 34A08 PDF BibTeX XML Cite \textit{N. T. K. Son} et al., Evol. Equ. Control Theory 11, No. 1, 95--124 (2022; Zbl 1485.93078) Full Text: DOI OpenURL
Gou, Haide; Li, Yongxiang Existence and approximate controllability of semilinear measure driven systems with nonlocal conditions. (English) Zbl 1493.93006 Bull. Iran. Math. Soc. 48, No. 2, 769-789 (2022). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 26A42 34A38 34K30 34K35 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Bull. Iran. Math. Soc. 48, No. 2, 769--789 (2022; Zbl 1493.93006) Full Text: DOI OpenURL
Mahamat Barka, Ibrahim; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Hassan Mahamat Hamit, Mahamat Controllability for nonlocal stochastic integrodifferential evolution equations with the lack of compactness. (English) Zbl 1482.93079 Stochastic Anal. Appl. 40, No. 1, 1-19 (2022). MSC: 93B05 93C15 45J05 60H10 47D06 PDF BibTeX XML Cite \textit{I. Mahamat Barka} et al., Stochastic Anal. Appl. 40, No. 1, 1--19 (2022; Zbl 1482.93079) Full Text: DOI OpenURL
Andrade da Silva, F.; Federson, M.; Toon, E. Stability, boundedness and controllability of solutions of measure functional differential equations. (English) Zbl 1496.34004 J. Differ. Equations 307, 160-210 (2022). Reviewer: Bianca-Renata Satco (Suceava) MSC: 34A06 34D20 34C11 34K05 34K12 34K20 93B05 PDF BibTeX XML Cite \textit{F. Andrade da Silva} et al., J. Differ. Equations 307, 160--210 (2022; Zbl 1496.34004) Full Text: DOI OpenURL
Raheem, A.; Kumar, M. Some results on controllability and optimal controls for a fractional non-autonomous system with a deviated argument. (English) Zbl 1498.93052 J. Nonlinear Evol. Equ. Appl. 2021, 137-151 (2021). MSC: 93B05 93C23 34A08 47H08 PDF BibTeX XML Cite \textit{A. Raheem} and \textit{M. Kumar}, J. Nonlinear Evol. Equ. Appl. 2021, 137--151 (2021; Zbl 1498.93052) Full Text: Link OpenURL
Pervaiz, Bakhtawar; Zada, Akbar; Etemad, Sina; Rezapour, Shahram An analysis on the controllability and stability to some fractional delay dynamical systems on time scales with impulsive effects. (English) Zbl 1494.34178 Adv. Difference Equ. 2021, Paper No. 491, 36 p. (2021). MSC: 34K37 34N05 26A33 47N20 93B05 PDF BibTeX XML Cite \textit{B. Pervaiz} et al., Adv. Difference Equ. 2021, Paper No. 491, 36 p. (2021; Zbl 1494.34178) Full Text: DOI OpenURL
Mohan Raja, M.; Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Rezapour, Shahram New discussion on nonlocal controllability for fractional evolution system of order \(1 < r < 2\). (English) Zbl 1494.34045 Adv. Difference Equ. 2021, Paper No. 481, 19 p. (2021). MSC: 34A08 26A33 93B05 47H08 47N20 PDF BibTeX XML Cite \textit{M. Mohan Raja} et al., Adv. Difference Equ. 2021, Paper No. 481, 19 p. (2021; Zbl 1494.34045) Full Text: DOI OpenURL
Diop, Amadou; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Mané, Aziz Existence and controllability results for nonlocal stochastic integro-differential equations. (English) Zbl 1490.60183 Stochastics 93, No. 6, 833-856 (2021). MSC: 60H15 34F05 47J35 93B05 PDF BibTeX XML Cite \textit{A. Diop} et al., Stochastics 93, No. 6, 833--856 (2021; Zbl 1490.60183) Full Text: DOI OpenURL
Gou, Haide; Li, Yongxiang A study on controllability of impulsive fractional evolution equations via resolvent operators. (English) Zbl 1496.34116 Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021). MSC: 34K35 34K30 34K37 34K45 45J99 47N20 93B05 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021; Zbl 1496.34116) Full Text: DOI OpenURL
Kumar, Vipin; Malik, Muslim Existence, stability and controllability results of fractional dynamic system on time scales with application to population dynamics. (English) Zbl 07486820 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 741-766 (2021). MSC: 34N05 34A12 93B05 34A08 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{M. Malik}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 741--766 (2021; Zbl 07486820) Full Text: DOI OpenURL
Chalishajar, Dimplekumar N.; Karthikeyan, Kulandhivel; Tamizharasan, Dhachinamoorthi Controllability of nonlocal impulsive functional differential equations with measure of noncompactness in Banach spaces. (English) Zbl 1486.34118 Tatra Mt. Math. Publ. 79, 59-80 (2021). MSC: 34H05 34B10 34A37 34G20 93B05 47N20 PDF BibTeX XML Cite \textit{D. N. Chalishajar} et al., Tatra Mt. Math. Publ. 79, 59--80 (2021; Zbl 1486.34118) Full Text: DOI OpenURL
