Tang, Dong; Pang, Fuzhen; Zhang, Zhongyu; Li, Liaoyuan Flexural wave propagation and attenuation through Timoshenko beam coupled with periodic resonators by the method of reverberation-ray matrix. (English) Zbl 07312415 Eur. J. Mech., A, Solids 86, Article ID 104153, 17 p. (2021). MSC: 74 PDF BibTeX XML Cite \textit{D. Tang} et al., Eur. J. Mech., A, Solids 86, Article ID 104153, 17 p. (2021; Zbl 07312415) Full Text: DOI
Barsukow, Wasilij The active flux scheme for nonlinear problems. (English) Zbl 07301281 J. Sci. Comput. 86, No. 1, Paper No. 3, 34 p. (2021). MSC: 65M08 35L65 35L45 65M25 PDF BibTeX XML Cite \textit{W. Barsukow}, J. Sci. Comput. 86, No. 1, Paper No. 3, 34 p. (2021; Zbl 07301281) Full Text: DOI
Liu, Ying; Chen, Yanping; Huang, Yunqing; Wang, Yang Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. (English) Zbl 07300786 Electron Res. Arch. 29, No. 1, 1859-1880 (2021). MSC: 65M60 65M55 65H10 65M12 35M13 78A30 82D37 35Q81 PDF BibTeX XML Cite \textit{Y. Liu} et al., Electron Res. Arch. 29, No. 1, 1859--1880 (2021; Zbl 07300786) Full Text: DOI
Zhang, Guoliang; Zheng, Shaoqin; Xiong, Tao A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. (English) Zbl 07300784 Electron Res. Arch. 29, No. 1, 1819-1839 (2021). MSC: 65M06 65M25 65L06 PDF BibTeX XML Cite \textit{G. Zhang} et al., Electron Res. Arch. 29, No. 1, 1819--1839 (2021; Zbl 07300784) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 07285709 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 07285709) Full Text: DOI
Cao, Luling; He, Yinnian; Li, Jian; Yang, Di Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. (English) Zbl 1452.65227 J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021). MSC: 65M60 65M25 65M15 65M12 76S05 76D05 35Q30 PDF BibTeX XML Cite \textit{L. Cao} et al., J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021; Zbl 1452.65227) Full Text: DOI
Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal balance laws. Results on existence, uniqueness and regularity. (English) Zbl 07315495 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 475-482 (2020). MSC: 35L03 35L65 65M25 35D30 PDF BibTeX XML Cite \textit{A. Keimer} et al., AIMS Ser. Appl. Math. 10, 475--482 (2020; Zbl 07315495)
Gong, Xiaoqian; Kawski, Matthias Analysis of a nonlinear hyperbolic conservation law with measure-valued data. (English) Zbl 07315493 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 457-464 (2020). MSC: 35R06 35L65 65M25 93C20 PDF BibTeX XML Cite \textit{X. Gong} and \textit{M. Kawski}, AIMS Ser. Appl. Math. 10, 457--464 (2020; Zbl 07315493)
Lapin, A.; Laitinen, E. A numerical model for steel continuous casting problem in a time-variable domain. (English) Zbl 07309065 Lobachevskii J. Math. 41, No. 12, 2664-2672 (2020). MSC: 65M25 65N06 65N30 65N85 65H10 80A22 35Q79 PDF BibTeX XML Cite \textit{A. Lapin} and \textit{E. Laitinen}, Lobachevskii J. Math. 41, No. 12, 2664--2672 (2020; Zbl 07309065) Full Text: DOI
Carlini, E.; Festa, A.; Forcadel, N. A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations on networks. (English) Zbl 07275253 SIAM J. Numer. Anal. 58, No. 6, 3165-3196 (2020). MSC: 65M15 65M25 49L25 90B20 PDF BibTeX XML Cite \textit{E. Carlini} et al., SIAM J. Numer. Anal. 58, No. 6, 3165--3196 (2020; Zbl 07275253) Full Text: DOI
Favorskaya, A. V.; Khokhlov, N. I.; Petrov, I. B. Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape. (English) Zbl 1451.65134 Lobachevskii J. Math. 41, No. 4, 512-525 (2020). MSC: 65M25 76-10 76Q05 74J05 86A15 PDF BibTeX XML Cite \textit{A. V. Favorskaya} et al., Lobachevskii J. Math. 41, No. 4, 512--525 (2020; Zbl 1451.65134) Full Text: DOI
Mironova, L. B. Boundary-value problems with data on characteristics for hyperbolic systems of equations. (English) Zbl 1450.35165 Lobachevskii J. Math. 41, No. 3, 400-406 (2020). MSC: 35L50 35C15 PDF BibTeX XML Cite \textit{L. B. Mironova}, Lobachevskii J. Math. 41, No. 3, 400--406 (2020; Zbl 1450.35165) Full Text: DOI
Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I. Numerical continuation method for nonlinear system of scalar and functional equations. (English) Zbl 1452.65092 Comput. Math. Math. Phys. 60, No. 3, 404-410 (2020) and Zh. Vychisl. Mat. Mat. Fiz. 60, No. 3, 405-412 (2020). MSC: 65H10 PDF BibTeX XML Cite \textit{G. V. Paradezhenko} et al., Comput. Math. Math. Phys. 60, No. 3, 404--410 (2020; Zbl 1452.65092) Full Text: DOI
Dobrokhotov, S. Yu.; Klimenko, M. V.; Nosikov, I. A.; Tolchennikov, A. A. Variational method for computing ray trajectories and fronts of tsunami waves generated by a localized source. (English. Russian original) Zbl 1450.35257 Comput. Math. Math. Phys. 60, No. 8, 1392-1401 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1439-1448 (2020). MSC: 35Q86 35Q35 86A15 86A05 76B15 65M25 PDF BibTeX XML Cite \textit{S. Yu. Dobrokhotov} et al., Comput. Math. Math. Phys. 60, No. 8, 1392--1401 (2020; Zbl 1450.35257); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1439--1448 (2020) Full Text: DOI
