×

Application of fractional techniques in the analysis of forest fires. (English) Zbl 1401.94082

Summary: In this paper we study the global behavior of forest fires (FFs) in the Continental United States for the period 1984–2013. The data are obtained from a public domain catalog maintained by the Monitoring Trends in Burn Severity project. First we adopt clustering analysis to reduce the information dimensionality. Then we adopt mathematical tools commonly used in the analysis of dynamical systems, namely fractal dimension, entropy and fractional Fourier transform. The fractional techniques unveil FF patterns embedded in the data.

MSC:

94A17 Measures of information, entropy
26A33 Fractional derivatives and integrals
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
65T50 Numerical methods for discrete and fast Fourier transforms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. M. Bella, Esteban G. Jobbágy, José M. Paruelo and S. Pinnock, Continental fire density patterns in South America, Global Ecol. Biogeogr. 15 (2006), 192-199.
[2] Ross A. Bradstock, Effects of large fires on biodiversity in south-eastern Australia: Disaster or template for diversity? Int. J. Wildland Fire 17 (2009), 809-822.
[3] Chad T. Hanson and Dennis C. Odion, Is fire severity increasing in the Sierra Nevada, California, USA? Int. J. Wildland Fire 23 (2014), 1-8.
[4] Adrián Regos, Manuela D’Amen, Sergi Herrando, Antoine Guisan and Lluís Brotons, Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: Dynamic distribution modelling of an early-successional species - The near-threatened Dartford Warbler (Sylvia undata), J. Ornithol. (2015), 1-12.
[5] Mike Flannigan, Carbon cycle: Fire evolution split by continent, Nat. Geosci 8 (2015), 167-168.
[6] Rachel A. Loehman, Elizabeth Reinhardt and Karin L. Riley, Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems, Forest Ecol Manage 317 (2014), 9-19.
[7] António M. Lopes and J. A. Tenreiro Machado, Analysis of temperature time-series: Embedding dynamics into the MDS method, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 851-871.
[8] William T. Sommers, Rachel A. Loehman and Colin C. Hardy, Wildland fire emissions, carbon, and climate: Science overview and knowledge needs, For. Ecol. Manage. 317 (2014), 1-8.
[9] Thomas Zumbrunnen, Gianni B. Pezzatti, Patricia Menéndez, Harald Bugmann, Matthias Bürgi and Marco Conedera, Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland, For. Ecol. Manage. 261 (2011), 2188-2199.
[10] Anabela Carvalho, Alexandra Monteiro, Mike Flannigan, Silvina Solman, Ana Isabel Miranda and Carlos Borrego, Forest fires in a changing climate and their impacts on air quality, Atmos. Environ. 45 (2011), 5545-5553.
[11] Markus Reichstein, Michael Bahn, Philippe Ciais, Dorothea Frank, Miguel D. Mahecha, Sonia I. Seneviratne, Jakob Zscheischler, Christian Beer, Nina Buchmann, David C. Frank et al., Climate extremes and the carbon cycle, Nature 500 (2013), 287-295.
[12] Aiguo Dai, Drought under global warming: A review, Wiley Interdiscip. Rev. Climate Change 2 (2011), 45-65.
[13] Ryan Kelly, Melissa L. Chipman, Philip E. Higuera, Ivanka Stefanova, Linda B. Brubaker and Feng Sheng Hu, Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, Proc. National Acad. Sci. 110 (2013), 13055-13060.
[14] Merritt R. Turetsky, Evan S. Kane, Jennifer W. Harden, Roger D. Ottmar, Kristen L. Manies, Elizabeth Hoy and Eric S. Kasischke, Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nat. Geosci. 4 (2011), 27-31.
[15] Jesús San-Miguel-Ayanz, Ernst Schulte, Guido Schmuck and Andrea Camia, The European Forest Fire Information System in the context of environmental policies of the European Union, Forest Policy Econ. 29 (2013), 19-25.
[16] R. Zamora, J. R. Molina-Martínez, M. A. Herrera and F. Rodríguez y Silva, A model for wildfire prevention planning in game resources, Ecol. Modell. 221 (2010), 19-26.
[17] J. A. Machado and António M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calculus Appl. Anal. 18 (2015), 459-478. · Zbl 1323.92092
[18] J. A. Tenreiro Machado and António M. Lopes, The persistence of memory, Nonlinear Dyn. 79 (2015), 63-82.
[19] J. A. Tenreiro Machado, Carla M. A. Pinto and A. Mendes Lopes, A review on the characterization of signals and systems by power law distributions, Signal Process. 107 (2015), 246-253.