Al-Sultan, Maryam Ibrahim; Ibrahim, Ahmad Gamal Controllability of nonlocal fractional non-instantaneous impulsive semilinear differential inclusions without compactness. (English) Zbl 1499.34028 J. Fract. Calc. Appl. 12, No. 3, Article 16, 13 p. (2021). MSC: 34A08 34A60 34A37 34H05 93B05 PDF BibTeX XML Cite \textit{M. I. Al-Sultan} and \textit{A. G. Ibrahim}, J. Fract. Calc. Appl. 12, No. 3, Article 16, 13 p. (2021; Zbl 1499.34028) Full Text: Link OpenURL
Cardinali, Tiziana; Duricchi, Giulia On nonlocal problems for semilinear second order differential inclusions without compactness. (English) Zbl 1488.34348 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 66, 32 p. (2021). MSC: 34G25 47N20 34B10 93B05 PDF BibTeX XML Cite \textit{T. Cardinali} and \textit{G. Duricchi}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 66, 32 p. (2021; Zbl 1488.34348) Full Text: DOI OpenURL
Kumar, Vipin; Malik, Muslim; Djemai, Mohamed Results on abstract integro hybrid evolution system with impulses on time scales. (English) Zbl 1476.34044 Nonlinear Anal., Hybrid Syst. 39, Article ID 100986, 21 p. (2021). MSC: 34A12 03C45 93B05 34A37 34N05 PDF BibTeX XML Cite \textit{V. Kumar} et al., Nonlinear Anal., Hybrid Syst. 39, Article ID 100986, 21 p. (2021; Zbl 1476.34044) Full Text: DOI OpenURL
Mishal Assif, P. K.; Rayyan Sheriff, Mohammed; Chatterjee, Debasish Measure of quality of finite-dimensional linear systems: a frame-theoretic view. (English) Zbl 1478.93060 Syst. Control Lett. 151, Article ID 104911, 9 p. (2021). MSC: 93B05 93C05 PDF BibTeX XML Cite \textit{P. K. Mishal Assif} et al., Syst. Control Lett. 151, Article ID 104911, 9 p. (2021; Zbl 1478.93060) Full Text: DOI arXiv OpenURL
Yan, Zuomao; Zhou, Yong-Hui Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators. (English) Zbl 07412525 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 559-579 (2021). MSC: 34A37 60H15 26A33 93B05 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{Y.-H. Zhou}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 559--579 (2021; Zbl 07412525) Full Text: DOI OpenURL
Ndambomve, Patrice; Ezzinbi, Khalil On the controllability of some nonlinear partial functional integrodifferential equations with finite delay in Banach spaces. (English) Zbl 1471.93038 Differ. Equ. Dyn. Syst. 29, No. 3, 673-688 (2021). MSC: 93B05 93C20 45K05 93C43 47H08 47H10 PDF BibTeX XML Cite \textit{P. Ndambomve} and \textit{K. Ezzinbi}, Differ. Equ. Dyn. Syst. 29, No. 3, 673--688 (2021; Zbl 1471.93038) Full Text: DOI OpenURL
Gou, Haide; Li, Yongxiang Controllability of impulsive fractional integro-differential evolution equations. (English) Zbl 1483.34109 Acta Appl. Math. 175, Paper No. 5, 27 p. (2021). MSC: 34K35 34K30 34K45 93B05 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Acta Appl. Math. 175, Paper No. 5, 27 p. (2021; Zbl 1483.34109) Full Text: DOI OpenURL
Yang, He; Zhao, Yanjie Controllability of fractional evolution systems of Sobolev type via resolvent operators. (English) Zbl 1496.34097 Bound. Value Probl. 2020, Paper No. 119, 13 p. (2020). MSC: 34H05 34A08 34A09 34G20 34B10 93B05 47N20 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhao}, Bound. Value Probl. 2020, Paper No. 119, 13 p. (2020; Zbl 1496.34097) Full Text: DOI OpenURL
Gu, Haibo; Sun, Yu Nonlocal controllability of fractional measure evolution equation. (English) Zbl 07460835 J. Inequal. Appl. 2020, Paper No. 60, 18 p. (2020). MSC: 34A08 26A33 34G20 34H05 93B05 34K37 PDF BibTeX XML Cite \textit{H. Gu} and \textit{Y. Sun}, J. Inequal. Appl. 2020, Paper No. 60, 18 p. (2020; Zbl 07460835) Full Text: DOI OpenURL
Ding, Yonghong; Li, Yongxiang Controllability of fractional stochastic evolution equations with nonlocal conditions and noncompact semigroups. (English) Zbl 1478.93053 Open Math. 18, 616-631 (2020). MSC: 93B05 60H30 26A33 47J35 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, Open Math. 18, 616--631 (2020; Zbl 1478.93053) Full Text: DOI OpenURL
Jiang, Yi-rong; Zhang, Qiong-fen; Song, Qi-qing Topological structure of solution sets for control problems governed by semilinear fractional impulsive evolution equations with nonlocal conditions. (English) Zbl 1472.93025 IMA J. Math. Control Inf. 37, No. 4, 1089-1113 (2020). MSC: 93B24 93C27 93B05 93B03 26A33 47J35 PDF BibTeX XML Cite \textit{Y.-r. Jiang} et al., IMA J. Math. Control Inf. 37, No. 4, 1089--1113 (2020; Zbl 1472.93025) Full Text: DOI OpenURL
Chaudhary, Renu; Singh, Vikram; Pandey, D. N. Controllability of multi-term time-fractional differential systems with state-dependent delay. (English) Zbl 1467.34078 J. Appl. Anal. 26, No. 2, 241-255 (2020). MSC: 34K35 34K30 34K37 34K43 93B05 47N20 PDF BibTeX XML Cite \textit{R. Chaudhary} et al., J. Appl. Anal. 26, No. 2, 241--255 (2020; Zbl 1467.34078) Full Text: DOI OpenURL