Balkizov, Zh. A. Nonlocal boundary-value problem for a third-order parabolic-hyperbolic equation with degeneration of type and order in the hyperbolicity domain. (English. Russian original) Zbl 1450.35181 J. Math. Sci., New York 250, No. 5, 728-739 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 14-24 (2018). MSC: 35M10 35M13 35K35 PDF BibTeX XML Cite \textit{Zh. A. Balkizov}, J. Math. Sci., New York 250, No. 5, 728--739 (2020; Zbl 1450.35181); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 14--24 (2018) Full Text: DOI
Asmouh, Ilham; El-Amrani, Mofdi; Seaid, Mohammed; Yebari, Naji A conservative semi-Lagrangian finite volume method for convection-diffusion problems on unstructured grids. (English) Zbl 1452.65304 J. Sci. Comput. 85, No. 1, Paper No. 11, 24 p. (2020). MSC: 65N08 65M25 76R50 76U60 85A05 PDF BibTeX XML Cite \textit{I. Asmouh} et al., J. Sci. Comput. 85, No. 1, Paper No. 11, 24 p. (2020; Zbl 1452.65304) Full Text: DOI
Arregui, Iñigo; Salvador, Beatriz; Ševčovič, Daniel; Vázquez, Carlos PDE models for American options with counterparty risk and two stochastic factors: mathematical analysis and numerical solution. (English) Zbl 1448.91291 Comput. Math. Appl. 79, No. 5, 1525-1542 (2020). MSC: 91G20 60G40 91G60 35Q91 35R60 65M25 65M60 PDF BibTeX XML Cite \textit{I. Arregui} et al., Comput. Math. Appl. 79, No. 5, 1525--1542 (2020; Zbl 1448.91291) Full Text: DOI
Nazaikinskii, Vladimir E.; Bedrikovetsky, Pavel G.; Kuzmina, Liudmila I.; Osipov, Yuri V. Exact solution for deep bed filtration with finite blocking time. (English) Zbl 07252388 SIAM J. Appl. Math. 80, No. 5, 2120-2143 (2020). MSC: 76S05 35L50 65M25 PDF BibTeX XML Cite \textit{V. E. Nazaikinskii} et al., SIAM J. Appl. Math. 80, No. 5, 2120--2143 (2020; Zbl 07252388) Full Text: DOI
McMillan, Benjamin B. Geometry and conservation laws for a class of second-order parabolic equations. I: Geometry. (English) Zbl 1448.35015 J. Geom. Phys. 157, Article ID 103824, 29 p. (2020). MSC: 35A30 35K55 58A15 35K93 35K96 PDF BibTeX XML Cite \textit{B. B. McMillan}, J. Geom. Phys. 157, Article ID 103824, 29 p. (2020; Zbl 1448.35015) Full Text: DOI
Kyrylych, V. M.; Slyusarchuk, O. Z. Boundary value problems with nonlocal conditions for hyperbolic systems of equations with two independent variables. (English) Zbl 1447.35216 Mat. Stud. 53, No. 2, 159-180 (2020). MSC: 35L57 35R09 PDF BibTeX XML Cite \textit{V. M. Kyrylych} and \textit{O. Z. Slyusarchuk}, Mat. Stud. 53, No. 2, 159--180 (2020; Zbl 1447.35216) Full Text: DOI
Careaga, Julio; Diehl, Stefan Entropy solutions and flux identification of a scalar conservation law modelling centrifugal sedimentation. (English) Zbl 1446.35073 Math. Methods Appl. Sci. 43, No. 7, 4530-4557 (2020). MSC: 35L65 35L04 76T20 35R30 PDF BibTeX XML Cite \textit{J. Careaga} and \textit{S. Diehl}, Math. Methods Appl. Sci. 43, No. 7, 4530--4557 (2020; Zbl 1446.35073) Full Text: DOI
Helzel, Christiane; Kerkmann, David An active flux method for cut cell grids. (English) Zbl 07239635 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 507-515 (2020). MSC: 65M08 65N08 65M12 65M25 35L65 35L04 35D30 PDF BibTeX XML Cite \textit{C. Helzel} and \textit{D. Kerkmann}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 507--515 (2020; Zbl 07239635) Full Text: DOI
Ziggaf, Moussa; Boubekeur, Mohamed; Kissami, Imad; Benkhaldoun, Fayssal; El Mahi, Imad The FVC scheme on unstructured meshes for the two-dimensional shallow water equations. (English) Zbl 07239630 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 455-465 (2020). MSC: 65M08 65M25 76D05 76U05 PDF BibTeX XML Cite \textit{M. Ziggaf} et al., in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 455--465 (2020; Zbl 07239630) Full Text: DOI
Fellner, Klemens; Hughes, Barry D. Solutions of a non-local aggregation equation: universal bounds, concavity changes, and efficient numerical solutions. (English) Zbl 1445.35294 Math. Methods Appl. Sci. 43, No. 8, 5398-5429 (2020). MSC: 35R09 35F55 35L45 45K05 65M25 35Q92 PDF BibTeX XML Cite \textit{K. Fellner} and \textit{B. D. Hughes}, Math. Methods Appl. Sci. 43, No. 8, 5398--5429 (2020; Zbl 1445.35294) Full Text: DOI
Huang, Lili; Mu, Chunlai A nonlocal shallow-water model with the weak Coriolis and equatorial undercurrent effects. (English) Zbl 1440.35270 J. Differ. Equations 269, No. 9, 6794-6829 (2020). MSC: 35Q35 35Q86 35B30 35G25 76B15 76U60 86A05 65M25 PDF BibTeX XML Cite \textit{L. Huang} and \textit{C. Mu}, J. Differ. Equations 269, No. 9, 6794--6829 (2020; Zbl 1440.35270) Full Text: DOI
Benítez, M.; Bermúdez, A.; Fontán, P. Non-Eulerian Newmark methods: a powerful tool for free-boundary continuum mechanics problems. (English) Zbl 1440.65120 J. Sci. Comput. 83, No. 3, Paper No. 44, 27 p. (2020). MSC: 65M25 65M60 65N30 76D05 35Q30 PDF BibTeX XML Cite \textit{M. Benítez} et al., J. Sci. Comput. 83, No. 3, Paper No. 44, 27 p. (2020; Zbl 1440.65120) Full Text: DOI