[20] J. A. T Machado and A.M. Lopes, Complex dynamics of forest fires, Math. Prob. Eng. 2014 (2014), 8.
[21] Weiguo Song, Jian Wang, Kohyu Satoh and Weicheng Fan, Three types of power-law distribution of forest fires in Japan, Ecol. Modell. 196 (2006), 527-532.
[22] Donald L. Turcotte and Bruce D. Malamud, Landslides, forest fires, and earthquakes: Examples of self-organized critical behavior, Phys. A Stat. Mech. Appl. 340 (2004), 580-589.
[23] Per Bak, Kan Chen and Chao Tang, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147 (1990), 297-300.
[24] Paul Barford, Azer Bestavros, Adam Bradley and Mark Crovella, Changes in web client access patterns: Characteristics and caching implications, World Wide Web 2 (1999), 15-28.
[25] Barbara Drossel and Franz Schwabl, Self-organized critical forest-fire model, Phys. Rev. Lett. 69 (1992), 1629.
[26] Bruce D. Malamud, Gleb Morein and Donald L. Turcotte, Forest fires: An example of self-organized critical behavior, Science 281 (1998), 1840-1842.
[27] William J. Reed and Kevin S. McKelvey, Power-law behaviour and parametric models for the size-distribution of forest fires, Ecol. Modell. 150 (2002), 239-254.
[28] Luciano Telesca, Giuseppe Amatulli, Rosa Lasaponara, Michele Lovallo and Adriano Santulli, Time-scaling properties in forest-fire sequences observed in Gargano area (southern Italy), Ecol. Modell. 185 (2005), 531-544.
[29] Luciano Telesca, Giuseppe Amatucci, Rosa Lasaponara, Michele Lovallo and Maria Joao Rodrigues, Space-time fractal properties of the forest-fire series in central Italy, Commun. Nonlinear Sci. Numer. Simul. 12 (2007), 1326-1333. · Zbl 1112.62131
[30] Imogen Fletcher, Luiz Aragão, André Lima, Yosio Shimabukuro and P. Friedlingstein, Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area, Biogeosciences 11 (2014), 1449-1459.
[31] Alan J. Tepley and Thomas Thorstein Veblen, Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA, Ecological Monographs (2015).
[32] António M. Lopes and J. A. Tenreiro Machado, Dynamic analysis and pattern visualization of forest fires, PLoS ONE 9 (2014), e105465.
[33] António M. Lopes and José A. Tenreiro Machado, State space analysis of forest fires, J. Vib. Control 22 (2016), 2153-2164.
[34] Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle and Stephen Howard, Project for monitoring trends in burn severity, Fire Ecol. 3 (2007), 3-21.
[35] Anil K Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31 (2010), 651-666.
[36] Franz Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric data structure, ACM Comput. Surveys (CSUR) 23 (1991), 345-405.
[37] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara and Sung Nok Chiu, Spatial tessellations: Concepts and applications of Voronoi diagrams, 501, John Wiley & Sons, 2009.
[38] Benoıt B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967), 636-638.
[39] António M. Lopes and J. A. Tenreiro Machado, Modeling vegetable fractals by means of fractional-order equations, J Vib. Control (2015), 1077546315581228.
[40] Mark E. J. Newman, Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46 (2005), 323-351.
[41] Carla M. A. Pinto, A. Mendes Lopes and J. A. Tenreiro Machado, A review of power laws in real life phenomena, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3558-3578. · Zbl 1248.60020
[42] J. A. Tenreiro Machado, Carla Pinto and A. Mendes Lopes, Power law and entropy analysis of catastrophic phenomena, Math. Prob. Eng. 2013 (2013). · Zbl 1299.91100
[43] Carla M. A. Pinto, A. Mendes Lopes and J. A. Tenreiro Machado, Double power laws, fractals and self-similarity, Appl. Math. Modell. 38 (2014), 4019-4026.
[44] M. V. Berry, Diffractals, J. Phys. Math. General 12 (1979), 781-797.
[45] J. Fleckinger-Pelle and M.L. Lapidus, Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien, Comptes rendus de l’Académie des sciences. Série 1, Mathématique 306 (1988), 171-175. · Zbl 0654.35079
[46] M. Schroeder, Fractals, Chaos, power laws: Minutes from an infinite paradise, W.H. Freeman, New York, 1991. · Zbl 0758.58001
[47] Aleksandr Iakovlevich Khinchin, Mathematical foundations of information theory, 434, Courier Dover Publications, 1957.
