Patle, Pradip Ramesh; Gabeleh, Moosa; De La Sen, Manuel Global optimum solutions for a system of \((k, \psi)\)-Hilfer fractional differential equations: best proximity point approach. (English) Zbl 07734706 Demonstr. Math. 56, Article ID 20220253, 12 p. (2023). MSC: 47H10 34A08 47H08 47H09 PDF BibTeX XML Cite \textit{P. R. Patle} et al., Demonstr. Math. 56, Article ID 20220253, 12 p. (2023; Zbl 07734706) Full Text: DOI
Boukenkoul, Abderrahmane; Ziane, Mohamed Conformable functional evolution equations with nonlocal conditions in Banach spaces. (English) Zbl 07734244 Surv. Math. Appl. 18, 83-95 (2023). MSC: 26A33 34A08 47H08 PDF BibTeX XML Cite \textit{A. Boukenkoul} and \textit{M. Ziane}, Surv. Math. Appl. 18, 83--95 (2023; Zbl 07734244) Full Text: Link
Angeloni, Laura; Appell, Jürgen; Domínguez Benavides, Tomás; Reinwand, Simon; Vinti, Gianluca Compactness properties of multiplication and substitution operators. (English) Zbl 07734192 J. Oper. Theory 89, No. 1, 49-74 (2023). MSC: 47B38 26A15 26A45 47A30 47B07 PDF BibTeX XML Cite \textit{L. Angeloni} et al., J. Oper. Theory 89, No. 1, 49--74 (2023; Zbl 07734192) Full Text: DOI
Gou, Haide A study on \(S\)-asymptotically \(\omega\)-periodic positive mild solutions for damped elastic systems. (English) Zbl 07731028 Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023). MSC: 34G20 34K20 34A08 35B35 47H08 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023; Zbl 07731028) Full Text: DOI
Valiya Valappil, Sreya; Pulickakunnel, Shaini Some fixed point theorems and applications in Busemann spaces. (English) Zbl 07730768 Boll. Unione Mat. Ital. 16, No. 3, 585-593 (2023). Reviewer: Syed Abbas (Mandi) MSC: 53C22 47H08 47H10 58C30 53C70 PDF BibTeX XML Cite \textit{S. Valiya Valappil} and \textit{S. Pulickakunnel}, Boll. Unione Mat. Ital. 16, No. 3, 585--593 (2023; Zbl 07730768) Full Text: DOI
Amara, Khaled Ben; Jeribi, Aref; Kaddachi, Najib Existence results for nonexpansive multi-valued operators and nonlinear integral inclusions. (English) Zbl 07729263 Afr. Mat. 34, No. 3, Paper No. 46, 25 p. (2023). MSC: 47H08 47H09 34K09 47B48 47H10 PDF BibTeX XML Cite \textit{K. B. Amara} et al., Afr. Mat. 34, No. 3, Paper No. 46, 25 p. (2023; Zbl 07729263) Full Text: DOI arXiv
Sangi, M.; Saiedinezhad, S.; Ghaemi, M. B. A system of high-order fractional differential equations with integral boundary conditions. (English) Zbl 07723473 J. Nonlinear Math. Phys. 30, No. 2, 699-718 (2023). MSC: 34A08 26A33 47N20 47H08 47H10 PDF BibTeX XML Cite \textit{M. Sangi} et al., J. Nonlinear Math. Phys. 30, No. 2, 699--718 (2023; Zbl 07723473) Full Text: DOI
Kazemi, Manochehr; Chaudhary, Harindri; Deep, Amar Existence and approximate solutions for Hadamard fractional Integral equations in a Banach space. (English) Zbl 07714668 J. Integral Equations Appl. 35, No. 1, 27-40 (2023). MSC: 47H10 60H20 PDF BibTeX XML Cite \textit{M. Kazemi} et al., J. Integral Equations Appl. 35, No. 1, 27--40 (2023; Zbl 07714668) Full Text: DOI Link
Bhujel, Manalisha; Hazarika, Bipan Existence of solutions of nonlinear Fredholm-type integral equations in Hölder space. (English) Zbl 07714666 J. Integral Equations Appl. 35, No. 1, 1-10 (2023). MSC: 26B35 45B05 47H08 47H10 PDF BibTeX XML Cite \textit{M. Bhujel} and \textit{B. Hazarika}, J. Integral Equations Appl. 35, No. 1, 1--10 (2023; Zbl 07714666) Full Text: DOI Link
Ndambomve, Patrice; Kpoumie, Moussa El-Khalil; Ezzinbi, Khalil Approximate controllability results in \(\alpha \)-norm for some partial functional integrodifferential equations with nonlocal initial conditions in Banach spaces. (English) Zbl 07709534 J. Appl. Anal. 29, No. 1, 127-142 (2023). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35R10 45K05 93B28 47H10 47D06 PDF BibTeX XML Cite \textit{P. Ndambomve} et al., J. Appl. Anal. 29, No. 1, 127--142 (2023; Zbl 07709534) Full Text: DOI
Bousselsal, Mahmoud; Kim, Daewook; Kim, Jong Kyu Solvability and asymptotic behavior of solutions for some nonlinear integral equations related to Chandrasekhar’s integral equation on the real half line. (English) Zbl 07706112 Nonlinear Funct. Anal. Appl. 28, No. 1, 57-79 (2023). MSC: 47N20 47H08 45H99 45G10 PDF BibTeX XML Cite \textit{M. Bousselsal} et al., Nonlinear Funct. Anal. Appl. 28, No. 1, 57--79 (2023; Zbl 07706112) Full Text: Link
Kumar, S.; Abdal, S. M. Approximate controllability of nonautonomous second-order nonlocal measure driven systems with state-dependent delay. (English) Zbl 07702154 Int. J. Control 96, No. 4, 1013-1024 (2023). MSC: 93B05 93B28 47H08 93C43 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. M. Abdal}, Int. J. Control 96, No. 4, 1013--1024 (2023; Zbl 07702154) Full Text: DOI
Patle, Pradip Ramesh; Gabeleh, Moosa; Rakočević, Vladimir; Samei, Mohammad Esmael New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of \(\psi\)-Hilfer fractional differential equations. (English) Zbl 07700356 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 124, 20 p. (2023). MSC: 47H10 34A08 47H08 47H09 PDF BibTeX XML Cite \textit{P. R. Patle} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 124, 20 p. (2023; Zbl 07700356) Full Text: DOI