Abbas, Mohamed I. On the controllability of Hilfer-Katugampola fractional differential equations. (English) Zbl 1467.34003 Acta Comment. Univ. Tartu. Math. 24, No. 2, 195-204 (2020). MSC: 34A08 34H05 93B05 47N20 34G20 PDF BibTeX XML Cite \textit{M. I. Abbas}, Acta Comment. Univ. Tartu. Math. 24, No. 2, 195--204 (2020; Zbl 1467.34003) Full Text: DOI OpenURL
Malik, Muslim; Kumar, Vipin Existence, stability and controllability results of coupled fractional dynamical system on time scales. (English) Zbl 1478.34098 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3369-3394 (2020). MSC: 34N05 93B05 34A08 34D10 PDF BibTeX XML Cite \textit{M. Malik} and \textit{V. Kumar}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3369--3394 (2020; Zbl 1478.34098) Full Text: DOI OpenURL
Kuksin, Sergei; Nersesyan, Vahagn; Shirikyan, Armen Exponential mixing for a class of dissipative PDEs with bounded degenerate noise. (English) Zbl 1442.35437 Geom. Funct. Anal. 30, No. 1, 126-187 (2020). MSC: 35Q56 35Q30 35R60 37A25 37L55 60H15 76M35 93C20 PDF BibTeX XML Cite \textit{S. Kuksin} et al., Geom. Funct. Anal. 30, No. 1, 126--187 (2020; Zbl 1442.35437) Full Text: DOI arXiv OpenURL
Yan, Zuomao; Yang, Qiong Optimal controllability of non-instantaneous impulsive partial stochastic differential systems with fractional sectorial operators. (English) Zbl 1436.34063 Bull. Sci. Math. 159, Article ID 102828, 38 p. (2020). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 34A08 34A37 34F05 93B05 47N20 49J27 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{Q. Yang}, Bull. Sci. Math. 159, Article ID 102828, 38 p. (2020; Zbl 1436.34063) Full Text: DOI OpenURL
Xiang, Qiao-Min; Zhu, Peng-Xian Approximate controllability of fractional delay evolution inclusions with noncompact semigroups. (English) Zbl 1434.93010 Optimization 69, No. 3, 553-574 (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 93B05 34G25 34K09 34K35 34K37 93B24 PDF BibTeX XML Cite \textit{Q.-M. Xiang} and \textit{P.-X. Zhu}, Optimization 69, No. 3, 553--574 (2020; Zbl 1434.93010) Full Text: DOI OpenURL
Hamit, Mahamat Hassan Mahamat; Barka, Ibrahim Mahamat; Diop, Mamadou Abdoul; Ezzinbi, Khalil Controllability of impulsive stochastic partial integrodifferential equation with noncompact semigroups. (English) Zbl 07599571 Discuss. Math., Differ. Incl. Control Optim. 39, No. 2, 159-180 (2019). MSC: 60G18 60G22 93B05 PDF BibTeX XML Cite \textit{M. H. M. Hamit} et al., Discuss. Math., Differ. Incl. Control Optim. 39, No. 2, 159--180 (2019; Zbl 07599571) OpenURL
Meraj, Arshi; Pandey, Dwijendra N. Approximate controllability of fractional integro-differential evolution equations with nonlocal and non-instantaneous impulsiive conditions. (English) Zbl 1480.93040 J. Fract. Calc. Appl. 10, No. 2, 3-17 (2019). MSC: 93B05 93C27 34A08 34A37 34K30 45J05 PDF BibTeX XML Cite \textit{A. Meraj} and \textit{D. N. Pandey}, J. Fract. Calc. Appl. 10, No. 2, 3--17 (2019; Zbl 1480.93040) Full Text: Link OpenURL
Afanasova, Maria; Liou, Yeong-Cheng; Obukhovskii, Valeri; Petrosyan, Garik On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space. (English) Zbl 1472.93011 J. Nonlinear Convex Anal. 20, No. 9, 1919-1935 (2019). MSC: 93B05 34G25 34K37 47H04 93C23 93C25 PDF BibTeX XML Cite \textit{M. Afanasova} et al., J. Nonlinear Convex Anal. 20, No. 9, 1919--1935 (2019; Zbl 1472.93011) Full Text: Link OpenURL
Yu, Lichao Approximate controllability of linear stochastic differential equations with random jumps. (Chinese. English summary) Zbl 1463.93021 Chin. Ann. Math., Ser. A 40, No. 4, 417-426 (2019). MSC: 93B05 60H10 49N10 93E20 93C05 PDF BibTeX XML Cite \textit{L. Yu}, Chin. Ann. Math., Ser. A 40, No. 4, 417--426 (2019; Zbl 1463.93021) Full Text: DOI OpenURL
Ndambomve, Patrice; Ezzinbi, Khalil On the approximate controllability of some semilinear partial functional integrodifferential equations with unbonded delay. (English) Zbl 1440.93035 Matematiche 74, No. 2, 337-362 (2019). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 93B05 93C20 93C23 93C25 93C43 35R10 45K05 PDF BibTeX XML Cite \textit{P. Ndambomve} and \textit{K. Ezzinbi}, Matematiche 74, No. 2, 337--362 (2019; Zbl 1440.93035) Full Text: Link OpenURL