Saleh, R.; Kassem, M.; Mabrouk, S. M. Investigation of breaking dynamics for Riemann waves in shallow water. (English) Zbl 1434.35006 Chaos Solitons Fractals 132, Article ID 109571, 6 p. (2020). MSC: 35C05 35C08 35A30 PDF BibTeX XML Cite \textit{R. Saleh} et al., Chaos Solitons Fractals 132, Article ID 109571, 6 p. (2020; Zbl 1434.35006) Full Text: DOI
Sun, Dongke A discrete kinetic scheme to model anisotropic liquid-solid phase transitions. (English) Zbl 1439.82039 Appl. Math. Lett. 103, Article ID 106222, 6 p. (2020). MSC: 82C40 82C26 82D45 35Q20 65M25 76M28 76P05 PDF BibTeX XML Cite \textit{D. Sun}, Appl. Math. Lett. 103, Article ID 106222, 6 p. (2020; Zbl 1439.82039) Full Text: DOI
Choi, Young-Pil Uniform-in-time bound for kinetic flocking models. (English) Zbl 1440.35037 Appl. Math. Lett. 103, Article ID 106164, 9 p. (2020). MSC: 35F25 35B45 PDF BibTeX XML Cite \textit{Y.-P. Choi}, Appl. Math. Lett. 103, Article ID 106164, 9 p. (2020; Zbl 1440.35037) Full Text: DOI
Cheng, Hanz Martin; Droniou, Jérôme An efficient implementation of mass conserving characteristic-based schemes in two and three dimensions. (English) Zbl 1447.65061 SIAM J. Sci. Comput. 42, No. 2, A1071-A1096 (2020). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M25 65M08 65K10 PDF BibTeX XML Cite \textit{H. M. Cheng} and \textit{J. Droniou}, SIAM J. Sci. Comput. 42, No. 2, A1071--A1096 (2020; Zbl 1447.65061) Full Text: DOI
Glotov, V. Y.; Goloviznin, V. M.; Chetverushkin, B. N. Balance & characteristic finite difference schemes for the equations of the parabolic type. (Russian. English summary) Zbl 1440.65121 Mat. Model. 32, No. 4, 94-106 (2020). MSC: 65M25 65M06 PDF BibTeX XML Cite \textit{V. Y. Glotov} et al., Mat. Model. 32, No. 4, 94--106 (2020; Zbl 1440.65121) Full Text: DOI MNR
Aristova, E. N.; Ovcharov, G. I. Hermite characteristic scheme for linear inhomogeneous transport equation. (Russian. English summary) Zbl 1440.65119 Mat. Model. 32, No. 3, 3-18 (2020). MSC: 65M25 65M06 65D05 65D30 35Q49 PDF BibTeX XML Cite \textit{E. N. Aristova} and \textit{G. I. Ovcharov}, Mat. Model. 32, No. 3, 3--18 (2020; Zbl 1440.65119) Full Text: DOI MNR
Tolstykh, Vladimir A. Partial differential equations. An unhurried introduction. (English) Zbl 1452.35002 De Gruyter Textbook. Berlin: De Gruyter (ISBN 978-3-11-067724-9/pbk; 978-3-11-067725-6/ebook). x, 266 p. (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35-01 35A09 35Fxx PDF BibTeX XML Cite \textit{V. A. Tolstykh}, Partial differential equations. An unhurried introduction. Berlin: De Gruyter (2020; Zbl 1452.35002) Full Text: DOI
Lee, Hsin-Yi; Chu, Jay; Hong, John M.; Lin, Ying-Chieh \(L^1\) convergences and convergence rates of approximate solutions for compressible Euler equations near vacuum. (English) Zbl 1434.35081 Res. Math. Sci. 7, No. 2, Paper No. 6, 31 p. (2020). MSC: 35Q31 35L45 35L65 35L67 35L81 PDF BibTeX XML Cite \textit{H.-Y. Lee} et al., Res. Math. Sci. 7, No. 2, Paper No. 6, 31 p. (2020; Zbl 1434.35081) Full Text: DOI
Falcone, Maurizio; Paolucci, Giulio; Tozza, Silvia A high-order scheme for image segmentation via a modified level-set method. (English) Zbl 1437.65094 SIAM J. Imaging Sci. 13, No. 1, 497-534 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 35F21 35Q68 65M25 94A08 65M15 68U10 PDF BibTeX XML Cite \textit{M. Falcone} et al., SIAM J. Imaging Sci. 13, No. 1, 497--534 (2020; Zbl 1437.65094) Full Text: DOI
Yegorov, Ivan; Grognard, Frédéric; Mailleret, Ludovic; Halkett, Fabien; Bernhard, Pierre A dynamic game approach to uninvadable strategies for biotrophic pathogens. (English) Zbl 1437.91089 Dyn. Games Appl. 10, No. 1, 257-296 (2020). MSC: 91A25 91A23 91A80 92D30 PDF BibTeX XML Cite \textit{I. Yegorov} et al., Dyn. Games Appl. 10, No. 1, 257--296 (2020; Zbl 1437.91089) Full Text: DOI
Vardy, Alan E.; Tijsseling, Arris S. Method of characteristics for transient, spherical flows. (English) Zbl 1443.76197 Appl. Math. Modelling 77, Part 1, 810-828 (2020). MSC: 76N15 PDF BibTeX XML Cite \textit{A. E. Vardy} and \textit{A. S. Tijsseling}, Appl. Math. Modelling 77, Part 1, 810--828 (2020; Zbl 1443.76197) Full Text: DOI
Ferretti, Roberto; Mehrenberger, Michel Stability of semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed. (English) Zbl 1436.65137 Math. Comput. 89, No. 324, 1783-1805 (2020). MSC: 65M60 65M12 65M50 65M25 65D07 PDF BibTeX XML Cite \textit{R. Ferretti} and \textit{M. Mehrenberger}, Math. Comput. 89, No. 324, 1783--1805 (2020; Zbl 1436.65137) Full Text: DOI
Zhang, Yunxin Optimization of stochastic thermodynamic machines. (English) Zbl 1436.82019 J. Stat. Phys. 178, No. 6, 1336-1353 (2020). MSC: 82C35 82C31 65M25 35A15 65K10 35Q84 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Stat. Phys. 178, No. 6, 1336--1353 (2020; Zbl 1436.82019) Full Text: DOI