Chaudhary, Renu; Reich, Simeon Extremal mild solutions to fractional delay integro-differential equations with non-instantaneous impulses. (English) Zbl 1512.34139 Appl. Anal. 102, No. 7, 1975-1994 (2023). MSC: 34K30 34G20 34K37 34K45 45J05 47D06 PDF BibTeX XML Cite \textit{R. Chaudhary} and \textit{S. Reich}, Appl. Anal. 102, No. 7, 1975--1994 (2023; Zbl 1512.34139) Full Text: DOI
Chu, Yunhao; Liu, Yansheng Approximate controllability for a class of instantaneous and non-instantaneous impulsive semilinear system with finite time delay. (English) Zbl 1512.34140 Evol. Equ. Control Theory 12, No. 4, 1193-1207 (2023). MSC: 34K30 34K35 34K45 93B05 PDF BibTeX XML Cite \textit{Y. Chu} and \textit{Y. Liu}, Evol. Equ. Control Theory 12, No. 4, 1193--1207 (2023; Zbl 1512.34140) Full Text: DOI
Kryczka, Andrzej A note on measures related to compactness and the Banach-Saks property in \(l_1\). (English) Zbl 07695346 Arch. Math. 120, No. 6, 615-618 (2023). Reviewer: Zdeněk Silber (Warszawa) MSC: 46B45 46B50 47H08 PDF BibTeX XML Cite \textit{A. Kryczka}, Arch. Math. 120, No. 6, 615--618 (2023; Zbl 07695346) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on non-autonomous second order evolution equations with nonlocal conditions. (English) Zbl 07694341 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 111, 22 p. (2023). MSC: 34K30 37C60 34K20 45J05 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 111, 22 p. (2023; Zbl 07694341) Full Text: DOI
Ma, Weifeng; Li, Yongxiang Periodic boundary value problem for impulsive evolution equations with noncompact semigroup. (English) Zbl 07694340 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 110, 12 p. (2023). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 34A37 47H10 47D60 PDF BibTeX XML Cite \textit{W. Ma} and \textit{Y. Li}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 110, 12 p. (2023; Zbl 07694340) Full Text: DOI
Melati, Oussama; Slama, Abdeldjalil; Ouahab, Abdelghani Existence and controllability results for stochastic impulsive integro-differential equations with infinite delay. (English) Zbl 07692607 Afr. Mat. 34, No. 2, Paper No. 24, 19 p. (2023). MSC: 60H10 34A37 47G20 47H10 PDF BibTeX XML Cite \textit{O. Melati} et al., Afr. Mat. 34, No. 2, Paper No. 24, 19 p. (2023; Zbl 07692607) Full Text: DOI
Caponetti, Diana; Trombetta, Alessandro; Trombetta, Giulio Regular measures of noncompactness and Ascoli-Arzelà type compactness criteria in spaces of vector-valued functions. (English) Zbl 07692333 Banach J. Math. Anal. 17, No. 3, Paper No. 48, 31 p. (2023). MSC: 46B50 46E40 47H08 PDF BibTeX XML Cite \textit{D. Caponetti} et al., Banach J. Math. Anal. 17, No. 3, Paper No. 48, 31 p. (2023; Zbl 07692333) Full Text: DOI arXiv
Banaś, Józef; Taktak, Rahma Measures of noncompactness in the study of solutions of infinite systems of Volterra-Hammerstein-Stieltjes integral equations. (English) Zbl 07686525 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 95, 24 p. (2023). MSC: 47H08 45G10 PDF BibTeX XML Cite \textit{J. Banaś} and \textit{R. Taktak}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 3, Paper No. 95, 24 p. (2023; Zbl 07686525) Full Text: DOI
Jaiswal, Anjali; Bahuguna, D. Hilfer fractional differential equations with almost sectorial operators. (English) Zbl 07682720 Differ. Equ. Dyn. Syst. 31, No. 2, 301-317 (2023). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 34A08 26A33 34A12 47N20 PDF BibTeX XML Cite \textit{A. Jaiswal} and \textit{D. Bahuguna}, Differ. Equ. Dyn. Syst. 31, No. 2, 301--317 (2023; Zbl 07682720) Full Text: DOI
Das, Anupam; Jain, Reena; Nashine, Hemant Kumar A fixed point result via new condensing operator and its application to a system of generalized proportional fractional integral equations. (English) Zbl 1512.45005 J. Pseudo-Differ. Oper. Appl. 14, No. 2, Paper No. 21, 15 p. (2023). MSC: 45G15 26A33 47H08 47H09 47H10 47N20 PDF BibTeX XML Cite \textit{A. Das} et al., J. Pseudo-Differ. Oper. Appl. 14, No. 2, Paper No. 21, 15 p. (2023; Zbl 1512.45005) Full Text: DOI
Das, Anupam Application of measure of noncompactness on infinite system of functional integro-differential equations with integral initial conditions. (English) Zbl 07677232 Mohiuddine, S. A. (ed.) et al., Sequence space theory with applications. Boca Raton, FL: CRC Press. 45-62 (2023). MSC: 47N20 47H08 45J05 PDF BibTeX XML Cite \textit{A. Das}, in: Sequence space theory with applications. Boca Raton, FL: CRC Press. 45--62 (2023; Zbl 07677232) Full Text: DOI
Nashine, Hemant Kumar; Das, Anupam Solution of Volterra integral equations in Banach algebras using measure of noncompactness. (English) Zbl 07677229 Mohiuddine, S. A. (ed.) et al., Sequence space theory with applications. Boca Raton, FL: CRC Press. 154-168 (2023). Reviewer: Dariusz Bugajewski (Poznań) MSC: 45D05 45N05 47N20 47H08 47H09 47H10 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{A. Das}, in: Sequence space theory with applications. Boca Raton, FL: CRC Press. 154--168 (2023; Zbl 07677229) Full Text: DOI
