Liu, Shuainan; Li, Po-Wei; Fan, Chia-Ming; Gu, Yan Localized method of fundamental solutions for two- and three-dimensional transient convection-diffusion-reaction equations. (English) Zbl 07305311 Eng. Anal. Bound. Elem. 124, 237-244 (2021). MSC: 65 74 PDF BibTeX XML Cite \textit{S. Liu} et al., Eng. Anal. Bound. Elem. 124, 237--244 (2021; Zbl 07305311) Full Text: DOI
Zhang, Li-Ping; Li, Zi-Cai; Huang, Hung-Tsai; Lee, Ming-Gong Comparisons of method of fundamental solutions, method of particular solutions and the MFS-QR; stability analysis. (English) Zbl 07305289 Eng. Anal. Bound. Elem. 123, 182-199 (2021). MSC: 65N30 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Eng. Anal. Bound. Elem. 123, 182--199 (2021; Zbl 07305289) Full Text: DOI
Dezfouli, N. Koochak; Hematiyan, M. R.; Mohammadi, M. A modification of the method of fundamental solutions for solving 2D problems with concave and complicated domains. (English) Zbl 07305288 Eng. Anal. Bound. Elem. 123, 168-181 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{N. K. Dezfouli} et al., Eng. Anal. Bound. Elem. 123, 168--181 (2021; Zbl 07305288) Full Text: DOI
Mohammadi, M.; Hematiyan, M. R. Analysis of transient uncoupled thermoelastic problems involving moving point heat sources using the method of fundamental solutions. (English) Zbl 07305284 Eng. Anal. Bound. Elem. 123, 122-132 (2021). MSC: 74 35 PDF BibTeX XML Cite \textit{M. Mohammadi} and \textit{M. R. Hematiyan}, Eng. Anal. Bound. Elem. 123, 122--132 (2021; Zbl 07305284) Full Text: DOI
Li, Junpu; Zhang, Lan; Qin, Qing-Hua A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering. (English) Zbl 07281304 Appl. Math. Lett. 112, Article ID 106746, 7 p. (2021). MSC: 78A45 78M05 65N80 65R20 35J05 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Lett. 112, Article ID 106746, 7 p. (2021; Zbl 07281304) Full Text: DOI
Tong, Fenghua; Wang, Weilong; Feng, Xinlong; Zhao, Jianping; Li, Zhilin How to obtain an accurate gradient for interface problems? (English) Zbl 07303050 J. Comput. Phys. 405, Article ID 109070, 19 p. (2020). MSC: 65N06 65N12 65N80 PDF BibTeX XML Cite \textit{F. Tong} et al., J. Comput. Phys. 405, Article ID 109070, 19 p. (2020; Zbl 07303050) Full Text: DOI
Khashimov, Abdukomil Rusbekovich The nonlocal problem for a non-stationary third order composite type equation with general boundary condition. (Russian. English summary) Zbl 07294534 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 187-198 (2020). MSC: 35M10 PDF BibTeX XML Cite \textit{A. R. Khashimov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 187--198 (2020; Zbl 07294534) Full Text: DOI MNR
Li, Kaiqiang; Xue, Rui Decay estimate and global existence of a semilinear Mindlin-Timoshenko plate system with full frictional damping in the whole space. (English) Zbl 07286645 Q. Appl. Math. 78, No. 4, 703-724 (2020). MSC: 35B40 35L52 35L71 74H40 74K10 PDF BibTeX XML Cite \textit{K. Li} and \textit{R. Xue}, Q. Appl. Math. 78, No. 4, 703--724 (2020; Zbl 07286645) Full Text: DOI
Karayer, H.; Demirhan, D.; Atman, K. G. Analytical exact solutions for the Razavy type potential. (English) Zbl 07279043 Math. Methods Appl. Sci. 43, No. 15, 9185-9194 (2020). MSC: 34A05 34L10 33C15 81V19 34M35 PDF BibTeX XML Cite \textit{H. Karayer} et al., Math. Methods Appl. Sci. 43, No. 15, 9185--9194 (2020; Zbl 07279043) Full Text: DOI
Mocerino, Andrea; Bozzoli, Fabio; Cattani, Luca; Vocale, Pamela; Rainieri, Sara Non-intrusive estimate of spatially varying internal heat flux in coiled ducts: method of fundamental solutions applied to the reciprocity functional approach. (English) Zbl 1452.65389 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 23, 139-155 (2020). MSC: 65N80 65N21 80A19 80A23 74F05 74F10 PDF BibTeX XML Cite \textit{A. Mocerino} et al., SEMA SIMAI Springer Ser. 23, 139--155 (2020; Zbl 1452.65389) Full Text: DOI
Marin, Liviu MFS-fading regularization method for inverse BVPs in anisotropic heat conduction. (English) Zbl 1452.65212 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 23, 121-138 (2020). MSC: 65M32 65M30 65M70 65M80 65M12 60H50 35K05 35Q79 PDF BibTeX XML Cite \textit{L. Marin}, SEMA SIMAI Springer Ser. 23, 121--138 (2020; Zbl 1452.65212) Full Text: DOI
Martins, Nuno F. M. Identification and reconstruction of body forces in a Stokes system using shear waves. (English) Zbl 1452.65213 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 23, 103-120 (2020). MSC: 65M32 65M80 76S05 76D07 33C10 35Q35 PDF BibTeX XML Cite \textit{N. F. M. Martins}, SEMA SIMAI Springer Ser. 23, 103--120 (2020; Zbl 1452.65213) Full Text: DOI
Barbeiro, Sílvia; Serranho, Pedro The method of fundamental solutions for the direct elastography problem in the human retina. (English) Zbl 07273447 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer (ISBN 978-3-030-52803-4/hbk; 978-3-030-52804-1/ebook). SEMA SIMAI Springer Series 23, 87-101 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 65N80 74L15 74B05 76Q05 76Z05 78A40 92C10 92C55 35J05 35Q74 PDF BibTeX XML Cite \textit{S. Barbeiro} and \textit{P. Serranho}, SEMA SIMAI Springer Ser. 23, 87--101 (2020; Zbl 07273447) Full Text: DOI