Chen, Chuanjun; Liu, Huan; Zheng, Xiangcheng; Wang, Hong A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. (English) Zbl 1437.65180 Comput. Math. Appl. 79, No. 9, 2771-2783 (2020). MSC: 65N30 65M25 65M55 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{C. Chen} et al., Comput. Math. Appl. 79, No. 9, 2771--2783 (2020; Zbl 1437.65180) Full Text: DOI
Bruzón, M. S.; Márquez, A. P.; Recio, E.; Garrido, T. M.; de la Rosa, R. Potential systems of a Buckley-Leverett equation: Lie point symmetries and conservation laws. (English) Zbl 1436.35020 J. Math. Chem. 58, No. 4, 831-840 (2020). MSC: 35B06 35A30 35Q35 76S05 PDF BibTeX XML Cite \textit{M. S. Bruzón} et al., J. Math. Chem. 58, No. 4, 831--840 (2020; Zbl 1436.35020) Full Text: DOI
Chen, Linfeng; Hulshoff, Steven J.; Wang, Yitao 2D residual-based LES of flow around a pipeline close to a flat seabed. (English) Zbl 1436.76012 Comput. Methods Appl. Mech. Eng. 363, Article ID 112788, 20 p. (2020). MSC: 76F65 76M30 76D05 76M10 PDF BibTeX XML Cite \textit{L. Chen} et al., Comput. Methods Appl. Mech. Eng. 363, Article ID 112788, 20 p. (2020; Zbl 1436.76012) Full Text: DOI
Natali, Fábio; Pelinovsky, Dmitry E. Instability of \(H^1\)-stable peakons in the Camassa-Holm equation. (English) Zbl 1439.35137 J. Differ. Equations 268, No. 12, 7342-7363 (2020). Reviewer: Jonathan Eckhardt (Loughborough) MSC: 35G35 35B35 35Q51 35B44 PDF BibTeX XML Cite \textit{F. Natali} and \textit{D. E. Pelinovsky}, J. Differ. Equations 268, No. 12, 7342--7363 (2020; Zbl 1439.35137) Full Text: DOI
Gandolfi, Alberto; Iannelli, Mimmo; Marinoschi, Gabriela The basal layer of the epidermis: a mathematical model for cell production under a surface density constraint. (English) Zbl 07171890 SIAM J. Appl. Math. 80, No. 1, 543-571 (2020). MSC: 35Q92 35L03 35L40 65C20 65M12 65M25 92B05 92C37 92D25 PDF BibTeX XML Cite \textit{A. Gandolfi} et al., SIAM J. Appl. Math. 80, No. 1, 543--571 (2020; Zbl 07171890) Full Text: DOI
Cui, Ming; Li, Fangxia; Liang, Dong High-order characteristic-finite volume methods for aerosol dynamic equations. (English) Zbl 1447.65047 J. Comput. Appl. Math. 370, Article ID 112593, 16 p. (2020). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M15 65N08 65N15 65M25 65D05 65M06 35R09 92D40 35Q92 PDF BibTeX XML Cite \textit{M. Cui} et al., J. Comput. Appl. Math. 370, Article ID 112593, 16 p. (2020; Zbl 1447.65047) Full Text: DOI
Si, Zhiyong; Lei, Yanfang; Tong, Zhang Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations. (English) Zbl 1440.65148 Numer. Algorithms 83, No. 2, 669-700 (2020). MSC: 65M60 65N30 65M06 65M25 65M12 65M15 26A33 35R11 76D05 80A19 35Q30 PDF BibTeX XML Cite \textit{Z. Si} et al., Numer. Algorithms 83, No. 2, 669--700 (2020; Zbl 1440.65148) Full Text: DOI
Mirhosseini-Alizamini, Seyed Mehdi; Rezazadeh, Hadi; Eslami, Mostafa; Mirzazadeh, Mohammad; Korkmaz, Alpert New extended direct algebraic method for the Tzitzéica type evolution equations arising in nonlinear optics. (English) Zbl 1449.35407 Comput. Methods Differ. Equ. 8, No. 1, 28-53 (2020). MSC: 35Q60 35A30 35C05 35L71 78A60 PDF BibTeX XML Cite \textit{S. M. Mirhosseini-Alizamini} et al., Comput. Methods Differ. Equ. 8, No. 1, 28--53 (2020; Zbl 1449.35407) Full Text: DOI
Thanh, Mai Duc; Cuong, Dao Huy Building a van Leer-type numerical scheme for a model of two-phase flows. (English) Zbl 1433.76117 Appl. Math. Comput. 366, Article ID 124748, 25 p. (2020). MSC: 76M20 76T99 65M25 35L65 35L67 76L05 76N15 PDF BibTeX XML Cite \textit{M. D. Thanh} and \textit{D. H. Cuong}, Appl. Math. Comput. 366, Article ID 124748, 25 p. (2020; Zbl 1433.76117) Full Text: DOI
Kim, Philsu; Kim, Dojin Convergence and stability of a BSLM for advection-diffusion models with Dirichlet boundary conditions. (English) Zbl 1433.65181 Appl. Math. Comput. 366, Article ID 124744, 17 p. (2020). MSC: 65M12 35Q53 65M25 PDF BibTeX XML Cite \textit{P. Kim} and \textit{D. Kim}, Appl. Math. Comput. 366, Article ID 124744, 17 p. (2020; Zbl 1433.65181) Full Text: DOI
Mackenzie, J. A.; Mekwi, W. R. An \(hr\)-adaptive method for the cubic nonlinear Schrödinger equation. (English) Zbl 1431.65163 J. Comput. Appl. Math. 364, Article ID 112320, 20 p. (2020). MSC: 65M50 65M06 65M25 65M12 35Q55 35Q41 PDF BibTeX XML Cite \textit{J. A. Mackenzie} and \textit{W. R. Mekwi}, J. Comput. Appl. Math. 364, Article ID 112320, 20 p. (2020; Zbl 1431.65163) Full Text: DOI
Zhang, Jiansong; Shen, Xiaomang; Guo, Hui; Fu, Hongfei; Han, Huiran Characteristic splitting mixed finite element analysis of compressible wormhole propagation. (English) Zbl 1435.65169 Appl. Numer. Math. 147, 66-87 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M25 76M10 76S05 76N15 65N30 76R50 65M12 65M15 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Numer. Math. 147, 66--87 (2020; Zbl 1435.65169) Full Text: DOI