Mursaleen, M.; Rizvi, S. M. H.; Arab, R.; Haghighi, A. S.; Allahyari, R. On measure of noncompactness in Lebesgue and Sobolev spaces with an application to the functional integro-differential equation. (English) Zbl 07674017 Aequationes Math. 97, No. 1, 199-217 (2023). MSC: 46E35 46E40 47H08 46B50 PDF BibTeX XML Cite \textit{M. Mursaleen} et al., Aequationes Math. 97, No. 1, 199--217 (2023; Zbl 07674017) Full Text: DOI
Sikorska-Nowak, Aneta Integrodifferential equations of mixed type on time scales with \(\Delta\)-HK and \(\Delta\)-HKP integrals. (English) Zbl 1514.45006 Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023). MSC: 45J05 47N20 47H08 26E70 PDF BibTeX XML Cite \textit{A. Sikorska-Nowak}, Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023; Zbl 1514.45006) Full Text: Link
Yuan, George Xianzhi Fixed point theorem and related nonlinear analysis by the best approximation method in \(p\)-vector spaces. (English) Zbl 07663968 Numer. Funct. Anal. Optim. 44, No. 4, 221-295 (2023); corrigendum ibid. 44, No. 10, 1094-1096 (2023). MSC: 47H04 47H10 46A16 46A55 52A07 54C60 54H25 49J27 49J35 55M20 PDF BibTeX XML Cite \textit{G. X. Yuan}, Numer. Funct. Anal. Optim. 44, No. 4, 221--295 (2023; Zbl 07663968) Full Text: DOI
Metwali, Mohamed M. A.; Mishra, Vishnu Narayan On the measure of noncompactness in \(L_p(\mathbb{R}^+)\) and applications to a product of \(n\)-integral equations. (English) Zbl 1509.45004 Turk. J. Math. 47, No. 1, 372-386 (2023). MSC: 45G10 47H30 47H08 47N20 PDF BibTeX XML Cite \textit{M. M. A. Metwali} and \textit{V. N. Mishra}, Turk. J. Math. 47, No. 1, 372--386 (2023; Zbl 1509.45004) Full Text: DOI
Mastyło, Mieczysław; da Silva, Eduardo Brandani Measures of noncompactness of interpolated polynomials. (English) Zbl 07662776 Forum Math. 35, No. 2, 487-505 (2023). MSC: 46B70 46G25 47H08 PDF BibTeX XML Cite \textit{M. Mastyło} and \textit{E. B. da Silva}, Forum Math. 35, No. 2, 487--505 (2023; Zbl 07662776) Full Text: DOI
Rahou, Wafaa; Salim, Abdelkrim; Lazreg, Jamal Eddine; Benchohra, Mouffak Existence and stability results for impulsive implicit fractional differential equations with delay and Riesz-Caputo derivative. (English) Zbl 07660383 Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023). MSC: 26A33 34A08 34A37 PDF BibTeX XML Cite \textit{W. Rahou} et al., Mediterr. J. Math. 20, No. 3, Paper No. 143, 28 p. (2023; Zbl 07660383) Full Text: DOI
Tikare, Sanket; Bohner, Martin; Hazarika, Bipan; Agarwal, Ravi P. Dynamic local and nonlocal initial value problems in Banach spaces. (English) Zbl 07658707 Rend. Circ. Mat. Palermo (2) 72, No. 1, 467-482 (2023). MSC: 34N05 34A12 47H10 47H08 34G20 PDF BibTeX XML Cite \textit{S. Tikare} et al., Rend. Circ. Mat. Palermo (2) 72, No. 1, 467--482 (2023; Zbl 07658707) Full Text: DOI
Das, Anupam; Paunović, Marija; Parvaneh, Vahid; Mursaleen, Mohammad; Bagheri, Zohreh Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness. (English) Zbl 07656726 Demonstr. Math. 56, Article ID 20220192, 11 p. (2023). MSC: 47H10 47H08 47N20 PDF BibTeX XML Cite \textit{A. Das} et al., Demonstr. Math. 56, Article ID 20220192, 11 p. (2023; Zbl 07656726) Full Text: DOI
Yan, Xingjie; Yang, Rong Pullback trajectory attractor for nonautonomous wave equations. (English) Zbl 1509.35064 Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107137, 15 p. (2023). MSC: 35B41 35L20 35L71 37L30 PDF BibTeX XML Cite \textit{X. Yan} and \textit{R. Yang}, Commun. Nonlinear Sci. Numer. Simul. 119, Article ID 107137, 15 p. (2023; Zbl 1509.35064) Full Text: DOI
Nowak, Grzegorz; Saker, Samir H.; Sikorska-Nowak, Aneta Asymptotic stability of nonlinear neutral delay integro-differential equations. (English) Zbl 1505.34109 Math. Slovaca 73, No. 1, 103-118 (2023). MSC: 34K20 34K30 34K40 PDF BibTeX XML Cite \textit{G. Nowak} et al., Math. Slovaca 73, No. 1, 103--118 (2023; Zbl 1505.34109) Full Text: DOI
Gou, Haide A study on decay mild solutions of damped elastic systems with nonlocal conditions in Banach spaces. (English) Zbl 1505.34095 Mediterr. J. Math. 20, No. 2, Paper No. 54, 24 p. (2023). MSC: 34G20 34B10 35B35 47H08 47H10 PDF BibTeX XML Cite \textit{H. Gou}, Mediterr. J. Math. 20, No. 2, Paper No. 54, 24 p. (2023; Zbl 1505.34095) Full Text: DOI
Derbazi, Choukri; Hammouche, Hadda; Salim, Abdelkrim; Benchohra, Mouffak Weak solutions for fractional Langevin equations involving two fractional orders in Banach spaces. (English) Zbl 07652924 Afr. Mat. 34, No. 1, Paper No. 1, 10 p. (2023). MSC: 26A33 34B15 34G20 PDF BibTeX XML Cite \textit{C. Derbazi} et al., Afr. Mat. 34, No. 1, Paper No. 1, 10 p. (2023; Zbl 07652924) Full Text: DOI