Gáspár, Csaba Application of quadtrees in the method of fundamental solutions using multi-level tools. (English) Zbl 07273445 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer (ISBN 978-3-030-52803-4/hbk; 978-3-030-52804-1/ebook). SEMA SIMAI Springer Series 23, 41-57 (2020). MSC: 65N80 65N35 65N50 PDF BibTeX XML Cite \textit{C. Gáspár}, SEMA SIMAI Springer Ser. 23, 41--57 (2020; Zbl 07273445) Full Text: DOI
Akhmouch, Latifa; Naji, Ahmed; Duan, Yong; Fu, Zhuojia Solving magneto-hydrodynamic (MHD) channel flows at large Hartmann numbers by using the method of fundamental solutions. (English) Zbl 07273444 Alves, Carlos (ed.) et al., Advances in Trefftz methods and their applications. Selected papers based on the presentations at the 9th conference on Trefftz methods and 5th conference on method of fundamental solutions, Lisbon, Portugal, July 29–31, 2019. Cham: Springer (ISBN 978-3-030-52803-4/hbk; 978-3-030-52804-1/ebook). SEMA SIMAI Springer Series 23, 13-40 (2020). MSC: 65N80 76W05 78M99 PDF BibTeX XML Cite \textit{L. Akhmouch} et al., SEMA SIMAI Springer Ser. 23, 13--40 (2020; Zbl 07273444) Full Text: DOI
Svanadze, Merab Steady vibration problems in the coupled linear theory of porous elastic solids. (English) Zbl 1446.74135 Math. Mech. Solids 25, No. 3, 768-790 (2020). MSC: 74H45 74F10 74H20 74H25 PDF BibTeX XML Cite \textit{M. Svanadze}, Math. Mech. Solids 25, No. 3, 768--790 (2020; Zbl 1446.74135) Full Text: DOI
Cheng, Alexander H. D.; Hong, Yongxing An overview of the method of fundamental solutions – solvability, uniqueness, convergence, and stability. (English) Zbl 07268617 Eng. Anal. Bound. Elem. 120, 118-152 (2020). MSC: 65 81 PDF BibTeX XML Cite \textit{A. H. D. Cheng} and \textit{Y. Hong}, Eng. Anal. Bound. Elem. 120, 118--152 (2020; Zbl 07268617) Full Text: DOI
Askour, Omar; Mesmoudi, Said; Tri, Abdeljalil; Braikat, Bouazza; Zahrouni, Hamid; Potier-Ferry, Michel Method of fundamental solutions and a high order continuation for bifurcation analysis within Föppl-von Karman plate theory. (English) Zbl 07268612 Eng. Anal. Bound. Elem. 120, 67-72 (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{O. Askour} et al., Eng. Anal. Bound. Elem. 120, 67--72 (2020; Zbl 07268612) Full Text: DOI
Moussa, Alaeddin Amin; Alhakim, Abdulaziz Fractional \(\mathrm{exp}(-\phi(\xi))\)-expansion method and its application to space-time nonlinear fractional equations. (English) Zbl 07261824 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 12, 15 p. (2020). MSC: 35R11 35E05 PDF BibTeX XML Cite \textit{A. A. Moussa} and \textit{A. Alhakim}, Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 12, 15 p. (2020; Zbl 07261824) Full Text: Link
Ma, Ji; Chen, Wen; Zhang, Chuanzeng; Lin, Ji Meshless simulation of anti-plane crack problems by the method of fundamental solutions using the crack Green’s function. (English) Zbl 1443.65430 Comput. Math. Appl. 79, No. 5, 1543-1560 (2020). MSC: 65N80 74R10 PDF BibTeX XML Cite \textit{J. Ma} et al., Comput. Math. Appl. 79, No. 5, 1543--1560 (2020; Zbl 1443.65430) Full Text: DOI
Terekhin, M. T. Nonzero periodic solutions of a special system of nonlinear differential equations. (English. Russian original) Zbl 1452.34047 J. Math. Sci., New York 248, No. 4, 467-475 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 148, 93-100 (2018). MSC: 34C25 37C60 47N20 PDF BibTeX XML Cite \textit{M. T. Terekhin}, J. Math. Sci., New York 248, No. 4, 467--475 (2020; Zbl 1452.34047); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 148, 93--100 (2018) Full Text: DOI
Mueller, J. L.; Siltanen, Samuli The D-bar method for electrical impedance tomography – demystified. (English) Zbl 07252733 Inverse Probl. 36, No. 9, Article ID 093001, 28 p. (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A46 78A45 78A05 78M20 65N21 65N20 65N06 65N80 65J20 65T50 92C55 35R09 35R30 35Q60 PDF BibTeX XML Cite \textit{J. L. Mueller} and \textit{S. Siltanen}, Inverse Probl. 36, No. 9, Article ID 093001, 28 p. (2020; Zbl 07252733) Full Text: DOI
Karazym, Mukhtar; Suragan, Durvudkhan Trace formulae of potentials for degenerate parabolic equations. (English) Zbl 07250698 Differ. Integral Equ. 33, No. 7-8, 337-360 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 47G40 35K65 35B65 PDF BibTeX XML Cite \textit{M. Karazym} and \textit{D. Suragan}, Differ. Integral Equ. 33, No. 7--8, 337--360 (2020; Zbl 07250698)
Ma, Hongcai; Bai, Yunxiang; Deng, Aiping Multiple lump solutions of the \((2+1)\)-dimensional Konopelchenko-Dubrovsky equation. (English) Zbl 1448.35435 Math. Methods Appl. Sci. 43, No. 12, 7135-7142 (2020). MSC: 35Q51 35Q35 35Q53 35E05 PDF BibTeX XML Cite \textit{H. Ma} et al., Math. Methods Appl. Sci. 43, No. 12, 7135--7142 (2020; Zbl 1448.35435) Full Text: DOI