Shkhagapsoev, A. M. A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Caputo derivative. (Russian. English summary) Zbl 07314689 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 35-40 (2019). MSC: 35M13 PDF BibTeX XML Cite \textit{A. M. Shkhagapsoev}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 4(29), 35--40 (2019; Zbl 07314689) Full Text: DOI MNR
Vodakhova, V. A.; Balkizova, M. S. A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order. (Russian. English summary) Zbl 07314678 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 3(28), 6-15 (2019). MSC: 35M12 PDF BibTeX XML Cite \textit{V. A. Vodakhova} and \textit{M. S. Balkizova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2019, No. 3(28), 6--15 (2019; Zbl 07314678) Full Text: DOI MNR
Zoni, Edoardo; Güçlü, Yaman Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elements. (English) Zbl 1453.65352 J. Comput. Phys. 398, Article ID 108889, 24 p. (2019). MSC: 65M60 65M25 35L02 35J05 76X05 PDF BibTeX XML Cite \textit{E. Zoni} and \textit{Y. Güçlü}, J. Comput. Phys. 398, Article ID 108889, 24 p. (2019; Zbl 1453.65352) Full Text: DOI
Protsiuk, B. V. Thermoelastic state of a piecewise inhomogeneous orthotropic thermosensitive cylinder. (Ukrainian, English) Zbl 07286244 Mat. Metody Fiz.-Mekh. Polya 62, No. 3, 57-73 (2019). Reviewer: A. Ja. Olejnik (Kyïv) MSC: 74A15 74F05 74K10 PDF BibTeX XML Cite \textit{B. V. Protsiuk}, Mat. Metody Fiz.-Mekh. Polya 62, No. 3, 57--73 (2019; Zbl 07286244)
Bak, Soyoon; Kim, Philsu; Kim, Dojin A semi-Lagrangian approach for numerical simulation of coupled Burgers’ equations. (English) Zbl 07263940 Commun. Nonlinear Sci. Numer. Simul. 69, 31-44 (2019). MSC: 35K61 65M25 65K05 PDF BibTeX XML Cite \textit{S. Bak} et al., Commun. Nonlinear Sci. Numer. Simul. 69, 31--44 (2019; Zbl 07263940) Full Text: DOI
Kumar, Dharmendra; Kumar, Sachin Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. (English) Zbl 1442.35380 Comput. Math. Appl. 78, No. 3, 857-877 (2019). MSC: 35Q53 35A30 35B10 35C08 76M60 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{S. Kumar}, Comput. Math. Appl. 78, No. 3, 857--877 (2019; Zbl 1442.35380) Full Text: DOI
Xiao, Xufeng; Feng, Xinlong; He, Yinnian Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. (English) Zbl 1442.92019 Comput. Math. Appl. 78, No. 1, 20-34 (2019). MSC: 92C17 65M25 65M60 PDF BibTeX XML Cite \textit{X. Xiao} et al., Comput. Math. Appl. 78, No. 1, 20--34 (2019; Zbl 1442.92019) Full Text: DOI
Lu, Changna; Xie, Luoyan; Yang, Hongwei Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation. (English) Zbl 1442.35517 Comput. Math. Appl. 77, No. 12, 3154-3171 (2019). MSC: 35R11 35A30 35Q53 PDF BibTeX XML Cite \textit{C. Lu} et al., Comput. Math. Appl. 77, No. 12, 3154--3171 (2019; Zbl 1442.35517) Full Text: DOI
Kumar, Sachin; Kumar, Dharmendra Solitary wave solutions of \((3+1)\)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach. (English) Zbl 1442.35382 Comput. Math. Appl. 77, No. 8, 2096-2113 (2019). MSC: 35Q53 35A30 35C08 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Kumar}, Comput. Math. Appl. 77, No. 8, 2096--2113 (2019; Zbl 1442.35382) Full Text: DOI
Yang, Yang; Si, Zhiyong Unconditional stability and error estimates of the modified characteristics FEMs for the time-dependent incompressible MHD equations. (English) Zbl 1442.65284 Comput. Math. Appl. 77, No. 1, 263-283 (2019). MSC: 65M60 65M12 65M15 65M25 76W05 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{Z. Si}, Comput. Math. Appl. 77, No. 1, 263--283 (2019; Zbl 1442.65284) Full Text: DOI
Li, Yu; Xie, Hehu Simulations of population balance systems with the characteristic line method. (Chinese. English summary) Zbl 1449.65226 J. Numer. Methods Comput. Appl. 40, No. 4, 261-278 (2019). MSC: 65M25 65M60 65Y05 80A32 76T20 82C21 PDF BibTeX XML Cite \textit{Y. Li} and \textit{H. Xie}, J. Numer. Methods Comput. Appl. 40, No. 4, 261--278 (2019; Zbl 1449.65226)
Cantagesso, Luana C. M.; Sousa, Luara K. S.; Marotto, Tamires A.; Radovanovic, Anna M.; Pires, Adolfo Puime; Peres, Alvaro M. M. A semi-analytical solution for one-dimensional oil displacement by miscible gas in a homogeneous porous medium. (English) Zbl 1446.76156 Constanda, Christian (ed.) et al., Integral methods in science and engineering. Analytic treatment and numerical approximations. Based on talks given at the 15th international conference on integral methods in science and engineering, IMSE, Brighton, UK, July 16–20, 2018. Basel: Birkhäuser. 81-95 (2019). MSC: 76S05 76T30 76M99 65M25 PDF BibTeX XML Cite \textit{L. C. M. Cantagesso} et al., in: Integral methods in science and engineering. Analytic treatment and numerical approximations. Based on talks given at the 15th international conference on integral methods in science and engineering, IMSE, Brighton, UK, July 16--20, 2018. Basel: Birkhäuser. 81--95 (2019; Zbl 1446.76156) Full Text: DOI