Parvaneh, Mohsen; Farajzadeh, Ali P. On weak-Wardowski-Prešić-type fixed point theorems via noncompactness measure with applications to a system of fractional integral equations. (English) Zbl 07652684 J. Nonlinear Convex Anal. 24, No. 1, 1-15 (2023). MSC: 47H10 47H08 PDF BibTeX XML Cite \textit{M. Parvaneh} and \textit{A. P. Farajzadeh}, J. Nonlinear Convex Anal. 24, No. 1, 1--15 (2023; Zbl 07652684) Full Text: Link
Bose, C. S. Varun; Udhayakumar, R. Analysis on the controllability of Hilfer fractional neutral differential equations with almost sectorial operators and infinite delay via measure of noncompactness. (English) Zbl 1512.34138 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 22, 25 p. (2023). MSC: 34K30 34K40 47N20 93B05 93C25 34K35 PDF BibTeX XML Cite \textit{C. S. V. Bose} and \textit{R. Udhayakumar}, Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 22, 25 p. (2023; Zbl 1512.34138) Full Text: DOI
Amara, Khaled Ben; Jeribi, Aref; Kaddachi, Najib Equivalence of some properties in the theory of Banach algebras and applications. (English) Zbl 1514.46034 J. Math. Anal. Appl. 520, No. 1, Article ID 126865, 16 p. (2023). MSC: 46H20 47H08 PDF BibTeX XML Cite \textit{K. B. Amara} et al., J. Math. Anal. Appl. 520, No. 1, Article ID 126865, 16 p. (2023; Zbl 1514.46034) Full Text: DOI
Amar, Afif Ben; Garbout, Hajer Fixed point and surjectivity results for e-quasibounded and (mws)-compact multivalued maps and applications. (English) Zbl 1514.47081 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 21, 26 p. (2023). MSC: 47H10 47H04 47H08 47H30 PDF BibTeX XML Cite \textit{A. B. Amar} and \textit{H. Garbout}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 21, 26 p. (2023; Zbl 1514.47081) Full Text: DOI
Yuan, George Xianzhi Nonlinear analysis in \(p\)-vector spaces for single-valued 1-set contractive mappings. (English) Zbl 07702969 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 26, 61 p. (2022). MSC: 47H04 47H10 46A16 46A55 49J27 49J35 52A07 54C60 54H25 55M20 PDF BibTeX XML Cite \textit{G. X. Yuan}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 26, 61 p. (2022; Zbl 07702969) Full Text: DOI arXiv
Raheemm, A.; Kumar, M. Some results on controllability for a class of non-integer order differential equations with impulses. (English) Zbl 07696812 Nonlinear Dyn. Syst. Theory 22, No. 3, 330-340 (2022). MSC: 93B05 93C15 34A08 34A37 93C25 47H08 PDF BibTeX XML Cite \textit{A. Raheemm} and \textit{M. Kumar}, Nonlinear Dyn. Syst. Theory 22, No. 3, 330--340 (2022; Zbl 07696812) Full Text: Link
Belhadj, Maha; Roshan, Jamal Rezaei; Boumaiza, Mohamed; Parvaneh, Vahid Fixed-point theorems for Meir-Keeler multivalued maps and application. (English) Zbl 07682271 J. Integral Equations Appl. 34, No. 4, 389-408 (2022). MSC: 47H10 47H04 47H08 26A33 45G15 PDF BibTeX XML Cite \textit{M. Belhadj} et al., J. Integral Equations Appl. 34, No. 4, 389--408 (2022; Zbl 07682271) Full Text: DOI Link
Derbazi, Choukri Nonlinear sequential Caputo and Caputo-Hadamard fractional differential equations with Dirichlet boundary conditions in Banach spaces. (English) Zbl 07661724 Kragujevac J. Math. 46, No. 6, 841-855 (2022). MSC: 34A08 26A33 34G20 PDF BibTeX XML Cite \textit{C. Derbazi}, Kragujevac J. Math. 46, No. 6, 841--855 (2022; Zbl 07661724) Full Text: DOI Link
Iqbal, Naveed; Niazi, Azmat Ullah Khan; Khan, Ikram Ullah; Karaca, Yeliz Non-autonomous fractional evolution equations with non-instantaneous impulse conditions of order \((1, 2)\): a Cauchy problem. (English) Zbl 1515.34081 Fractals 30, No. 9, Article ID 2250196, 16 p. (2022). MSC: 34K37 34K30 34K45 45J99 47N20 37C60 PDF BibTeX XML Cite \textit{N. Iqbal} et al., Fractals 30, No. 9, Article ID 2250196, 16 p. (2022; Zbl 1515.34081) Full Text: DOI
Shah, Kamal; Mlaiki, Nabil; Abdeljawad, Thabet; Ali, Arshad Using the measure of noncompactness to study a nonlinear impulsive Cauchy problem with two different kinds of delay. (English) Zbl 1515.34082 Fractals 30, No. 8, Article ID 2240218, 14 p. (2022). MSC: 34K45 34K37 47N20 34K27 PDF BibTeX XML Cite \textit{K. Shah} et al., Fractals 30, No. 8, Article ID 2240218, 14 p. (2022; Zbl 1515.34082) Full Text: DOI
Hammou, Amouria; Hamani, Samira; Henderson, Johnny Boundary value problems for Caputo-Hadamard fractional differential inclusions in Banach spaces. (English) Zbl 07655745 Arch. Math., Brno 58, No. 4, 227-240 (2022). MSC: 26A33 34A37 PDF BibTeX XML Cite \textit{A. Hammou} et al., Arch. Math., Brno 58, No. 4, 227--240 (2022; Zbl 07655745) Full Text: DOI
Khelil, Kamel Ali; Ardjouni, Abdelouaheb; Lachouri, Adel; Bouchelaghem, Faycal Existence of solutions for fractional differential equations with \(\Psi\)-Hilfer fractional derivative with nonlocal integral boundary conditions. (English) Zbl 1515.34019 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 383-399 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B10 34B15 34G20 47N20 PDF BibTeX XML Cite \textit{K. A. Khelil} et al., Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 383--399 (2022; Zbl 1515.34019) Full Text: DOI