Chadha, Alka; Sakthivel, Rathinasamy; Bora, Swaroop Nandan Solvability of control problem for fractional nonlinear differential inclusions with nonlocal conditions. (English) Zbl 1475.45013 Nonlinear Anal., Model. Control 24, No. 4, 503-522 (2019). Reviewer: Bashir Ahmad (Jeddah) MSC: 45J05 34A08 26A33 93B05 PDF BibTeX XML Cite \textit{A. Chadha} et al., Nonlinear Anal., Model. Control 24, No. 4, 503--522 (2019; Zbl 1475.45013) Full Text: DOI OpenURL
Yan, Zuomao; Han, Li Approximate controllability of a fractional stochastic partial integro-differential systems via noncompact operators. (English) Zbl 1416.34056 Stochastic Anal. Appl. 37, No. 4, 636-667 (2019). MSC: 34K35 60H15 34K50 93B05 34K30 34K37 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, Stochastic Anal. Appl. 37, No. 4, 636--667 (2019; Zbl 1416.34056) Full Text: DOI OpenURL
Singh, Vikram; Pandey, Dwijendra N. Controllability of second-order Sobolev-type impulsive delay differential systems. (English) Zbl 1418.34142 Math. Methods Appl. Sci. 42, No. 5, 1377-1388 (2019). MSC: 34K35 93B05 34K30 47N20 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Math. Methods Appl. Sci. 42, No. 5, 1377--1388 (2019; Zbl 1418.34142) Full Text: DOI OpenURL
Yan, Zuomao; Han, Li Optimality of fractional impulsive partial stochastic differential systems with analytic sectorial operators and controls. (English) Zbl 1412.34226 Optimization 68, No. 4, 853-894 (2019). MSC: 34K37 34K30 34K45 34K50 34K35 93B05 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, Optimization 68, No. 4, 853--894 (2019; Zbl 1412.34226) Full Text: DOI OpenURL
Yan, Zuomao; Yan, Xingxue The optimal behavior of solutions to fractional impulsive stochastic integro-differential equations and its control problems. (English) Zbl 1409.34069 J. Fixed Point Theory Appl. 21, No. 1, Paper No. 12, 42 p. (2019). MSC: 34K37 34K50 34K45 34K30 34K35 47N20 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Yan}, J. Fixed Point Theory Appl. 21, No. 1, Paper No. 12, 42 p. (2019; Zbl 1409.34069) Full Text: DOI OpenURL
Zhao, Daliang; Liu, Yansheng; Li, Xiaodi Controllability for a class of semilinear fractional evolution systems via resolvent operators. (English) Zbl 06969373 Commun. Pure Appl. Anal. 18, No. 1, 455-478 (2019). MSC: 47D06 93B05 34K30 35R11 PDF BibTeX XML Cite \textit{D. Zhao} et al., Commun. Pure Appl. Anal. 18, No. 1, 455--478 (2019; Zbl 06969373) Full Text: DOI OpenURL
Šimon Hilscher, Roman; Zeidan, Vera Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity. (English) Zbl 1415.49015 ESAIM, Control Optim. Calc. Var. 24, No. 4, 1705-1734 (2018). Reviewer: Gerhard-Wilhelm Weber (Poznań and Ankara) with Emel Savku (Palaiseau) MSC: 49K15 49K40 34N05 34K35 90C31 39A12 PDF BibTeX XML Cite \textit{R. Šimon Hilscher} and \textit{V. Zeidan}, ESAIM, Control Optim. Calc. Var. 24, No. 4, 1705--1734 (2018; Zbl 1415.49015) Full Text: DOI OpenURL
Benchohra, Mouffak; Bouzzaoui, Fatima Controllability of functional differential equations with state-dependent delay and random effect. (English) Zbl 1424.34265 Rom. J. Math. Comput. Sci. 8, No. 1, 38-51 (2018). MSC: 34K30 34K20 34K35 34K50 47N20 93B05 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{F. Bouzzaoui}, Rom. J. Math. Comput. Sci. 8, No. 1, 38--51 (2018; Zbl 1424.34265) OpenURL
Nirmalkumar, R.; Murugesu, R. Exact controllability of nonlocal stochastic neutral impulsive differential equations. (English) Zbl 1405.93040 Nonlinear Stud. 25, No. 3, 591-607 (2018). MSC: 93B05 47N70 93E03 93C15 60H10 PDF BibTeX XML Cite \textit{R. Nirmalkumar} and \textit{R. Murugesu}, Nonlinear Stud. 25, No. 3, 591--607 (2018; Zbl 1405.93040) Full Text: Link OpenURL
Cao, Yueju; Sun, Jitao Approximate controllability of semilinear measure driven systems. (English) Zbl 1401.93034 Math. Nachr. 291, No. 13, 1979-1988 (2018). MSC: 93B05 93C25 26A42 34A38 34K30 93C10 93C15 93C30 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{J. Sun}, Math. Nachr. 291, No. 13, 1979--1988 (2018; Zbl 1401.93034) Full Text: DOI OpenURL
Sacchelli, Ludovic; Sigalotti, Mario On the Whitney extension property for continuously differentiable horizontal curves in sub-Riemannian manifolds. (English) Zbl 1398.53039 Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 59, 34 p. (2018). Reviewer: Ana Pereira do Vale (Braga) MSC: 53C17 53C24 54C20 93B05 49Q15 PDF BibTeX XML Cite \textit{L. Sacchelli} and \textit{M. Sigalotti}, Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 59, 34 p. (2018; Zbl 1398.53039) Full Text: DOI arXiv OpenURL