Svinina, S. V. On a quasi-linear partial differential algebraic system of equations. (English. Russian original) Zbl 1435.35122 Comput. Math. Math. Phys. 59, No. 11, 1791-1805 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1856-1871 (2019). MSC: 35F20 35A01 PDF BibTeX XML Cite \textit{S. V. Svinina}, Comput. Math. Math. Phys. 59, No. 11, 1791--1805 (2019; Zbl 1435.35122); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1856--1871 (2019) Full Text: DOI
Zhang, Katherine Zhiyuan Focusing solutions of the Vlasov-Poisson system. (English) Zbl 1434.35236 Kinet. Relat. Models 12, No. 6, 1313-1327 (2019). MSC: 35Q83 35B44 35B40 65M25 76Y05 82D10 PDF BibTeX XML Cite \textit{K. Z. Zhang}, Kinet. Relat. Models 12, No. 6, 1313--1327 (2019; Zbl 1434.35236) Full Text: DOI
Garshasbi, Morteza Determination of unknown functions in a mathematical model of ductal carcinoma in situ. (English) Zbl 1430.35231 Numer. Methods Partial Differ. Equations 35, No. 6, 2000-2016 (2019). MSC: 35Q92 92C37 35R30 35B35 92C50 35A02 65M32 65M30 65M06 65J20 35B65 65M12 65M25 65D30 35R60 PDF BibTeX XML Cite \textit{M. Garshasbi}, Numer. Methods Partial Differ. Equations 35, No. 6, 2000--2016 (2019; Zbl 1430.35231) Full Text: DOI
Ho, Myong-Song; Ri, Ju-Hyok; Kim, Sin-Bom Improved characteristic fast marching method for the generalized eikonal equation in a moving medium. (English) Zbl 1440.65122 J. Sci. Comput. 81, No. 3, 2484-2502 (2019). MSC: 65M25 65M06 35D40 78A50 35Q60 PDF BibTeX XML Cite \textit{M.-S. Ho} et al., J. Sci. Comput. 81, No. 3, 2484--2502 (2019; Zbl 1440.65122) Full Text: DOI
Keimer, Alexander; Pflug, Lukas Nonlocal conservation laws with time delay. (English) Zbl 1439.35325 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 54, 34 p. (2019). MSC: 35L65 35L03 65M25 PDF BibTeX XML Cite \textit{A. Keimer} and \textit{L. Pflug}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 54, 34 p. (2019; Zbl 1439.35325) Full Text: DOI
Ohm, Mi Ray; Shin, Jun Yong A split least-squares characteristic mixed element method for Sobolev equations with a convection term. (Korean. English summary) Zbl 1434.65190 East Asian Math. J. 35, No. 5, 569-587 (2019). MSC: 65M60 65M15 65N30 65M25 76R05 65M06 76M10 35Q35 PDF BibTeX XML Cite \textit{M. R. Ohm} and \textit{J. Y. Shin}, East Asian Math. J. 35, No. 5, 569--587 (2019; Zbl 1434.65190) Full Text: DOI
Svinina, S. V.; Svinin, A. K. Existence of solution to some mixed problems for linear differential-algebraic systems of partial differential equations. (English. Russian original) Zbl 1437.35163 Russ. Math. 63, No. 4, 64-74 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 73-84 (2019). MSC: 35F46 34A09 35A01 35A02 PDF BibTeX XML Cite \textit{S. V. Svinina} and \textit{A. K. Svinin}, Russ. Math. 63, No. 4, 64--74 (2019; Zbl 1437.35163); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 4, 73--84 (2019) Full Text: DOI
Bank, Randolph E.; Metti, Maximilian S. A diagonally-implicit time integration scheme for space-time moving finite elements. (English) Zbl 1449.65240 J. Comput. Math. 37, No. 3, 360-383 (2019). MSC: 65M60 65M15 65M25 65M50 65M20 PDF BibTeX XML Cite \textit{R. E. Bank} and \textit{M. S. Metti}, J. Comput. Math. 37, No. 3, 360--383 (2019; Zbl 1449.65240) Full Text: DOI
Albu, A. F.; Zubov, V. I. One feature of using the general Lagrange multiplier method. (English. Russian original) Zbl 1431.49001 Comput. Math. Math. Phys. 59, No. 9, 1422-1433 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 9, 1482-1494 (2019). MSC: 49J20 PDF BibTeX XML Cite \textit{A. F. Albu} and \textit{V. I. Zubov}, Comput. Math. Math. Phys. 59, No. 9, 1422--1433 (2019; Zbl 1431.49001); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 9, 1482--1494 (2019) Full Text: DOI
Svinina, S. V.; Svinin, A. K. On an initial-boundary value problem for a semilinear differential-algebraic system of partial differential equations of index \((1,0)\). (English. Russian original) Zbl 1434.35024 Russ. Math. 63, No. 5, 63-74 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 5, 70-82 (2019). MSC: 35M33 35A01 15A22 15A21 35A09 PDF BibTeX XML Cite \textit{S. V. Svinina} and \textit{A. K. Svinin}, Russ. Math. 63, No. 5, 63--74 (2019; Zbl 1434.35024); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 5, 70--82 (2019) Full Text: DOI
George, Jithin D.; Ketcheson, David I.; LeVeque, Randall J. A path-integral method for solution of the wave equation with continuously varying coefficients. (English) Zbl 1437.35440 SIAM J. Appl. Math. 79, No. 6, 2615-2638 (2019). MSC: 35L05 35L15 35L45 35C15 PDF BibTeX XML Cite \textit{J. D. George} et al., SIAM J. Appl. Math. 79, No. 6, 2615--2638 (2019; Zbl 1437.35440) Full Text: DOI arXiv
Dos Santos Cardoso-Bihlo, E.; Bihlo, A.; Popovych, R. O. Differential invariants for a class of diffusion equations. (English) Zbl 1438.35007 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 50-65 (2019). Reviewer: I. A. Yegorchenko (Kyïv) MSC: 35A30 35K57 PDF BibTeX XML Cite \textit{E. Dos Santos Cardoso-Bihlo} et al., Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 50--65 (2019; Zbl 1438.35007)