Benyoub, Mohammed; Donchev, Tzanko; Kitanov, Nikolay On a periodic problem for Riemann-Liouville fractional semilinear functional evolution inclusions. (English) Zbl 1516.34091 Asian-Eur. J. Math. 15, No. 10, Article ID 2250250, 13 p. (2022). MSC: 34G25 34A08 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{M. Benyoub} et al., Asian-Eur. J. Math. 15, No. 10, Article ID 2250250, 13 p. (2022; Zbl 1516.34091) Full Text: DOI
Gabeleh, Moosa; Asadi, Mehdi; Patle, Pradip Ramesh Simulation functions and Meir-Keeler condensing operators with application to integral equations. (English) Zbl 1510.47064 Asian-Eur. J. Math. 15, No. 9, Article ID 2250171, 15 p. (2022). MSC: 47H08 47H10 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., Asian-Eur. J. Math. 15, No. 9, Article ID 2250171, 15 p. (2022; Zbl 1510.47064) Full Text: DOI
Mursaleen, Mohammad Ayman A note on matrix domains of Copson matrix of order \(\alpha\) and compact operators. (English) Zbl 1504.26061 Asian-Eur. J. Math. 15, No. 7, Article ID 2250140, 12 p. (2022). MSC: 26D15 40C05 40G05 47B37 PDF BibTeX XML Cite \textit{M. A. Mursaleen}, Asian-Eur. J. Math. 15, No. 7, Article ID 2250140, 12 p. (2022; Zbl 1504.26061) Full Text: DOI
Yu, Yang-Yang; Wang, Fu-Zhang Solvability for a nonlocal dispersal model governed by time and space integrals. (English) Zbl 1506.45012 Open Math. 20, 1785-1799 (2022). MSC: 45K05 45D05 47N20 47H08 PDF BibTeX XML Cite \textit{Y.-Y. Yu} and \textit{F.-Z. Wang}, Open Math. 20, 1785--1799 (2022; Zbl 1506.45012) Full Text: DOI
Mishra, Kamla Kant; Dubey, Shruti; Baleanu, Dumitru Existence and controllability of a class of non-autonomous nonlinear evolution fractional integrodifferential equations with delay. (English) Zbl 1510.34168 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022). MSC: 34K30 34K37 34K35 93B05 47N20 PDF BibTeX XML Cite \textit{K. K. Mishra} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022; Zbl 1510.34168) Full Text: DOI
Mehravaran, Hamid; Kayvanloo, Hojjatollah Amiri; Mursaleen, Mohammad Solvability of infinite systems of fractional differential equations in the double sequence space \(2^c (\triangle)\). (English) Zbl 1503.34026 Fract. Calc. Appl. Anal. 25, No. 6, 2298-2312 (2022). MSC: 34A08 26A33 47N20 PDF BibTeX XML Cite \textit{H. Mehravaran} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2298--2312 (2022; Zbl 1503.34026) Full Text: DOI
Anh, Nguyen Thi Van; Dac, Nguyen Van; Tuan, Tran Van Decay solutions to abstract impulsive fractional mobile-immobile equations involving superlinear nonlinearities. (English) Zbl 1503.35245 Fract. Calc. Appl. Anal. 25, No. 6, 2275-2297 (2022). MSC: 35R11 35R12 47H08 47H10 47N20 PDF BibTeX XML Cite \textit{N. T. Van Anh} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2275--2297 (2022; Zbl 1503.35245) Full Text: DOI
Das, Anupam; Hazarika, Bipan; Deuri, Bhuban Chandra Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space. (English) Zbl 1509.47110 Fract. Calc. Appl. Anal. 25, No. 5, 2113-2125 (2022). MSC: 47N20 26A33 45J05 34A08 PDF BibTeX XML Cite \textit{A. Das} et al., Fract. Calc. Appl. Anal. 25, No. 5, 2113--2125 (2022; Zbl 1509.47110) Full Text: DOI
Petrosyan, Garik; Soroka, Maria; Wen, Ching-Feng A periodic boundary value problem for semilinear differential inclusions of a fractional order \(2<q<3\) in a Banach space. (English) Zbl 1499.34207 J. Nonlinear Convex Anal. 23, No. 12, 2795-2813 (2022). MSC: 34B27 PDF BibTeX XML Cite \textit{G. Petrosyan} et al., J. Nonlinear Convex Anal. 23, No. 12, 2795--2813 (2022; Zbl 1499.34207) Full Text: Link
Saha, Dipankar; Sen, Mausumi; Roy, Santanu Analyzing the existence of solution of a fractional order integral equation: a fixed point approach. (English) Zbl 1502.45005 J. Appl. Anal. 28, No. 2, 199-210 (2022). MSC: 45G10 26A33 47N20 47H08 47H10 PDF BibTeX XML Cite \textit{D. Saha} et al., J. Appl. Anal. 28, No. 2, 199--210 (2022; Zbl 1502.45005) Full Text: DOI
Petrosyan, Garik Garikovich On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space. (Russian. English summary) Zbl 1510.34043 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 32, No. 3, 415-432 (2022). MSC: 34B15 34A08 34B30 34G20 33E12 47N20 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 32, No. 3, 415--432 (2022; Zbl 1510.34043) Full Text: DOI MNR
Parvaneh, Mohsen; Farajzadeh, Ali Measure of noncompactness and JS-Geraghty-Darbo’s fixed point theorem and its applications to a system of integral equations. (English) Zbl 07622164 J. Nonlinear Convex Anal. 23, No. 4, 683-698 (2022). MSC: 47H09 47H10 05C20 PDF BibTeX XML Cite \textit{M. Parvaneh} and \textit{A. Farajzadeh}, J. Nonlinear Convex Anal. 23, No. 4, 683--698 (2022; Zbl 07622164) Full Text: Link
Zhang, Jingling; Su, Yongfu On systems of condensing operator equations with application to the systems of nonlinear integral equations in function space \(BC[0,+\infty)\). (English) Zbl 07622162 J. Nonlinear Convex Anal. 23, No. 4, 635-652 (2022). MSC: 47H09 47H10 34A12 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Y. Su}, J. Nonlinear Convex Anal. 23, No. 4, 635--652 (2022; Zbl 07622162) Full Text: Link