Hu, Junhao; Yang, Jiashun; Yuan, Chenggui Controllability of fractional impulsive neutral stochastic functional differential equations via Kuratowski measure of noncompactness. (English) Zbl 1415.93047 J. Nonlinear Sci. Appl. 10, No. 7, 3903-3915 (2017). MSC: 93B05 34K37 34K50 65C30 PDF BibTeX XML Cite \textit{J. Hu} et al., J. Nonlinear Sci. Appl. 10, No. 7, 3903--3915 (2017; Zbl 1415.93047) Full Text: DOI OpenURL
Cao, Yueju; Sun, Jitao Controllability of measure driven evolution systems with nonlocal conditions. (English) Zbl 1411.93027 Appl. Math. Comput. 299, 119-126 (2017). MSC: 93B05 34G20 93C25 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{J. Sun}, Appl. Math. Comput. 299, 119--126 (2017; Zbl 1411.93027) Full Text: DOI OpenURL
Du, Jun; Jiang, Wei; Pang, Denghao; Ullah Khan Niazi, Azmat Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions. (English) Zbl 1444.34096 Adv. Difference Equ. 2017, Paper No. 139, 22 p. (2017). MSC: 34K40 34A08 26A33 47G20 93B05 PDF BibTeX XML Cite \textit{J. Du} et al., Adv. Difference Equ. 2017, Paper No. 139, 22 p. (2017; Zbl 1444.34096) Full Text: DOI OpenURL
Valliammal, N.; Ravichandran, C.; Park, Ju H. On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions. (English) Zbl 1385.34054 Math. Methods Appl. Sci. 40, No. 14, 5044-5055 (2017). MSC: 34K37 47H08 47H10 34K40 34K30 34K35 93B05 PDF BibTeX XML Cite \textit{N. Valliammal} et al., Math. Methods Appl. Sci. 40, No. 14, 5044--5055 (2017; Zbl 1385.34054) Full Text: DOI OpenURL
Yang, He; Agarwal, Ravi P.; Liang, Yue Controllability for a class of integro-differential evolution equations involving non-local initial conditions. (English) Zbl 1380.93063 Int. J. Control 90, No. 12, 2567-2574 (2017). MSC: 93B05 93C25 93C10 PDF BibTeX XML Cite \textit{H. Yang} et al., Int. J. Control 90, No. 12, 2567--2574 (2017; Zbl 1380.93063) Full Text: DOI OpenURL
Bryzgalova, M. A.; Obukhovskii, V. V. On controllability problem for degenerate functional differential inclusions in a Banach space. (Russian. English summary) Zbl 1373.93062 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 67-81 (2017). MSC: 93B05 34A60 93C25 93C10 PDF BibTeX XML Cite \textit{M. A. Bryzgalova} and \textit{V. V. Obukhovskii}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 67--81 (2017; Zbl 1373.93062) OpenURL
Zawiski, Radosław Stabilizability of nonlinear infinite dimensional switched systems by measures of noncompactness in the space \(c_0\). (English) Zbl 1375.37165 Nonlinear Anal., Hybrid Syst. 25, 79-89 (2017). MSC: 37L15 93D20 93B05 PDF BibTeX XML Cite \textit{R. Zawiski}, Nonlinear Anal., Hybrid Syst. 25, 79--89 (2017; Zbl 1375.37165) Full Text: DOI OpenURL
Vijayakumar, V.; Murugesu, R.; Poongodi, R.; Dhanalakshmi, S. Controllability of second-order impulsive nonlocal Cauchy problem via measure of noncompactness. (English) Zbl 1360.93108 Mediterr. J. Math. 14, No. 1, Paper No. 3, 23 p. (2017). MSC: 93B05 93C15 26A33 34B10 34K09 47H10 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Mediterr. J. Math. 14, No. 1, Paper No. 3, 23 p. (2017; Zbl 1360.93108) Full Text: DOI OpenURL
Das, Sanjukta; Pandey, Dwijendra N.; Sukavanam, Nagarajan Approximate controllability of a second-order neutral stochastic differential equation with state-dependent delay. (English) Zbl 1417.93068 Nonlinear Anal., Model. Control 21, No. 6, 751-769 (2016). MSC: 93B05 93B03 93C15 60H10 93C05 93C25 PDF BibTeX XML Cite \textit{S. Das} et al., Nonlinear Anal., Model. Control 21, No. 6, 751--769 (2016; Zbl 1417.93068) Full Text: DOI OpenURL
Das, Sanjukta; Pandey, Dwijendra; Sukavanam, N. Existence of solution and approximate controllability of a second-order neutral stochastic differential equation with state dependent delay. (English) Zbl 1374.35433 Acta Math. Sci., Ser. B, Engl. Ed. 36, No. 5, 1509-1523 (2016). MSC: 35R15 35R60 93B05 PDF BibTeX XML Cite \textit{S. Das} et al., Acta Math. Sci., Ser. B, Engl. Ed. 36, No. 5, 1509--1523 (2016; Zbl 1374.35433) Full Text: DOI OpenURL
Yang, Jiashun; Hu, Junhao Controllability of fractional hybrid stochastic functional differential equations. (Chinese. English summary) Zbl 1363.93046 J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 8, No. 2, 186-192 (2016). MSC: 93B05 34K37 34K60 47H10 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Hu}, J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 8, No. 2, 186--192 (2016; Zbl 1363.93046) Full Text: DOI OpenURL