Hsiao, George C.; Sánchez-Vizuet, Tonatiuh Time-domain boundary integral methods in linear thermoelasticity. (English) Zbl 1447.74044 SIAM J. Math. Anal. 52, No. 3, 2463-2490 (2020). MSC: 74S99 74S15 74F05 74B05 74H15 65M38 PDF BibTeX XML Cite \textit{G. C. Hsiao} and \textit{T. Sánchez-Vizuet}, SIAM J. Math. Anal. 52, No. 3, 2463--2490 (2020; Zbl 1447.74044) Full Text: DOI
Manafian, Jalil; Ivatloo, Behnam Mohammadi; Abapour, Mehdi Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. (English) Zbl 1448.35436 Math. Methods Appl. Sci. 43, No. 4, 1753-1774 (2020). MSC: 35Q51 35Q35 35Q70 35E05 35C08 PDF BibTeX XML Cite \textit{J. Manafian} et al., Math. Methods Appl. Sci. 43, No. 4, 1753--1774 (2020; Zbl 1448.35436) Full Text: DOI
Qu, Wenzhen; Fan, Chia-Ming; Li, Xiaolin Analysis of an augmented moving least squares approximation and the associated localized method of fundamental solutions. (English) Zbl 1446.65195 Comput. Math. Appl. 80, No. 1, 13-30 (2020). MSC: 65N80 65N35 65N12 35J05 65K10 PDF BibTeX XML Cite \textit{W. Qu} et al., Comput. Math. Appl. 80, No. 1, 13--30 (2020; Zbl 1446.65195) Full Text: DOI
Mierzwiczak, Magdalena; Kołodziej, Jan Adam Comparison of three meshless methods for 2D harmonic and biharmonic problems. (English) Zbl 07228812 Eng. Anal. Bound. Elem. 118, 157-168 (2020). MSC: 74 65 PDF BibTeX XML Cite \textit{M. Mierzwiczak} and \textit{J. A. Kołodziej}, Eng. Anal. Bound. Elem. 118, 157--168 (2020; Zbl 07228812) Full Text: DOI
Wei, Xing; Huang, Ai; Sun, Linlin; Chen, Bin Multiple reciprocity singular boundary method for 3D inhomogeneous problems. (English) Zbl 07228785 Eng. Anal. Bound. Elem. 117, 212-220 (2020). MSC: 65 35 PDF BibTeX XML Cite \textit{X. Wei} et al., Eng. Anal. Bound. Elem. 117, 212--220 (2020; Zbl 07228785) Full Text: DOI
Khoshroo, M.; Hematiyan, M. R.; Daneshbod, Y. Two-dimensional elastodynamic and free vibration analysis by the method of fundamental solutions. (English) Zbl 07228783 Eng. Anal. Bound. Elem. 117, 188-201 (2020). MSC: 74 65 PDF BibTeX XML Cite \textit{M. Khoshroo} et al., Eng. Anal. Bound. Elem. 117, 188--201 (2020; Zbl 07228783) Full Text: DOI
Chen, Bo; Guo, Yukun; Ma, Fuming; Sun, Yao Numerical schemes to reconstruct three-dimensional time-dependent point sources of acoustic waves. (English) Zbl 07220297 Inverse Probl. 36, No. 7, Article ID 075009, 21 p. (2020). MSC: 65M32 65M80 65M22 76Q05 76M21 35R30 35Q35 PDF BibTeX XML Cite \textit{B. Chen} et al., Inverse Probl. 36, No. 7, Article ID 075009, 21 p. (2020; Zbl 07220297) Full Text: DOI
Sakakibara, Koya Bidirectional numerical conformal mapping based on the dipole simulation method. (English) Zbl 07214834 Eng. Anal. Bound. Elem. 114, 45-57 (2020). MSC: 30C30 65E05 65N80 65N35 65N12 35J05 35J08 PDF BibTeX XML Cite \textit{K. Sakakibara}, Eng. Anal. Bound. Elem. 114, 45--57 (2020; Zbl 07214834) Full Text: DOI
Zhu, Xiaomin; Dou, Fangfang; Karageorghis, Andreas; Chen, C. S. A fictitious points one-step MPS-MFS technique. (English) Zbl 07208711 Appl. Math. Comput. 382, Article ID 125332, 15 p. (2020). MSC: 00 PDF BibTeX XML Cite \textit{X. Zhu} et al., Appl. Math. Comput. 382, Article ID 125332, 15 p. (2020; Zbl 07208711) Full Text: DOI
Dou, Fangfang; Zhang, Li-Ping; Li, Zi-Cai; Chen, C. S. Source nodes on elliptic pseudo-boundaries in the method of fundamental solutions for Laplace’s equation; selection of pseudo-boundaries. (English) Zbl 1437.65223 J. Comput. Appl. Math. 377, Article ID 112861, 22 p. (2020). MSC: 65N80 65N85 65N12 65N15 35J05 PDF BibTeX XML Cite \textit{F. Dou} et al., J. Comput. Appl. Math. 377, Article ID 112861, 22 p. (2020; Zbl 1437.65223) Full Text: DOI
Zhang, Li-Ping; Li, Zi-Cai; Chen, Zhen; Huang, Hung-Tsai The Laplace equation in three dimensions by the method of fundamental solutions and the method of particular solutions. (English) Zbl 1437.35184 Appl. Numer. Math. 154, 47-69 (2020). MSC: 35J05 65N35 65N80 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Appl. Numer. Math. 154, 47--69 (2020; Zbl 1437.35184) Full Text: DOI
Zhang, Li-Ping; Li, Zi-Cai; Huang, Hung-Tsai; Chen, Zhen Super-exponential growth rates of condition number in the boundary knot method for the Helmholtz equation. (English) Zbl 1436.65204 Appl. Math. Lett. 105, Article ID 106333, 7 p. (2020). MSC: 65N80 65N12 65N15 35J05 33C10 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Appl. Math. Lett. 105, Article ID 106333, 7 p. (2020; Zbl 1436.65204) Full Text: DOI
Tang, Xianhua; Lin, Xiaoyan Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems. (English) Zbl 1444.35052 Sci. China, Math. 63, No. 1, 113-134 (2020). Reviewer: Fukun Zhao (Kunming) MSC: 35J50 35E05 35J60 PDF BibTeX XML Cite \textit{X. Tang} and \textit{X. Lin}, Sci. China, Math. 63, No. 1, 113--134 (2020; Zbl 1444.35052) Full Text: DOI
Doyle, Aidan; Nelson, Anton; Yuan, Matthew; DeMoes, N. J.; Wilkins, B. D.; Grubaugh, Kameron E.; Hromadka, T. V. Advances in the greedy optimization algorithm for nodes and collocation points using the method of fundamental solutions. (English) Zbl 07153260 Eng. Anal. Bound. Elem. 111, 148-153 (2020). MSC: 65 76 PDF BibTeX XML Cite \textit{A. Doyle} et al., Eng. Anal. Bound. Elem. 111, 148--153 (2020; Zbl 07153260) Full Text: DOI