Zhang, Jingling; Su, Yongfu The systems of condensing operator equations and the systems of variational inequalities with the condensing operators and application to the system of integral equations. (English) Zbl 1498.47110 J. Nonlinear Convex Anal. 23, No. 3, 449-463 (2022). MSC: 47H10 47H08 47J20 45G10 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Y. Su}, J. Nonlinear Convex Anal. 23, No. 3, 449--463 (2022; Zbl 1498.47110) Full Text: Link
Balasubramaniam, P. Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness. (English) Zbl 1498.34209 Chaos Solitons Fractals 157, Article ID 111960, 10 p. (2022). MSC: 34K37 26A33 34A08 47N20 47H08 PDF BibTeX XML Cite \textit{P. Balasubramaniam}, Chaos Solitons Fractals 157, Article ID 111960, 10 p. (2022; Zbl 1498.34209) Full Text: DOI
Anh, Nguyen Thi Van; Thuy, Tran Van On the delay differential variational inequalities of parabolic-elliptic type. (English) Zbl 1514.34116 Complex Var. Elliptic Equ. 67, No. 12, 3048-3073 (2022). Reviewer: Ti-Jun Xiao (Fudan) MSC: 34K09 34K30 34K25 47N20 47J20 PDF BibTeX XML Cite \textit{N. T. Van Anh} and \textit{T. Van Thuy}, Complex Var. Elliptic Equ. 67, No. 12, 3048--3073 (2022; Zbl 1514.34116) Full Text: DOI
Yuan, George Xianzhi Nonlinear analysis by applying best approximation method in \(p\)-vector spaces. (English) Zbl 07611946 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 20, 45 p. (2022). MSC: 47H04 47H10 46A16 46A55 49J27 49J35 52A07 54C60 54H25 55M20 PDF BibTeX XML Cite \textit{G. X. Yuan}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 20, 45 p. (2022; Zbl 07611946) Full Text: DOI
Rabbani, Mohsen; Arab, Reza; Hazarika, Bipan; Aghazadeh, Nasser Existence of solution of functional integral equations by measure of noncompactness and sinc interpolation to find solution. (English) Zbl 1501.45006 Fixed Point Theory 23, No. 1, 331-350 (2022). MSC: 45G10 45N05 47H08 47H10 47N20 65R20 PDF BibTeX XML Cite \textit{M. Rabbani} et al., Fixed Point Theory 23, No. 1, 331--350 (2022; Zbl 1501.45006) Full Text: Link
Lan, Do; Phong, Vu Nam Decay solutions to retarded fractional evolution inclusions with superlinear perturbations. (English) Zbl 1500.35043 Fixed Point Theory 23, No. 1, 293-310 (2022). MSC: 35B40 47H08 47H10 PDF BibTeX XML Cite \textit{D. Lan} and \textit{V. N. Phong}, Fixed Point Theory 23, No. 1, 293--310 (2022; Zbl 1500.35043) Full Text: Link
Gabeleh, Moosa; Patel, Deepesh Kumar; Patle, Pradip Ramesh Darbo type best proximity point (pair) results using measure of noncompactness with application. (English) Zbl 07606926 Fixed Point Theory 23, No. 1, 247-266 (2022). MSC: 47H10 47H08 47H09 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., Fixed Point Theory 23, No. 1, 247--266 (2022; Zbl 07606926) Full Text: Link
Amara, Khaled Ben; Jeribi, Aref; Kaddachi, Najib On existence results in fixed set theory and applications to self-similarity. (English) Zbl 07606916 Fixed Point Theory 23, No. 1, 85-104 (2022). MSC: 47H10 45G15 PDF BibTeX XML Cite \textit{K. B. Amara} et al., Fixed Point Theory 23, No. 1, 85--104 (2022; Zbl 07606916) Full Text: Link
Jeet, Kamal; Sukavanam, N.; Bahuguna, D. Monotone iterative technique for nonlocal impulsive finite delay differential equations of fractional order. (English) Zbl 1506.34082 Differ. Equ. Dyn. Syst. 30, No. 4, 801-816 (2022). MSC: 34K07 34K30 34K37 34K45 47N20 PDF BibTeX XML Cite \textit{K. Jeet} et al., Differ. Equ. Dyn. Syst. 30, No. 4, 801--816 (2022; Zbl 1506.34082) Full Text: DOI
Bişgin, Mustafa Cemil; Sönmez, Abdulcabbar Compactness of quadruple band matrix operator and geometric properties. (English) Zbl 1504.47040 Ann. Univ. Paedagog. Crac., Stud. Math. 355(21), 17-32 (2022). MSC: 47B07 47B37 40C05 47H08 PDF BibTeX XML Cite \textit{M. C. Bişgin} and \textit{A. Sönmez}, Ann. Univ. Paedagog. Crac., Stud. Math. 355(21), 17--32 (2022; Zbl 1504.47040) Full Text: DOI
Zhang, Xuping; Sun, Pan Existence results for neutral evolution equations with nonlocal conditions and delay via fractional operator. (English) Zbl 1496.34115 Open Math. 20, 478-491 (2022). MSC: 34K30 35D35 35K55 47J35 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{P. Sun}, Open Math. 20, 478--491 (2022; Zbl 1496.34115) Full Text: DOI
Wei, Mei; Li, Yongxiang; Li, Qiang Positive mild solutions for damped elastic systems with delay and nonlocal conditions in ordered Banach space. (English) Zbl 1507.34085 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022). MSC: 34K30 34A45 47N20 PDF BibTeX XML Cite \textit{M. Wei} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022; Zbl 1507.34085) Full Text: DOI
Dac, Nguyen Van Finite-time attractivity for semilinear functional differential inclusions. (English) Zbl 1498.35096 Appl. Anal. 101, No. 16, 5571-5581 (2022). MSC: 35B41 35R70 37L30 47H08 47H10 PDF BibTeX XML Cite \textit{N. Van Dac}, Appl. Anal. 101, No. 16, 5571--5581 (2022; Zbl 1498.35096) Full Text: DOI