Liang, Jin; Yang, He Controllability of fractional integro-differential evolution equations with nonlocal conditions. (English) Zbl 1410.93022 Appl. Math. Comput. 254, 20-29 (2015). MSC: 93B05 34K35 34A08 34G20 45J05 PDF BibTeX XML Cite \textit{J. Liang} and \textit{H. Yang}, Appl. Math. Comput. 254, 20--29 (2015; Zbl 1410.93022) Full Text: DOI OpenURL
Hausenblas, Erika; Razafimandimby, Paul André Controllability and qualitative properties of the solutions to SPDEs driven by boundary Lévy noise. (English) Zbl 1329.60213 Stoch. Partial Differ. Equ., Anal. Comput. 3, No. 2, 221-271 (2015). MSC: 60H15 60H07 60G51 60G57 60G55 60J75 93B05 PDF BibTeX XML Cite \textit{E. Hausenblas} and \textit{P. A. Razafimandimby}, Stoch. Partial Differ. Equ., Anal. Comput. 3, No. 2, 221--271 (2015; Zbl 1329.60213) Full Text: DOI arXiv OpenURL
Borisov, Alexey V.; Kilin, Alexander A.; Mamaev, Ivan S. Dynamics and control of an omniwheel vehicle. (English) Zbl 1367.70033 Regul. Chaotic Dyn. 20, No. 2, 153-172 (2015). MSC: 70F25 70E18 70E55 70Q05 PDF BibTeX XML Cite \textit{A. V. Borisov} et al., Regul. Chaotic Dyn. 20, No. 2, 153--172 (2015; Zbl 1367.70033) Full Text: DOI OpenURL
Benchohra, Mouffak; Abbas, Saïd Advanced functional evolution equations and inclusions. (English) Zbl 1326.34012 Developments in Mathematics 39. Cham: Springer (ISBN 978-3-319-17767-0/hbk; 978-3-319-17768-7/ebook). xxi, 408 p. (2015). Reviewer: Rodica Luca (Iaşi) MSC: 34-02 34K05 34K09 34K30 34K40 47N20 34K35 34K45 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{S. Abbas}, Advanced functional evolution equations and inclusions. Cham: Springer (2015; Zbl 1326.34012) Full Text: DOI OpenURL
Shen, Lijuan; Wu, Qidi Approximate controllability of nonlinear stochastic impulsive systems with control acting on the nonlinear terms. (English) Zbl 1317.93050 Int. J. Control 87, No. 8, 1672-1680 (2014). MSC: 93B05 93C10 93E03 PDF BibTeX XML Cite \textit{L. Shen} and \textit{Q. Wu}, Int. J. Control 87, No. 8, 1672--1680 (2014; Zbl 1317.93050) Full Text: DOI OpenURL
Murty, K. N.; Suryanarayana, R.; Gopalarao, Ch. Qualitative properties of first order linear systems on time-scale dynamical systems. (English) Zbl 1311.34177 Nonlinear Stud. 21, No. 4, 619-629 (2014). MSC: 34N05 34H05 93B05 93B07 34D20 PDF BibTeX XML Cite \textit{K. N. Murty} et al., Nonlinear Stud. 21, No. 4, 619--629 (2014; Zbl 1311.34177) Full Text: Link OpenURL
Younus, Awais; ur Rahman, Ghaus Controllability, observability, and stability of a Volterra integro-dynamic system on time scales. (English) Zbl 1309.45001 J. Dyn. Control Syst. 20, No. 3, 383-402 (2014). MSC: 45D05 34N05 34D05 39A12 PDF BibTeX XML Cite \textit{A. Younus} and \textit{G. ur Rahman}, J. Dyn. Control Syst. 20, No. 3, 383--402 (2014; Zbl 1309.45001) Full Text: DOI OpenURL
Wang, Jinrong; Fĕckan, Michal; Zhou, Yong Controllability of Sobolev type fractional evolution systems. (English) Zbl 1314.47117 Dyn. Partial Differ. Equ. 11, No. 1, 71-87 (2014). Reviewer: Gabriela Petruşel (Cluj-Napoca) MSC: 47J35 93B05 93C25 47H08 PDF BibTeX XML Cite \textit{J. Wang} et al., Dyn. Partial Differ. Equ. 11, No. 1, 71--87 (2014; Zbl 1314.47117) Full Text: DOI OpenURL
Ke, Tran Dinh Controllability for semilinear functional differential equations without uniqueness. (English) Zbl 1284.93040 Electron. J. Differ. Equ. 2014, Paper No. 36, 15 p. (2014). MSC: 93B05 93B03 93C10 93C25 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{T. D. Ke}, Electron. J. Differ. Equ. 2014, Paper No. 36, 15 p. (2014; Zbl 1284.93040) Full Text: EMIS OpenURL
Ke, Tran Dinh; Obukhovskiĭ, Valeri Controllability for systems governed by second-order differential inclusions with nonlocal conditions. (English) Zbl 1292.93028 Topol. Methods Nonlinear Anal. 42, No. 2, 377-403 (2013). MSC: 93B05 34A60 34G25 47H04 47H08 47H10 93C10 93C25 PDF BibTeX XML Cite \textit{T. D. Ke} and \textit{V. Obukhovskiĭ}, Topol. Methods Nonlinear Anal. 42, No. 2, 377--403 (2013; Zbl 1292.93028) OpenURL
Li, Yan; Hu, Junhao Controllability of nonlinear stochastic impulsive functional differential inclusions with Hille-Yosida operators. (English) Zbl 1289.34203 Math. Appl. 26, No. 1, 104-113 (2013). MSC: 34K35 34K50 34K45 47H10 34K30 34K09 PDF BibTeX XML Cite \textit{Y. Li} and \textit{J. Hu}, Math. Appl. 26, No. 1, 104--113 (2013; Zbl 1289.34203) OpenURL
Maslowski, Bohdan; van Neerven, Jan Equivalence of laws and null controllability for SPDEs driven by a fractional Brownian motion. (English) Zbl 1286.60069 NoDEA, Nonlinear Differ. Equ. Appl. 20, No. 4, 1473-1498 (2013). Reviewer: Stefan Tappe (Hannover) MSC: 60H15 60H05 28C20 PDF BibTeX XML Cite \textit{B. Maslowski} and \textit{J. van Neerven}, NoDEA, Nonlinear Differ. Equ. Appl. 20, No. 4, 1473--1498 (2013; Zbl 1286.60069) Full Text: DOI arXiv OpenURL