Rubina, L. I.; Ulyanov, O. N. On double wave type flows. (English. Russian original) Zbl 1430.35044 Sib. Math. J. 60, No. 4, 673-684 (2019); translation from Sib. Mat. Zh. 60, No. 4, 859-873 (2019). MSC: 35C05 35L05 35L51 PDF BibTeX XML Cite \textit{L. I. Rubina} and \textit{O. N. Ulyanov}, Sib. Math. J. 60, No. 4, 673--684 (2019; Zbl 1430.35044); translation from Sib. Mat. Zh. 60, No. 4, 859--873 (2019) Full Text: DOI
Li, Xiaoli; Rui, Hongxing Stability and convergence of characteristic MAC scheme and post-processing for the Oseen equations on non-uniform grids. (English) Zbl 1428.76136 Appl. Math. Comput. 342, 94-111 (2019). MSC: 76M20 65M06 65M12 65M15 65M25 76D07 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, Appl. Math. Comput. 342, 94--111 (2019; Zbl 1428.76136) Full Text: DOI
Fu, Kai; Liang, Dong A mass-conservative temporal second order and spatial fourth order characteristic finite volume method for atmospheric pollution advection diffusion problems. (English) Zbl 1433.65175 SIAM J. Sci. Comput. 41, No. 6, B1178-B1210 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M25 35Q49 76R50 76U60 76T15 86A10 35Q86 PDF BibTeX XML Cite \textit{K. Fu} and \textit{D. Liang}, SIAM J. Sci. Comput. 41, No. 6, B1178--B1210 (2019; Zbl 1433.65175) Full Text: DOI
Bonicatto, Paolo; Gusev, Nikolay A. Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow. (English) Zbl 1429.35046 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 3, 511-531 (2019). MSC: 35F10 35A30 49Q20 35A02 PDF BibTeX XML Cite \textit{P. Bonicatto} and \textit{N. A. Gusev}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 3, 511--531 (2019; Zbl 1429.35046) Full Text: DOI arXiv
Sanchez, David; Chatelin, Robin; Hume, Lauréne; Poncet, Philippe Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance. (English) Zbl 1428.35312 ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1083-1124 (2019). MSC: 35Q30 76D03 76D07 65M25 76Z05 92B05 76A05 PDF BibTeX XML Cite \textit{D. Sanchez} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1083--1124 (2019; Zbl 1428.35312) Full Text: DOI
Helzel, Christiane; Kerkmann, David; Scandurra, Leonardo A new ADER method inspired by the active flux method. (English) Zbl 1428.65020 J. Sci. Comput. 80, No. 3, 1463-1497 (2019). MSC: 65M08 65M25 35L65 PDF BibTeX XML Cite \textit{C. Helzel} et al., J. Sci. Comput. 80, No. 3, 1463--1497 (2019; Zbl 1428.65020) Full Text: DOI
Bak, Soyoon High-order characteristic-tracking strategy for simulation of a nonlinear advection-diffusion equation. (English) Zbl 1425.65099 Numer. Methods Partial Differ. Equations 35, No. 5, 1756-1776 (2019). MSC: 65M25 65M06 65M12 35Q35 PDF BibTeX XML Cite \textit{S. Bak}, Numer. Methods Partial Differ. Equations 35, No. 5, 1756--1776 (2019; Zbl 1425.65099) Full Text: DOI
Festa, Adriano; Göttlich, Simone; Pfirsching, Marion A model for a network of conveyor belts with discontinuous speed and capacity. (English) Zbl 1423.90077 Netw. Heterog. Media 14, No. 2, 389-410 (2019). MSC: 90B30 35L65 65M25 PDF BibTeX XML Cite \textit{A. Festa} et al., Netw. Heterog. Media 14, No. 2, 389--410 (2019; Zbl 1423.90077) Full Text: DOI arXiv
Speck, Jared Multidimensional nonlinear geometric optics for transport operators with applications to stable shock formation. (English) Zbl 1426.35159 Pure Appl. Anal. 1, No. 3, 447-514 (2019). MSC: 35L67 35L45 35B44 35L60 PDF BibTeX XML Cite \textit{J. Speck}, Pure Appl. Anal. 1, No. 3, 447--514 (2019; Zbl 1426.35159) Full Text: DOI
Li, Wenting; Huang, Yingying; Jiang, Kun; Li, Wei A new Lie symmetric method based on the differential-difference characteristics algorithm. (Chinese. English summary) Zbl 1438.35009 J. Nat. Sci. Heilongjiang Univ. 36, No. 2, 141-148 (2019). MSC: 35A30 37K10 PDF BibTeX XML Cite \textit{W. Li} et al., J. Nat. Sci. Heilongjiang Univ. 36, No. 2, 141--148 (2019; Zbl 1438.35009) Full Text: DOI
Dong, Junzhe; Liu, Chao Characteristic line method under fixed meshes for the simulation of dambreak. (Chinese. English summary) Zbl 1438.65209 Chin. J. Comput. Mech. 36, No. 2, 208-212 (2019). MSC: 65M20 65M25 65D05 PDF BibTeX XML Cite \textit{J. Dong} and \textit{C. Liu}, Chin. J. Comput. Mech. 36, No. 2, 208--212 (2019; Zbl 1438.65209) Full Text: DOI
Pinezich, John D. Propagation of singularities in nonconvex Hamilton-Jacobi problems: local structure in two dimensions. (English) Zbl 1437.35159 SIAM J. Math. Anal. 51, No. 5, 3796-3818 (2019). MSC: 35F21 35L67 35A21 35D40 53A04 65M25 PDF BibTeX XML Cite \textit{J. D. Pinezich}, SIAM J. Math. Anal. 51, No. 5, 3796--3818 (2019; Zbl 1437.35159) Full Text: DOI