Cardinali, Tiziana; Matucci, Serena; Rubbioni, Paola Controllability of nonlinear integral equations of Chandrasekhar type. (English) Zbl 1498.45006 J. Fixed Point Theory Appl. 24, No. 3, Paper No. 58, 21 p. (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47H08 47N20 93B05 93B52 PDF BibTeX XML Cite \textit{T. Cardinali} et al., J. Fixed Point Theory Appl. 24, No. 3, Paper No. 58, 21 p. (2022; Zbl 1498.45006) Full Text: DOI
Kumar, Satish; Singh, Hitesh Kumar; Singh, Beenu; Arora, Vinay Application of Petryshyn’s fixed point theorem of existence result for non-linear 2D Volterra functional integral equations. (English) Zbl 1504.47118 Differ. Equ. Appl. 14, No. 3, 487-497 (2022). MSC: 47N20 47H08 45D05 PDF BibTeX XML Cite \textit{S. Kumar} et al., Differ. Equ. Appl. 14, No. 3, 487--497 (2022; Zbl 1504.47118) Full Text: DOI
Dudek, Szymon; Olszowy, Leszek Measures of noncompactness in the space of regulated functions on an unbounded interval. (English) Zbl 07587352 Ann. Funct. Anal. 13, No. 4, Paper No. 63, 13 p. (2022). MSC: 47H30 46E40 PDF BibTeX XML Cite \textit{S. Dudek} and \textit{L. Olszowy}, Ann. Funct. Anal. 13, No. 4, Paper No. 63, 13 p. (2022; Zbl 07587352) Full Text: DOI
Patle, Pradip Ramesh; Gabeleh, Moosa On a new variant of \(\mathcal{F}\)-contractive mappings with application to fractional differential equations. (English) Zbl 07586697 Nonlinear Anal., Model. Control 27, No. 5, 964-979 (2022). MSC: 47Hxx 34Axx 54Hxx PDF BibTeX XML Cite \textit{P. R. Patle} and \textit{M. Gabeleh}, Nonlinear Anal., Model. Control 27, No. 5, 964--979 (2022; Zbl 07586697) Full Text: DOI
Shatnawi, Taqi A. M.; Boudaoui, Ahmed; Shatanawi, Wasfi; Laksaci, Noura Solvability of a system of integral equations in two variables in the weighted Sobolev space \(W^{1,1}_\omega (a, b)\) using a generalized measure of noncompactness. (English) Zbl 07586695 Nonlinear Anal., Model. Control 27, No. 5, 927-947 (2022). MSC: 47Hxx 45Jxx 47Nxx PDF BibTeX XML Cite \textit{T. A. M. Shatnawi} et al., Nonlinear Anal., Model. Control 27, No. 5, 927--947 (2022; Zbl 07586695) Full Text: DOI
Dhiman, Deepak; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan Solvability of some nonlinear functional integral equations via measure of noncompactness. (English) Zbl 07583810 Adv. Stud. Contemp. Math., Kyungshang 32, No. 2, 157-171 (2022). Reviewer: Jürgen Appell (Würzburg) MSC: 47H10 47H08 39B22 PDF BibTeX XML Cite \textit{D. Dhiman} et al., Adv. Stud. Contemp. Math., Kyungshang 32, No. 2, 157--171 (2022; Zbl 07583810)
Metwali, Mohamed M. A. Solvability of Gripenberg’s equations of fractional order with perturbation term in weighted \(L_p\)-spaces on \(\mathbb{R}^+\). (English) Zbl 1498.45008 Turk. J. Math. 46, No. 2, SI-1, 481-498 (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 26A33 47H08 47H10 47N20 PDF BibTeX XML Cite \textit{M. M. A. Metwali}, Turk. J. Math. 46, No. 2, 481--498 (2022; Zbl 1498.45008) Full Text: DOI
Mahammad, Khuddush; Kapula, Rajendra Prasad; Doddi, Leela Existence of solutions for an infinite system of tempered fractional order boundary value problems in the spaces of tempered sequences. (English) Zbl 1495.34126 Turk. J. Math. 46, No. 2, SI-1, 433-452 (2022). MSC: 34N05 26A33 PDF BibTeX XML Cite \textit{K. Mahammad} et al., Turk. J. Math. 46, No. 2, 433--452 (2022; Zbl 1495.34126) Full Text: DOI
Gökçe, Fadime Compact matrix operators on Banach space of absolutely \(k\)-summable series. (English) Zbl 1505.40015 Turk. J. Math. 46, No. 3, 1004-1019 (2022). MSC: 40C05 46B45 40F05 47B37 PDF BibTeX XML Cite \textit{F. Gökçe}, Turk. J. Math. 46, No. 3, 1004--1019 (2022; Zbl 1505.40015) Full Text: DOI
Das, Anupam; Rabbani, Mohsen; Hazarika, Bipan; Panda, Sumati Kumari A fixed point theorem using condensing operators and its applications to Erdélyi-Kober bivariate fractional integral equations. (English) Zbl 1496.45003 Turk. J. Math. 46, No. 6, 2513-2529 (2022). MSC: 45G05 47H08 47H09 47H10 47N20 PDF BibTeX XML Cite \textit{A. Das} et al., Turk. J. Math. 46, No. 6, 2513--2529 (2022; Zbl 1496.45003) Full Text: DOI
Djolović, Ivana Compact matrix operators between some Cesàro weighted sequence spaces. (English) Zbl 1510.47046 Bull. Iran. Math. Soc. 48, No. 4, 1667-1677 (2022). MSC: 47B37 46B45 PDF BibTeX XML Cite \textit{I. Djolović}, Bull. Iran. Math. Soc. 48, No. 4, 1667--1677 (2022; Zbl 1510.47046) Full Text: DOI
Jeribi, Aref; Krichen, Bilel; Salhi, Makrem Characterization of essential spectra involving weakly demicompact operators on Banach spaces. (English) Zbl 1510.47029 Bull. Iran. Math. Soc. 48, No. 4, 1513-1538 (2022). MSC: 47B07 47A53 47A10 PDF BibTeX XML Cite \textit{A. Jeribi} et al., Bull. Iran. Math. Soc. 48, No. 4, 1513--1538 (2022; Zbl 1510.47029) Full Text: DOI
Zhang, Xuping Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions. (English) Zbl 1496.35443 Electron. J. Differ. Equ. 2022, Paper No. 31, 14 p. (2022). MSC: 35R12 35R10 35K90 47D06 47J22 PDF BibTeX XML Cite \textit{X. Zhang}, Electron. J. Differ. Equ. 2022, Paper No. 31, 14 p. (2022; Zbl 1496.35443) Full Text: Link