Wang, Fajie; Fan, Chia-Ming; Hua, Qingsong; Gu, Yan Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations. (English) Zbl 1433.65338 Appl. Math. Comput. 364, Article ID 124658, 14 p. (2020). MSC: 65N80 35R30 35J05 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Comput. 364, Article ID 124658, 14 p. (2020; Zbl 1433.65338) Full Text: DOI
Ghimire, B. Khatri; Li, Xinxiang; Chen, C. S.; Lamichhane, A. R. Hybrid Chebyshev polynomial scheme for solving elliptic partial differential equations. (English) Zbl 1431.65231 J. Comput. Appl. Math. 364, Article ID 112324, 14 p. (2020). MSC: 65N80 65N35 41A50 74B05 35Q74 PDF BibTeX XML Cite \textit{B. K. Ghimire} et al., J. Comput. Appl. Math. 364, Article ID 112324, 14 p. (2020; Zbl 1431.65231) Full Text: DOI
Cho, Min Hyung Spectrally-accurate numerical method for acoustic scattering from doubly-periodic 3D multilayered media. (English) Zbl 1452.65388 J. Comput. Phys. 393, 46-58 (2019). MSC: 65N80 35J05 65Z05 PDF BibTeX XML Cite \textit{M. H. Cho}, J. Comput. Phys. 393, 46--58 (2019; Zbl 1452.65388) Full Text: DOI
Ahmed, Hoda F. Gegenbauer collocation algorithm for solving two-dimensional time-space fractional diffusion equations. (English) Zbl 07258521 C. R. Acad. Bulg. Sci. 72, No. 8, 1024-1035 (2019). Reviewer: Angela Slavova (Sofia) MSC: 35A08 65M70 33C45 PDF BibTeX XML Cite \textit{H. F. Ahmed}, C. R. Acad. Bulg. Sci. 72, No. 8, 1024--1035 (2019; Zbl 07258521) Full Text: DOI
Oh, Jaeyoun; Zhu, Huiqing; Fu, Zhuojia An adaptive method of fundamental solutions for solving the Laplace equation. (English) Zbl 1442.65439 Comput. Math. Appl. 77, No. 7, 1828-1840 (2019). MSC: 65N80 65N35 35J05 35J08 PDF BibTeX XML Cite \textit{J. Oh} et al., Comput. Math. Appl. 77, No. 7, 1828--1840 (2019; Zbl 1442.65439) Full Text: DOI
Pieronek, Lukas; Kleefeld, Andreas The method of fundamental solutions for computing interior transmission eigenvalues of inhomogeneous media. (English) Zbl 07215955 Constanda, Christian (ed.) et al., Integral methods in science and engineering. Analytic treatment and numerical approximations. Based on talks given at the 15th international conference on integral methods in science and engineering, IMSE, Brighton, UK, July 16–20, 2018. Basel: Birkhäuser (ISBN 978-3-030-16076-0/hbk; 978-3-030-16079-1/pbk; 978-3-030-16077-7/ebook). 353-365 (2019). MSC: 65N25 65N80 65M70 35P25 PDF BibTeX XML Cite \textit{L. Pieronek} and \textit{A. Kleefeld}, in: Integral methods in science and engineering. Analytic treatment and numerical approximations. Based on talks given at the 15th international conference on integral methods in science and engineering, IMSE, Brighton, UK, July 16--20, 2018. Basel: Birkhäuser. 353--365 (2019; Zbl 07215955) Full Text: DOI
Aslefallah, Mohammad; Rostamy, Davood Application of the singular boundary method to the two-dimensional telegraph equation on arbitrary domains. (English) Zbl 1436.65096 J. Eng. Math. 118, 1-14 (2019). MSC: 65M06 65N38 65N35 65N80 35Q60 PDF BibTeX XML Cite \textit{M. Aslefallah} and \textit{D. Rostamy}, J. Eng. Math. 118, 1--14 (2019; Zbl 1436.65096) Full Text: DOI
Wei, Xing; Sun, Linlin Singular boundary method for 3D time-harmonic electromagnetic scattering problems. (English) Zbl 07187303 Appl. Math. Modelling 76, 617-631 (2019). MSC: 78 35 PDF BibTeX XML Cite \textit{X. Wei} and \textit{L. Sun}, Appl. Math. Modelling 76, 617--631 (2019; Zbl 07187303) Full Text: DOI
Qu, Wenzhen; Fan, Chia-Ming; Gu, Yan; Wang, Fajie Analysis of three-dimensional interior acoustic fields by using the localized method of fundamental solutions. (English) Zbl 07187275 Appl. Math. Modelling 76, 122-132 (2019). MSC: 76 65 PDF BibTeX XML Cite \textit{W. Qu} et al., Appl. Math. Modelling 76, 122--132 (2019; Zbl 07187275) Full Text: DOI
Korpusov, M. O.; Yablochkin, D. K. Potential theory for a nonlinear equation of the Benjamin-Bona-Mahoney-Burgers type. (English. Russian original) Zbl 1435.35010 Comput. Math. Math. Phys. 59, No. 11, 1848-1880 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1915-1947 (2019). MSC: 35A08 35B45 PDF BibTeX XML Cite \textit{M. O. Korpusov} and \textit{D. K. Yablochkin}, Comput. Math. Math. Phys. 59, No. 11, 1848--1880 (2019; Zbl 1435.35010); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1915--1947 (2019) Full Text: DOI
Bin-Mohsin, B.; Lesnic, D. Reconstruction of inner boundaries subjected to generalized impedance boundary conditions for the modified Helmholtz equation. (English) Zbl 1434.65229 Appl. Comput. Math. 18, No. 3, 272-287 (2019). MSC: 65N21 65N35 65N80 65N20 65J20 65K10 35J05 35K57 PDF BibTeX XML Cite \textit{B. Bin-Mohsin} and \textit{D. Lesnic}, Appl. Comput. Math. 18, No. 3, 272--287 (2019; Zbl 1434.65229) Full Text: Link