[48] Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479-487. · Zbl 1082.82501
[49] Marcelo R Ubriaco, Entropies based on fractional calculus, Phys. Lett. A 373 (2009), 2516-2519. · Zbl 1231.82024
[50] Giorgio Kaniadakis, Maximum entropy principle and power-law tailed distributions, The Eur. Phys. J. B - Condens. Matter Complex Syst. 70 (2009), 3-13. · Zbl 1188.82034
[51] Bhu D. Sharma and Inder J. Taneja, Entropy of type (!, ) and other generalized measures in information theory, Metrika 22 (1975), 205-215. · Zbl 0328.94012
[52] Bhudev D. Sharma and Dharam P. Mittal, New nonadditive measures of entropy for discrete probability distributions, J. Math. Sci. 10 (1975), 28-40.
[53] Somayeh Asgarani, A set of new three-parameter entropies in terms of a generalized incomplete Gamma function, Phys. A Stat. Mech. Appl. 392 (2013), 1972-1976.
[54] Somayeh Asgarani and Behrouz Mirza, Two-parameter entropies, Sk,r, and their dualities, Phys. A Stat. Mech. Appl. 417 (2015), 185-192.
[55] Christian Beck, Generalised information and entropy measures in physics, Contemp. Phys. 50 (2009), 495-510.
[56] P. K. Bhatia, On certainty and generalized information measures, Int. J. Contemp. Math. Sci. 5 (2010), 1035-1043. · Zbl 1205.94056
[57] Tatsuaki Wada and Hiroki Suyari, A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem, Phys. Lett. A 368 (2007), 199-205. · Zbl 1209.94027
[58] Dumitru Baleanu, Kai Diethelm, Enrico Scalas and Juan J Trujillo, Models and numerical methods, 3, World Scientific, 2012.
[59] Clara Mihaela Ionescu, The human respiratory system: An analysis of the interplay between anatomy, structure, breathing and fractal dynamics, Springer Science & Business Media, 2013. · Zbl 1273.92016
[60] Miller Kenneth and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. · Zbl 0789.26002
[61] Ying Luo and YangQuan Chen, Fractional order motion controls, John Wiley & Sons, 2012.
[62] Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010. · Zbl 1210.26004
[63] Ivo Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer Science & Business Media, 2011. · Zbl 1228.34002
[64] António M Lopes and JT Machado, Fractional order models of leaves, J. Vib. Control 20 (2014), 998-1008.
[65] José Tenreiro Machado, Fractional order generalized information, Entropy 16 (2014), 2350-2361.
[66] Duarte Valério, Juan J. Trujillo, Margarita Rivero, J. A. Tenreiro Machado and Dumitru Baleanu, Fractional calculus: A survey of useful formulas, Eur. Phys. J. Spec. Topics 222 (2013), 1827-1846.
[67] J Machado, António Lopes, Fernando Duarte, Manuel Ortigueira and Raul Rato, Rhapsody in fractional, Fract. Calculus Appl. Anal. 17 (2014), 1188-1214.
[68] J. Tenreiro Machado, Fernando B. Duarte and Gonçalo Monteiro Duarte, Analysis of financial data series using fractional Fourier transform and multidimensional scaling, Nonlinear Dyn. 65 (2011), 235-245.
[69] Haldun M. Ozaktas, Zeev Zalevsky and M. Alper Kutay, The fractional Fourier transform, Wiley, Chichester, 2001.
[70] Victor Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math. 25 (1980), 241-265. · Zbl 0434.42014
[71] Luis B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (1994), 3084-3091.
[72] Naveen Kumar Nishchal, Joby Joseph and Kehar Singh, Securing information using fractional Fourier transform in digital holography, Opt. Commun. 235 (2004), 253-259.
[73] Adhemar Bultheel and Héctor E Martınez Sulbaran, Computation of the fractional Fourier transform, Appl. Comput. Harmonic Anal. 16 (2004), 182-202. · Zbl 1049.65156
[74] Tadeusz Cali´nski and Jerzy Harabasz, A dendrite method for cluster analysis, Commun. Stat. Theory Methods 3 (1974), 1-27. · Zbl 0273.62010
[75] David L. Davies and Donald W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell. (1979), 224-227.
[76] Peter J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math. 20 (1987), 53-65. · Zbl 0636.62059
[77] António M. Lopes and J. A. Tenreiro Machado, Entropy analysis of industrial accident data series, J. Comput. Nonlinear Dyn. 11 (2016), 031006.
[78] António M. Lopes and J. A. Tenreiro Machado, Integer and fractional-order entropy analysis of earthquake data series, Nonlinear Dyn. 84 (2016), 79-90.
[79] J. A. Tenreiro Machado, António M. Lopes and Alexandra M. Galhano, Multidimensional scaling visualization using parametric similarity indices, Entropy 17 (2015), 1775-1794. · Zbl 1334.37094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.