Radhakrishnan, Bheeman Controllability of semilinear evolution differential systems in a separable Banach space. (English) Zbl 1494.93017 Balasubramaniam, P. (ed.) et al., Mathematical modelling and scientific computation. Proceedings of the 2nd international conference, ICMMSC 2012, Gandhigram, Tamil Nadu, India, March 16–18, 2012. Berlin: Springer. Commun. Comput. Inf. Sci. 283, 293-301 (2012). MSC: 93B05 93C25 PDF BibTeX XML Cite \textit{B. Radhakrishnan}, Commun. Comput. Inf. Sci. 283, 293--301 (2012; Zbl 1494.93017) Full Text: DOI OpenURL
Ke, Tran Dinh; Obukhovskii, Valeri; Wong, Ngai-Ching; Yao, Jen-Chih Approximate controllability for systems governed by nonlinear Volterra type equations. (English) Zbl 1252.93025 Differ. Equ. Dyn. Syst. 20, No. 1, 35-52 (2012). MSC: 93B05 93B03 93B28 93C10 93C25 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{T. D. Ke} et al., Differ. Equ. Dyn. Syst. 20, No. 1, 35--52 (2012; Zbl 1252.93025) Full Text: DOI OpenURL
Wang, JinRong; Fan, Zhenbin; Zhou, Yong Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. (English) Zbl 1252.93028 J. Optim. Theory Appl. 154, No. 1, 292-302 (2012). MSC: 93B05 34A08 93C15 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Optim. Theory Appl. 154, No. 1, 292--302 (2012; Zbl 1252.93028) Full Text: DOI OpenURL
Radhakrishnan, Bheeman; Balachandran, Krishnan Controllability of nonlinear differential evolution systems in a separable Banach space. (English) Zbl 1251.93035 Electron. J. Differ. Equ. 2012, Paper No. 138, 13 p. (2012). MSC: 93B05 47D06 93C25 PDF BibTeX XML Cite \textit{B. Radhakrishnan} and \textit{K. Balachandran}, Electron. J. Differ. Equ. 2012, Paper No. 138, 13 p. (2012; Zbl 1251.93035) Full Text: EMIS OpenURL
Li, Fang; Liang, Jin; Xu, Hong-Kun Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. (English) Zbl 1242.45009 J. Math. Anal. Appl. 391, No. 2, 510-525 (2012). Reviewer: Kun Soo Chang (Seoul) MSC: 45J05 45G10 26A33 45N05 47H08 93C23 93B05 PDF BibTeX XML Cite \textit{F. Li} et al., J. Math. Anal. Appl. 391, No. 2, 510--525 (2012; Zbl 1242.45009) Full Text: DOI OpenURL
Duan, Shan; Hu, Junhao; Li, Yan Exact controllability of nonlinear stochastic impulsive evolution differential inclusions with infinite delay in Hilbert spaces. (English) Zbl 1401.34092 Int. J. Nonlinear Sci. Numer. Simul. 12, No. 1-8, 23-33 (2011). MSC: 34K50 34K09 34K45 93B05 PDF BibTeX XML Cite \textit{S. Duan} et al., Int. J. Nonlinear Sci. Numer. Simul. 12, No. 1--8, 23--33 (2011; Zbl 1401.34092) Full Text: DOI OpenURL
Benedetti, Irene; Obukhovskii, Valeri; Zecca, Pietro Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator. (English) Zbl 1264.93022 Discuss. Math., Differ. Incl. Control Optim. 31, No. 1, 39-69 (2011). MSC: 93B05 34G25 34K09 34K45 47H04 47H08 47H10 47H11 PDF BibTeX XML Cite \textit{I. Benedetti} et al., Discuss. Math., Differ. Incl. Control Optim. 31, No. 1, 39--69 (2011; Zbl 1264.93022) Full Text: DOI Link OpenURL
Simon, Thomas On the absolute continuity of multidimensional Ornstein-Uhlenbeck processes. (English) Zbl 1238.60067 Probab. Theory Relat. Fields 151, No. 1-2, 173-190 (2011). Reviewer: Nicolas Privault (Singapore) MSC: 60H10 60G30 60E07 60J75 PDF BibTeX XML Cite \textit{T. Simon}, Probab. Theory Relat. Fields 151, No. 1--2, 173--190 (2011; Zbl 1238.60067) Full Text: DOI arXiv OpenURL
Ji, Shaochun; Li, Gang; Wang, Min Controllability of impulsive differential systems with nonlocal conditions. (English) Zbl 1219.93013 Appl. Math. Comput. 217, No. 16, 6981-6989 (2011). MSC: 93B05 35R12 47N10 93C25 PDF BibTeX XML Cite \textit{S. Ji} et al., Appl. Math. Comput. 217, No. 16, 6981--6989 (2011; Zbl 1219.93013) Full Text: DOI OpenURL
Hilscher, Roman; Zeidan, Vera Nabla time scale symplectic systems and related quadratic functionals. (English) Zbl 1214.34091 Differ. Equ. Dyn. Syst. 18, No. 1-2, 163-198 (2010). Reviewer: Yuri E. Gliklikh (Voronezh) MSC: 34N05 15A63 37J05 PDF BibTeX XML Cite \textit{R. Hilscher} and \textit{V. Zeidan}, Differ. Equ. Dyn. Syst. 18, No. 1--2, 163--198 (2010; Zbl 1214.34091) Full Text: DOI OpenURL
Kozyakin, Victor On explicit a priori estimates of the joint spectral radius by the generalized Gelfand formula. (English) Zbl 1219.15019 Differ. Equ. Dyn. Syst. 18, No. 1-2, 91-103 (2010). Reviewer: Marjeta Kramar Fijavž (Ljubljana) MSC: 15A42 15A18 15A60 93B05 PDF BibTeX XML Cite \textit{V. Kozyakin}, Differ. Equ. Dyn. Syst. 18, No. 1--2, 91--103 (2010; Zbl 1219.15019) Full Text: DOI arXiv OpenURL