Radojev, Goran; Linß, Torsten Maximum-norm a posteriori error bounds for a collocation method applied to a singularly perturbed reaction-diffusion problem in three dimensions. (English) Zbl 1431.65226 Numer. Methods Partial Differ. Equations 35, No. 6, 2305-2317 (2019). MSC: 65N35 65D07 35B25 65N15 65N80 PDF BibTeX XML Cite \textit{G. Radojev} and \textit{T. Linß}, Numer. Methods Partial Differ. Equations 35, No. 6, 2305--2317 (2019; Zbl 1431.65226) Full Text: DOI
Karageorghis, Andreas; Lesnic, Daniel The method of fundamental solutions for the Oseen steady-state viscous flow past obstacles of known or unknown shapes. (English) Zbl 1430.76390 Numer. Methods Partial Differ. Equations 35, No. 6, 2103-2119 (2019). MSC: 76M21 76D07 65N80 65N21 65N20 65K10 35R30 35Q35 PDF BibTeX XML Cite \textit{A. Karageorghis} and \textit{D. Lesnic}, Numer. Methods Partial Differ. Equations 35, No. 6, 2103--2119 (2019; Zbl 1430.76390) Full Text: DOI
Tri, Abdeljalil; Askour, Omar; Braikat, Bouazza; Zahrouni, Hamid; Potier-ferry, Michel Fundamental solutions and asymptotic numerical methods for bifurcation analysis of nonlinear bi-harmonic problems. (English) Zbl 1431.65232 Numer. Methods Partial Differ. Equations 35, No. 6, 2091-2102 (2019). MSC: 65N80 35B32 35C20 41A21 PDF BibTeX XML Cite \textit{A. Tri} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 2091--2102 (2019; Zbl 1431.65232) Full Text: DOI
Gáspár, Csaba A fast and stable multi-level solution technique for the method of fundamental solutions. (English) Zbl 1434.65304 Griebel, Michael (ed.) et al., Meshfree methods for partial differential equations IX. Selected papers of the ninth international workshop, Bonn, Germany, September 18–20, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 129, 19-42 (2019). MSC: 65N80 65N38 65N55 65F35 65F10 65N50 PDF BibTeX XML Cite \textit{C. Gáspár}, Lect. Notes Comput. Sci. Eng. 129, 19--42 (2019; Zbl 1434.65304) Full Text: DOI
Gu, Yan; Fan, Chia-Ming; Qu, Wenzhen; Wang, Fajie; Zhang, Chuanzeng Localized method of fundamental solutions for three-dimensional inhomogeneous elliptic problems: theory and MATLAB code. (English) Zbl 07147419 Comput. Mech. 64, No. 6, 1567-1588 (2019). MSC: 74 PDF BibTeX XML Cite \textit{Y. Gu} et al., Comput. Mech. 64, No. 6, 1567--1588 (2019; Zbl 07147419) Full Text: DOI
Morín Castillo, María Monserrat; Netzahualcoyotl Bautista, Claudia; Oliveros Oliveros, José Jacobo; Conde Mones, José Julio; Juárez Valencia, Lorenzo Héctor Stable identification of sources located on separation interfaces of two different homogeneous media. (English) Zbl 1427.65343 Adv. Differ. Equ. Control Process. 20, No. 1, 53-97 (2019). MSC: 65N20 65N21 65N30 65N80 65N12 45Q05 35A01 35A02 65J20 PDF BibTeX XML Cite \textit{M. M. Morín Castillo} et al., Adv. Differ. Equ. Control Process. 20, No. 1, 53--97 (2019; Zbl 1427.65343) Full Text: DOI
Zhao, Wenchang; Chen, Leilei; Chen, Haibo; Marburg, Steffen Topology optimization of exterior acoustic-structure interaction systems using the coupled FEM-BEM method. (English) Zbl 1425.74384 Int. J. Numer. Methods Eng. 119, No. 5, 404-431 (2019). MSC: 74P15 65K10 76Q05 35J05 65N30 65N38 74F10 90C31 74S05 76M15 65N80 65F10 65F15 PDF BibTeX XML Cite \textit{W. Zhao} et al., Int. J. Numer. Methods Eng. 119, No. 5, 404--431 (2019; Zbl 1425.74384) Full Text: DOI
Grabski, Jakub Krzysztof Numerical solution of non-Newtonian fluid flow and heat transfer problems in ducts with sharp corners by the modified method of fundamental solutions and radial basis function collocation. (English) Zbl 07127497 Eng. Anal. Bound. Elem. 109, 143-152 (2019). MSC: 76 80 PDF BibTeX XML Cite \textit{J. K. Grabski}, Eng. Anal. Bound. Elem. 109, 143--152 (2019; Zbl 07127497) Full Text: DOI
Liu, Q. G.; Šarler, B. Method of fundamental solutions without fictitious boundary for three dimensional elasticity problems based on force-balance desingularization. (English) Zbl 07127465 Eng. Anal. Bound. Elem. 108, 244-253 (2019). MSC: 74 65 PDF BibTeX XML Cite \textit{Q. G. Liu} and \textit{B. Šarler}, Eng. Anal. Bound. Elem. 108, 244--253 (2019; Zbl 07127465) Full Text: DOI
Chang, Jen-Yi; Tsai, Chia-Cheng; Young, D. L. Homotopy method of fundamental solutions for solving nonlinear heat conduction problems. (English) Zbl 07127460 Eng. Anal. Bound. Elem. 108, 179-191 (2019). MSC: 65 35 PDF BibTeX XML Cite \textit{J.-Y. Chang} et al., Eng. Anal. Bound. Elem. 108, 179--191 (2019; Zbl 07127460) Full Text: DOI
Kravchenko, Igor V.; Kravchenko, Vladislav V.; Torba, Sergii M. Solution of parabolic free boundary problems using transmuted heat polynomials. (English) Zbl 1423.35466 Math. Methods Appl. Sci. 42, No. 15, 5094-5105 (2019). MSC: 35R35 35A22 35A35 35K05 35K10 65M70 65M80 65N35 PDF BibTeX XML Cite \textit{I. V. Kravchenko} et al., Math. Methods Appl. Sci. 42, No. 15, 5094--5105 (2019; Zbl 1423.35466) Full Text: DOI arXiv