Deep, Amar; Kumar, Ashish; Abbas, Syed; Hazarika, Bipan An existence result for functional integral equations via Petryshyn’s fixed point theorem. (English) Zbl 07576911 J. Integral Equations Appl. 34, No. 2, 165-181 (2022). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{A. Deep} et al., J. Integral Equations Appl. 34, No. 2, 165--181 (2022; Zbl 07576911) Full Text: DOI
Arab, Reza; Rabbani, Mohsen Existence of solution of functional Volterra-Fredholm integral equations in space \(L^\infty(\mathbb{R}_+)\) and sinc interpolation to find solution. (English) Zbl 1501.45003 J. Integral Equations Appl. 34, No. 2, 151-164 (2022). Reviewer: Alexander N. Tynda (Penza) MSC: 45G10 45D05 45B05 47H08 47H10 47N20 65R20 PDF BibTeX XML Cite \textit{R. Arab} and \textit{M. Rabbani}, J. Integral Equations Appl. 34, No. 2, 151--164 (2022; Zbl 1501.45003) Full Text: DOI
Samantaray, S.; Nayak, L.; Padhy, B. P. On some classes of compact and matrix operators on the generalized weighted mean difference sequence spaces of fractional order. (English) Zbl 1500.47050 J. Anal. 30, No. 2, 483-500 (2022). MSC: 47B39 46A45 46A35 46B45 PDF BibTeX XML Cite \textit{S. Samantaray} et al., J. Anal. 30, No. 2, 483--500 (2022; Zbl 1500.47050) Full Text: DOI
Karakaya, Vatan; Sekman, Derya A new type of contraction via measure of non-compactness with an application to Volterra integral equation. (English) Zbl 07565061 Publ. Inst. Math., Nouv. Sér. 111(125), 111-121 (2022). Reviewer: Jürgen Appell (Würzburg) MSC: 47N20 47H08 47H09 45D05 PDF BibTeX XML Cite \textit{V. Karakaya} and \textit{D. Sekman}, Publ. Inst. Math., Nouv. Sér. 111(125), 111--121 (2022; Zbl 07565061) Full Text: DOI
Metwali, Mohamed M. A. Solvability in weighted \(L_1\)-spaces for the \(m\)-product of integral equations and model of the dynamics of the capillary rise. (English) Zbl 07562115 J. Math. Anal. Appl. 515, No. 2, Article ID 126461, 16 p. (2022). MSC: 47Hxx 45Gxx 92Dxx PDF BibTeX XML Cite \textit{M. M. A. Metwali}, J. Math. Anal. Appl. 515, No. 2, Article ID 126461, 16 p. (2022; Zbl 07562115) Full Text: DOI
Patle, Pradip Ramesh; Gabeleh, Moosa; Rakocevic, Vladimir On new classes of cyclic (noncyclic) condensing operators with applications. (English) Zbl 1500.47074 J. Nonlinear Convex Anal. 23, No. 7, 1335-1351 (2022). MSC: 47H08 47H09 47N20 34A08 PDF BibTeX XML Cite \textit{P. R. Patle} et al., J. Nonlinear Convex Anal. 23, No. 7, 1335--1351 (2022; Zbl 1500.47074) Full Text: Link
Das, Anupam; Rabbani, Mohsen; Mohiuddine, S. A.; Deuri, Bhuban Chandra Iterative algorithm and theoretical treatment of existence of solution for \((k, z)\)-Riemann-Liouville fractional integral equations. (English) Zbl 1496.45005 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 39, 16 p. (2022). Reviewer: Yogesh Sharma (Sardarpura) MSC: 45G15 46B45 47H08 47H10 47N20 26A33 PDF BibTeX XML Cite \textit{A. Das} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 39, 16 p. (2022; Zbl 1496.45005) Full Text: DOI
Banaś, Józef; Nalepa, Rafał; Rzepka, Beata The study of the solvability of infinite systems of integral equations via measures of noncompactness. (English) Zbl 1502.45007 Numer. Funct. Anal. Optim. 43, No. 8, 961-986 (2022). MSC: 45G15 45D05 47H08 PDF BibTeX XML Cite \textit{J. Banaś} et al., Numer. Funct. Anal. Optim. 43, No. 8, 961--986 (2022; Zbl 1502.45007) Full Text: DOI
Obukhovskii, Valeri; Petrosyan, Garik; Wen, Ching-Feng; Bocharov, Vladislav On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces. (English) Zbl 07556351 J. Nonlinear Var. Anal. 6, No. 3, 185-197 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{V. Obukhovskii} et al., J. Nonlinear Var. Anal. 6, No. 3, 185--197 (2022; Zbl 07556351) Full Text: DOI
Amor, Sana Hadj; Traiki, Abdelhak Fixed point theorems for convex-power condensing operators in Banach algebra. (English) Zbl 07543126 J. Integral Equations Appl. 34, No. 1, 59-73 (2022). MSC: 47H08 47H09 47H10 PDF BibTeX XML Cite \textit{S. H. Amor} and \textit{A. Traiki}, J. Integral Equations Appl. 34, No. 1, 59--73 (2022; Zbl 07543126) Full Text: DOI
Tamimi, H.; Saiedinezhad, S.; Ghaemi, M. B. The measure of noncompactness in a generalized coupled fixed point theorem and its application to an integro-differential system. (English) Zbl 07542695 J. Comput. Appl. Math. 413, Article ID 114380, 16 p. (2022). Reviewer: Mohamed Abdalla Darwish (Damanhour) MSC: 47H08 47H10 45G15 PDF BibTeX XML Cite \textit{H. Tamimi} et al., J. Comput. Appl. Math. 413, Article ID 114380, 16 p. (2022; Zbl 07542695) Full Text: DOI
Haque, Inzamamul; Ali, Javid; Mursaleen, M. Solvability of implicit fractional order integral equation in \(\ell_p\) (\(1 \leq p < \infty\)) space via generalized Darbo’s fixed point theorem. (English) Zbl 1491.45018 J. Funct. Spaces 2022, Article ID 1674243, 8 p. (2022). MSC: 45N05 47N20 47H10 47H08 26A33 PDF BibTeX XML Cite \textit{I. Haque} et al., J. Funct. Spaces 2022, Article ID 1674243, 8 p. (2022; Zbl 1491.45018) Full Text: DOI