Dai, Huiju; Li, Lianzhong; Wang, Qi; Sha, An Lie symmetry analysis, Bäcklund transformation and exact solutions for a class of fourth-order partial differential equations. (Chinese. English summary) Zbl 1438.35006 J. East China Norm. Univ., Nat. Sci. Ed., No. 1, 24-31 (2019). MSC: 35A30 35G20 37K35 PDF BibTeX XML Cite \textit{H. Dai} et al., J. East China Norm. Univ., Nat. Sci. Ed. , No. 1, 24--31 (2019; Zbl 1438.35006)
Blanc, Thomas Numerical methods for computing an averaged matrix field. Application to the asymptotic analysis of a parabolic problem with stiff transport terms. (English) Zbl 1426.65143 Multiscale Model. Simul. 17, No. 1, 531-551 (2019). MSC: 65M25 65M06 65M15 PDF BibTeX XML Cite \textit{T. Blanc}, Multiscale Model. Simul. 17, No. 1, 531--551 (2019; Zbl 1426.65143) Full Text: DOI
Daripa, Prabir; Dutta, Sourav On the convergence analysis of a hybrid numerical method for multicomponent transport in porous media. (English) Zbl 1448.76155 Appl. Numer. Math. 146, 199-220 (2019). MSC: 76S05 76M20 76T30 65M12 PDF BibTeX XML Cite \textit{P. Daripa} and \textit{S. Dutta}, Appl. Numer. Math. 146, 199--220 (2019; Zbl 1448.76155) Full Text: DOI
Hermosilla, Cristopher; Wolenski, Peter A characteristic method for fully convex Bolza problems over arcs of bounded variation. (English) Zbl 1420.49037 SIAM J. Control Optim. 57, No. 4, 2873-2901 (2019). MSC: 49N15 49N25 49K15 PDF BibTeX XML Cite \textit{C. Hermosilla} and \textit{P. Wolenski}, SIAM J. Control Optim. 57, No. 4, 2873--2901 (2019; Zbl 1420.49037) Full Text: DOI
Gusev, E. L.; Ivanova, M. A. Development and application of combined methods for solving the prediction problems of defining characteristics of composites. (Russian) Zbl 1438.74012 Mat. Zamet. SVFU 26, No. 1, 59-69 (2019). MSC: 74A40 74G75 PDF BibTeX XML Cite \textit{E. L. Gusev} and \textit{M. A. Ivanova}, Mat. Zamet. SVFU 26, No. 1, 59--69 (2019; Zbl 1438.74012) Full Text: DOI
Suárez-Taboada, María; Vázquez, Carlos Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty. (English) Zbl 1422.91773 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3503-3523 (2019). MSC: 91G60 65M25 65M22 91G80 PDF BibTeX XML Cite \textit{M. Suárez-Taboada} and \textit{C. Vázquez}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3503--3523 (2019; Zbl 1422.91773) Full Text: DOI
Chartier, Philippe; Le Treust, Loïc; Méhats, Florian Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation. (English) Zbl 1431.35166 ESAIM, Math. Model. Numer. Anal. 53, No. 2, 443-473 (2019). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q55 35F21 76A02 76Y05 81Q20 82D50 35Q41 65M15 65M25 65T50 PDF BibTeX XML Cite \textit{P. Chartier} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 2, 443--473 (2019; Zbl 1431.35166) Full Text: DOI
Qiao, Wen-You; Yu, An-Yuan; Wang, Yu-Hui An inverse design method for non-uniform flow inlet with a given shock wave. (English) Zbl 1418.76030 Acta Math. Appl. Sin., Engl. Ser. 35, No. 2, 287-304 (2019). MSC: 76L05 PDF BibTeX XML Cite \textit{W.-Y. Qiao} et al., Acta Math. Appl. Sin., Engl. Ser. 35, No. 2, 287--304 (2019; Zbl 1418.76030) Full Text: DOI
Uchiumi, Shinya A viscosity-independent error estimate of a pressure-stabilized Lagrange-Galerkin scheme for the Oseen problem. (English) Zbl 1418.65114 J. Sci. Comput. 80, No. 2, 834-858 (2019). MSC: 65M12 65M25 65M60 76D07 76M10 PDF BibTeX XML Cite \textit{S. Uchiumi}, J. Sci. Comput. 80, No. 2, 834--858 (2019; Zbl 1418.65114) Full Text: DOI arXiv
Matsushita, Shintaro; Aoki, Takayuki A weakly compressible scheme with a diffuse-interface method for low Mach number two-phase flows. (English) Zbl 1416.76317 J. Comput. Phys. 376, 838-862 (2019). MSC: 76T10 76M25 76M20 PDF BibTeX XML Cite \textit{S. Matsushita} and \textit{T. Aoki}, J. Comput. Phys. 376, 838--862 (2019; Zbl 1416.76317) Full Text: DOI
Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei A high order semi-Lagrangian discontinuous Galerkin method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model without operator splitting. (English) Zbl 1419.65055 J. Sci. Comput. 79, No. 2, 1111-1134 (2019). MSC: 65M60 35Q35 76X05 35Q83 65M25 65M06 PDF BibTeX XML Cite \textit{X. Cai} et al., J. Sci. Comput. 79, No. 2, 1111--1134 (2019; Zbl 1419.65055) Full Text: DOI
Patel, Saumil; Fischer, Paul; Min, Misun; Tomboulides, Ananias A characteristic-based spectral element method for moving-domain problems. (English) Zbl 1444.76081 J. Sci. Comput. 79, No. 1, 564-592 (2019). MSC: 76M22 76D05 65M12 PDF BibTeX XML Cite \textit{S. Patel} et al., J. Sci. Comput. 79, No. 1, 564--592 (2019; Zbl 1444.76081) Full Text: DOI
Jia, Xiaofeng; Li, Jichun; Jia, Hongen Decoupled characteristic stabilized finite element method for time-dependent Navier-Stokes/Darcy model. (English) Zbl 1419.65064 Numer. Methods Partial Differ. Equations 35, No. 1, 267-294 (2019). MSC: 65M60 65M25 35Q35 76D05 76S05 65M15 PDF BibTeX XML Cite \textit{X. Jia} et al., Numer. Methods Partial Differ. Equations 35, No. 1, 267--294 (2019; Zbl 1419.65064) Full Text: DOI