Chouhan, Devendra; Chandel, R. S. Numerical solution of the convection diffusion equation by the Legendre wavelet method. (English) Zbl 1438.42086 Jñānābha 49, No. 1, 26-39 (2019). MSC: 42C40 35A08 65L60 PDF BibTeX XML Cite \textit{D. Chouhan} and \textit{R. S. Chandel}, Jñānābha 49, No. 1, 26--39 (2019; Zbl 1438.42086) Full Text: Link
Gáspár, Csaba The method of fundamental solutions combined with a multi-level technique. (English) Zbl 1434.65303 Dimov, Ivan (ed.) et al., Finite difference methods. Theory and applications. 7th international conference, FDM 2018, Lozenetz, Bulgaria, June 11–16, 2018. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11386, 241-249 (2019). MSC: 65N80 PDF BibTeX XML Cite \textit{C. Gáspár}, Lect. Notes Comput. Sci. 11386, 241--249 (2019; Zbl 1434.65303) Full Text: DOI
Hirano, Hiroaki; Tanaka, Ken’ichiro Generation of collocation points in the method of fundamental solutions for 2D Laplace’s equation. (English) Zbl 07114861 JSIAM Lett. 11, 49-52 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{H. Hirano} and \textit{K. Tanaka}, JSIAM Lett. 11, 49--52 (2019; Zbl 07114861) Full Text: DOI
Qu, Wenzhen; Fan, Chia-Ming; Gu, Yan Localized method of fundamental solutions for interior Helmholtz problems with high wave number. (English) Zbl 07110372 Eng. Anal. Bound. Elem. 107, 25-32 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{W. Qu} et al., Eng. Anal. Bound. Elem. 107, 25--32 (2019; Zbl 07110372) Full Text: DOI
Gáspár, Csaba A multi-level technique for the method of fundamental solutions without regularization and desingularization. (English) Zbl 07110313 Eng. Anal. Bound. Elem. 103, 145-159 (2019). MSC: 65 70 PDF BibTeX XML Cite \textit{C. Gáspár}, Eng. Anal. Bound. Elem. 103, 145--159 (2019; Zbl 07110313) Full Text: DOI
Zhang, Li-Ping; Li, Zi-Cai; Huang, Hung-Tsai; Wei, Yimin The modified method of fundamental solutions for exterior problems of the Helmholtz equation; spurious eigenvalues and their removals. (English) Zbl 07106368 Appl. Numer. Math. 145, 236-260 (2019). MSC: 65D 00A 11B 11Y 62Q PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Appl. Numer. Math. 145, 236--260 (2019; Zbl 07106368) Full Text: DOI
Gopal, Abinand; Trefethen, Lloyd N. Solving Laplace problems with corner singularities via rational functions. (English) Zbl 1431.65223 SIAM J. Numer. Anal. 57, No. 5, 2074-2094 (2019). Reviewer: Andreas Kleefeld (Jülich) MSC: 65N35 41A20 65E05 35J05 65N80 PDF BibTeX XML Cite \textit{A. Gopal} and \textit{L. N. Trefethen}, SIAM J. Numer. Anal. 57, No. 5, 2074--2094 (2019; Zbl 1431.65223) Full Text: DOI arXiv
Tsedendorj, G.; Isshiki, H. Numerical study of unsteady diffusion in circle. (English) Zbl 1438.65264 Comput. Appl. Math. 38, No. 1, Paper No. 26, 14 p. (2019). MSC: 65M80 35R09 45K05 65R10 PDF BibTeX XML Cite \textit{G. Tsedendorj} and \textit{H. Isshiki}, Comput. Appl. Math. 38, No. 1, Paper No. 26, 14 p. (2019; Zbl 1438.65264) Full Text: DOI
Dodig, Hrvoje; Cvetković, Mario; Poljak, Dragan On the computation of singular integrals over triangular surfaces in \(\mathbb{R}^3\). (English) Zbl 1418.65191 Cheng, Alexander H.-D. (ed.) et al., Boundary elements and other mesh reduction methods XXXXI. Selected papers based on the presentations at the 41st international conference (BEM/MRM), New Forest, UK, September 11–13, 2018. Southampton: WIT Press. WIT Trans. Eng. Sci. 122, 95-105 (2019). MSC: 65N80 26B20 65D30 PDF BibTeX XML Cite \textit{H. Dodig} et al., WIT Trans. Eng. Sci. 122, 95--105 (2019; Zbl 1418.65191) Full Text: Link
Gnitko, Vasyl V.; Degtyariov, Kyryl G.; Karaiev, Artem A.; Strelnikova, Elena A. Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity. (English) Zbl 1418.74040 Cheng, Alexander H.-D. (ed.) et al., Boundary elements and other mesh reduction methods XXXXI. Selected papers based on the presentations at the 41st international conference (BEM/MRM), New Forest, UK, September 11–13, 2018. Southampton: WIT Press. WIT Trans. Eng. Sci. 122, 13-25 (2019). MSC: 74S15 65M38 65M80 45E05 45A05 33E05 74K25 74B10 35Q74 35B07 35Q35 PDF BibTeX XML Cite \textit{V. V. Gnitko} et al., WIT Trans. Eng. Sci. 122, 13--25 (2019; Zbl 1418.74040) Full Text: Link
Araújo, António; Serranho, Pedro On the use of quasi-equidistant source points over the sphere surface for the method of fundamental solutions. (English) Zbl 1416.65504 J. Comput. Appl. Math. 359, 55-68 (2019). MSC: 65N80 PDF BibTeX XML Cite \textit{A. Araújo} and \textit{P. Serranho}, J. Comput. Appl. Math. 359, 55--68 (2019; Zbl 1416.65504) Full Text: DOI
Grabski, Jakub Krzysztof; Karageorghis, Andreas Moving pseudo-boundary method of fundamental solutions for nonlinear potential problems. (English) Zbl 07063059 Eng. Anal. Bound. Elem. 105, 78-86 (2019). MSC: 65N35 65N80 65N38 PDF BibTeX XML Cite \textit{J. K. Grabski} and \textit{A. Karageorghis}, Eng. Anal. Bound. Elem. 105, 78--86 (2019; Zbl 07063059) Full Text: DOI
Bai, Zi-Qiang; Gu, Yan; Fan, Chia-Ming A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations. (English) Zbl 07063027 Eng. Anal. Bound. Elem. 104, 26-33 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{Z.-Q. Bai} et al., Eng. Anal. Bound. Elem. 104, 26--33 (2019; Zbl 07063027) Full Text: DOI