Heydari, A.; Kamyad, A. V. A sufficient condition for null controllability of nonlinear control systems. (English) Zbl 1302.93047 Mashhad Res. J. Math. Sci. 2, No. 1, 27-42 (2009). MSC: 93B05 93C42 49K15 93C10 93C15 49M30 PDF BibTeX XML Cite \textit{A. Heydari} and \textit{A. V. Kamyad}, Mashhad Res. J. Math. Sci. 2, No. 1, 27--42 (2009; Zbl 1302.93047) Full Text: DOI OpenURL
Jaćimović, V. Sub-Riemannian geometry, control systems and stochastic flows. (English) Zbl 1197.49049 Jaćimović, Milojica (ed.), Proceedings of the international conference on nonlinear analysis and optimization problems, Budva, Montenegro, October 6–10, 2008. Podgorica: Montenegrin Academy of Sciences and Arts (ISBN 978-86-7215-227-2/pbk). Scientific Meetings. Montenegrin Academy of Sciences and Arts 100; The Section of Natural Sciences 13, 101-107 (2009). MSC: 49Q20 49-02 93B05 PDF BibTeX XML Cite \textit{V. Jaćimović}, in: Proceedings of the international conference on nonlinear analysis and optimization problems, Budva, Montenegro, October 6--10, 2008. Podgorica: Montenegrin Academy of Sciences and Arts. 101--107 (2009; Zbl 1197.49049) OpenURL
Obukhovski, Valeri; Zecca, Pietro Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup. (English) Zbl 1157.93006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 9, 3424-3436 (2009). MSC: 93B05 34A60 34H05 34G25 47H04 47H10 49J24 PDF BibTeX XML Cite \textit{V. Obukhovski} and \textit{P. Zecca}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 9, 3424--3436 (2009; Zbl 1157.93006) Full Text: DOI OpenURL
Periago, Francisco Optimal shape and position of the support for the internal exact control of a string. (English) Zbl 1155.49312 Syst. Control Lett. 58, No. 2, 136-140 (2009). MSC: 49Q20 93B05 70Q05 74K05 PDF BibTeX XML Cite \textit{F. Periago}, Syst. Control Lett. 58, No. 2, 136--140 (2009; Zbl 1155.49312) Full Text: DOI OpenURL
Liou, Y. C.; Obukhovskii, V.; Yao, J. C. Controllability for a class of degenerate functional differential inclusions in a Banach space. (English) Zbl 1166.93005 Taiwanese J. Math. 12, No. 8, 2179-2200 (2008). MSC: 93B05 34A60 34K30 34K35 47H04 47H09 47H10 PDF BibTeX XML Cite \textit{Y. C. Liou} et al., Taiwanese J. Math. 12, No. 8, 2179--2200 (2008; Zbl 1166.93005) Full Text: DOI OpenURL
Li, G. C.; Song, S. J.; Zhang, B. Controllability of nonlinear integrodifferential systems in Banach space with nonlocal conditions. (English) Zbl 1147.93008 Dyn. Syst. Appl. 16, No. 4, 729-742 (2007). MSC: 93B05 93C10 93C23 47H10 PDF BibTeX XML Cite \textit{G. C. Li} et al., Dyn. Syst. Appl. 16, No. 4, 729--742 (2007; Zbl 1147.93008) OpenURL
Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra Interpolation by vector-valued analytic functions, with applications to controllability. (English) Zbl 1137.46015 J. Funct. Anal. 252, No. 2, 517-549 (2007). Reviewer: Serguei Shimorin (Stockholm) MSC: 46E20 30E05 47D06 PDF BibTeX XML Cite \textit{B. Jacob} et al., J. Funct. Anal. 252, No. 2, 517--549 (2007; Zbl 1137.46015) Full Text: DOI OpenURL
Jacob, Birgit; Partington, Jonathan R. On controllability of diagonal systems with one-dimensional input space. (English) Zbl 1129.93323 Syst. Control Lett. 55, No. 4, 321-328 (2006). MSC: 93B05 30D55 30E05 47D06 47N70 PDF BibTeX XML Cite \textit{B. Jacob} and \textit{J. R. Partington}, Syst. Control Lett. 55, No. 4, 321--328 (2006; Zbl 1129.93323) Full Text: DOI OpenURL
Ton, Bui An On the exact controllability of a nonlinear stochastic heat equation. II. (English) Zbl 1113.93016 Stochastic Anal. Appl. 23, No. 5, 1071-1086 (2005). MSC: 93B05 60H15 93E20 93C20 PDF BibTeX XML Cite \textit{B. A. Ton}, Stochastic Anal. Appl. 23, No. 5, 1071--1086 (2005; Zbl 1113.93016) Full Text: DOI EuDML OpenURL
Romito, Marco Ergodicity of the finite-dimensional approximation of the 3D Navier-Stokes equations forced by a degenerate noise. (English) Zbl 1060.76027 J. Stat. Phys. 114, No. 1-2, 155-177 (2004). MSC: 76D06 76M35 35Q30 60H15 PDF BibTeX XML Cite \textit{M. Romito}, J. Stat. Phys. 114, No. 1--2, 155--177 (2004; Zbl 1060.76027) Full Text: DOI arXiv OpenURL
Vaidya, Umesh; Mezić, Igor Controllability for a class of area-preserving twist maps. (English) Zbl 1051.37045 Physica D 189, No. 3-4, 234-246 (2004). MSC: 37N35 37J40 37E40 93B05 37A05 93B27 PDF BibTeX XML Cite \textit{U. Vaidya} and \textit{I. Mezić}, Physica D 189, No. 3--4, 234--246 (2004; Zbl 1051.37045) Full Text: DOI OpenURL