Gu, Yan; Fan, Chia-Ming; Xu, Rui-Ping Localized method of fundamental solutions for large-scale modeling of two-dimensional elasticity problems. (English) Zbl 07048154 Appl. Math. Lett. 93, 8-14 (2019). MSC: 74 65 PDF BibTeX XML Cite \textit{Y. Gu} et al., Appl. Math. Lett. 93, 8--14 (2019; Zbl 07048154) Full Text: DOI
Amin, Mohammed Elmustafa; Xiong, Xiangtuan Source identification problems for radially symmetric and axis-symmetric heat conduction equations. (English) Zbl 1432.65137 Appl. Numer. Math. 138, 1-18 (2019). MSC: 65M32 35K20 35R30 80A23 PDF BibTeX XML Cite \textit{M. E. Amin} and \textit{X. Xiong}, Appl. Numer. Math. 138, 1--18 (2019; Zbl 1432.65137) Full Text: DOI
Nakamura, Ken-Ichi; Sakakibara, Koya; Yazaki, Shigetoshi Numerical approach to three-dimensional model of cellular electrophysiology by the method of fundamental solutions. (English) Zbl 07037377 JSIAM Lett. 11, 17-20 (2019). MSC: 74L15 74S30 74F15 PDF BibTeX XML Cite \textit{K.-I. Nakamura} et al., JSIAM Lett. 11, 17--20 (2019; Zbl 07037377) Full Text: DOI
Alves, Carlos J. S.; Antunes, Pedro R. S. Determination of elastic resonance frequencies and eigenmodes using the method of fundamental solutions. (English) Zbl 07034737 Eng. Anal. Bound. Elem. 101, 330-342 (2019). MSC: 74 35 PDF BibTeX XML Cite \textit{C. J. S. Alves} and \textit{P. R. S. Antunes}, Eng. Anal. Bound. Elem. 101, 330--342 (2019; Zbl 07034737) Full Text: DOI
Fan, C. M.; Huang, Y. K.; Chen, C. S.; Kuo, S. R. Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations. (English) Zbl 07034726 Eng. Anal. Bound. Elem. 101, 188-197 (2019). MSC: 65 35 PDF BibTeX XML Cite \textit{C. M. Fan} et al., Eng. Anal. Bound. Elem. 101, 188--197 (2019; Zbl 07034726) Full Text: DOI
Ku, Cheng-Yu; Xiao, Jing-En; Liu, Chih-Yu; Fan, Chia-Ming On modeling subsurface flow using a novel hybrid Trefftz-MFS method. (English) Zbl 07014426 Eng. Anal. Bound. Elem. 100, 225-236 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{C.-Y. Ku} et al., Eng. Anal. Bound. Elem. 100, 225--236 (2019; Zbl 07014426) Full Text: DOI
Markous, Nevine A. Boundary mesh free method with distributed sources for 2D elasticity problems. (English) Zbl 07014414 Eng. Anal. Bound. Elem. 100, 95-100 (2019). MSC: 74 35 PDF BibTeX XML Cite \textit{N. A. Markous}, Eng. Anal. Bound. Elem. 100, 95--100 (2019; Zbl 07014414) Full Text: DOI
Reddy, G. M. M.; Vynnycky, M.; Cuminato, J. A. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. (English) Zbl 07006409 J. Comput. Appl. Math. 349, 21-40 (2019). MSC: 65 94 PDF BibTeX XML Cite \textit{G. M. M. Reddy} et al., J. Comput. Appl. Math. 349, 21--40 (2019; Zbl 07006409) Full Text: DOI
de A. Costa, Edmundo G.; Godinho, L. M. C.; Santiago, J. A. F.; Mansur, W. J.; Peters, F. C. Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. (English) Zbl 07006025 Eng. Anal. Bound. Elem. 99, 142-156 (2019). MSC: 76 35 PDF BibTeX XML Cite \textit{E. G. de A. Costa} et al., Eng. Anal. Bound. Elem. 99, 142--156 (2019; Zbl 07006025) Full Text: DOI
Martin, P. A. On the use of approximate fundamental solutions: connections with the method of fundamental solutions and the method of regularized stokeslets. (English) Zbl 07006015 Eng. Anal. Bound. Elem. 99, 23-28 (2019). MSC: 76 65 PDF BibTeX XML Cite \textit{P. A. Martin}, Eng. Anal. Bound. Elem. 99, 23--28 (2019; Zbl 07006015) Full Text: DOI
Wegrzyn, Tomasz; Szczucka-Lasota, Bozena; Uscilowska, Anita; Stanik, Zbigniew; Piwnik, Jan Validation of parameters selection of welding with micro-jet cooling by using method of fundamental solutions. (English) Zbl 1404.80020 Eng. Anal. Bound. Elem. 98, 17-26 (2019). MSC: 80M25 74F15 74S30 76M25 65M80 80A20 PDF BibTeX XML Cite \textit{T. Wegrzyn} et al., Eng. Anal. Bound. Elem. 98, 17--26 (2019; Zbl 1404.80020) Full Text: DOI
Li, Zi-Cai; Wei, Yimin; Chen, Yunkun; Huang, Hung-Tsai The method of fundamental solutions for the Helmholtz equation. (English) Zbl 1406.65130 Appl. Numer. Math. 135, 510-536 (2019). MSC: 65N80 35J05 65N15 65N12 PDF BibTeX XML Cite \textit{Z.-C. Li} et al., Appl. Numer. Math. 135, 510--536 (2019; Zbl 1406.65130) Full Text: DOI
Li, Junpu; Qin, Qinghua; Fu, Zhuojia A dual-level method of fundamental solutions for three-dimensional exterior high frequency acoustic problems. (English) Zbl 07183014 Appl. Math. Modelling 63, 558-576 (2018). MSC: 76 74 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Modelling 63, 558--576 (2018; Zbl 07183014) Full Text: DOI
Baranetskij, Ya. O.; Kalenyuk, P. I. Nonlocal problem with multipoint perturbations of the Dirichlet conditions for even-order partial differential equations with constant coefficients. (Ukrainian, English) Zbl 1438.35099 Mat. Metody Fiz.-Mekh. Polya 61, No. 4, 17-34 (2018). Reviewer: V. I. Zhukovsky (Moscow) MSC: 35E05 35G05 35G20 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} and \textit{P. I. Kalenyuk}, Mat. Metody Fiz.-Mekh. Polya 61, No. 4, 17--34 (2018; Zbl 1438.35099)
Dou, Fangfang; Li, Zi-Cai; Chen, C. S.; Tian, Zhaolu Analysis on the method of fundamental solutions for biharmonic equations. (English) Zbl 1429.65293 Appl. Math. Comput. 339, 346-366 (2018). MSC: 65N80 35J08 35J40 35J05 PDF BibTeX XML Cite \textit{F. Dou} et al., Appl. Math. Comput. 339, 346--366 (2018; Zbl 1429.65293) Full Text: DOI
Reddy, G. M. M.; Vynnycky, M.; Cuminato, J. A. On efficient reconstruction of boundary data with optimal placement of the source points in the MFS: application to inverse Stefan problems. (English) Zbl 1428.65053 Inverse Probl. Sci. Eng. 26, No. 9, 1249-1279 (2018). MSC: 65M70 65K10 65M32 65M30 80A22 80A23 35R35 65M80 65F22 65F05 35Q79 PDF BibTeX XML Cite \textit{G. M. M. Reddy} et al., Inverse Probl. Sci. Eng. 26, No. 9, 1249--1279 (2018; Zbl 1428.65053) Full Text: DOI
Cherif, Mountassir Hamdi; Ziane, Djelloul; Belghaba, Kacem Fractional natural decomposition method for solving fractional system of nonlinear equations of unsteady flow of a polytropic gas. (English) Zbl 07083514 Nonlinear Stud. 25, No. 4, 753-764 (2018). MSC: 34A08 26A33 34K37 35A08 PDF BibTeX XML Cite \textit{M. H. Cherif} et al., Nonlinear Stud. 25, No. 4, 753--764 (2018; Zbl 07083514) Full Text: Link
Fryklund, Fredrik; Lehto, Erik; Tornberg, Anna-Karin Partition of unity extension of functions on complex domains. (English) Zbl 1416.65475 J. Comput. Phys. 375, 57-79 (2018). MSC: 65N35 65N80 35J05 35J25 PDF BibTeX XML Cite \textit{F. Fryklund} et al., J. Comput. Phys. 375, 57--79 (2018; Zbl 1416.65475) Full Text: DOI
Liu, Chein-Shan; Wang, Fajie An energy method of fundamental solutions for solving the inverse Cauchy problems of the Laplace equation. (English) Zbl 1417.35230 Comput. Math. Appl. 75, No. 12, 4405-4413 (2018). MSC: 35R30 35J05 35J08 PDF BibTeX XML Cite \textit{C.-S. Liu} and \textit{F. Wang}, Comput. Math. Appl. 75, No. 12, 4405--4413 (2018; Zbl 1417.35230) Full Text: DOI
Zhang, Yongfu; Li, Chongjun The PDE-constrained optimization method based on MFS for solving inverse heat conduction problems. (English) Zbl 1424.65156 J. Math. Res. Appl. 38, No. 3, 303-330 (2018). MSC: 65M32 65F22 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{C. Li}, J. Math. Res. Appl. 38, No. 3, 303--330 (2018; Zbl 1424.65156) Full Text: DOI
Alves, Carlos J. S.; Valtchev, Svilen S. On the application of the method of fundamental solutions to boundary value problems with jump discontinuities. (English) Zbl 1426.65199 Appl. Math. Comput. 320, 61-74 (2018). MSC: 65N80 35J05 65N35 PDF BibTeX XML Cite \textit{C. J. S. Alves} and \textit{S. S. Valtchev}, Appl. Math. Comput. 320, 61--74 (2018; Zbl 1426.65199) Full Text: DOI
Du, Linglong Long time behavior for the visco-elastic damped wave equation in \(\mathbb{R}^n_+\) and the boundary effect. (English) Zbl 1414.35123 Netw. Heterog. Media 13, No. 4, 549-565 (2018). MSC: 35L20 35B40 35A08 35L71 PDF BibTeX XML Cite \textit{L. Du}, Netw. Heterog. Media 13, No. 4, 549--565 (2018; Zbl 1414.35123) Full Text: DOI
Alves, Carlos J. S.; Antunes, Pedro R. S. The method of fundamental solutions applied to boundary value problems on the surface of a sphere. (English) Zbl 1409.65107 Comput. Math. Appl. 75, No. 7, 2365-2373 (2018). MSC: 65N80 PDF BibTeX XML Cite \textit{C. J. S. Alves} and \textit{P. R. S. Antunes}, Comput. Math. Appl. 75, No. 7, 2365--2373 (2018; Zbl 1409.65107) Full Text: DOI
Grabski, Jakub Krzysztof; Kołodziej, Jan Adam Laminar fluid flow and heat transfer in an internally corrugated tube by means of the method of fundamental solutions and radial basis functions. (English) Zbl 1409.65108 Comput. Math. Appl. 75, No. 4, 1413-1433 (2018). MSC: 65N80 65N35 PDF BibTeX XML Cite \textit{J. K. Grabski} and \textit{J. A. Kołodziej}, Comput. Math. Appl. 75, No. 4, 1413--1433 (2018; Zbl 1409.65108) Full Text: DOI
Wen, Jin; Cheng, Jun-Feng The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation. (English) Zbl 1409.65065 Inverse Probl. Sci. Eng. 26, No. 7, 925-941 (2018). MSC: 65M32 35R30 65M80 80A23 PDF BibTeX XML Cite \textit{J. Wen} and \textit{J.-F. Cheng}, Inverse Probl. Sci. Eng. 26, No. 7, 925--941 (2018; Zbl 1409.65065) Full Text: DOI
Wang, Fajie; Liu, Chein-Shan; Qu, Wenzhen Optimal sources in the MFS by minimizing a new merit function: energy gap functional. (English) Zbl 1410.65475 Appl. Math. Lett. 86, 229-235 (2018). MSC: 65N80 35J15 65K10 65F10 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Lett. 86, 229--235 (2018; Zbl 1410.65475) Full Text: DOI
Damirchi, Javad; Janmohammadi, Ali; Hasanpour, Masoud; Memarbashi, Reza Numerical solution of some 2-dimensional direct and inverse heat conduction problems by method of fundamental solutions. (Persian. English summary) Zbl 1412.35378 JAMM, J. Adv. Math. Model. 8, No. 1, 65-86 (2018). MSC: 35R30 65M80 PDF BibTeX XML Cite \textit{J. Damirchi} et al., JAMM, J. Adv. Math. Model. 8, No. 1, 65--86 (2018; Zbl 1412.35378) Full Text: DOI