×

Flow-driven collapse of lubricant-infused surfaces. (English) Zbl 1460.76188

Summary: Lubricant-infused surfaces in an outer liquid flow generally reduce viscous drag. However, owing to the meniscus deformation, the infused state could collapse. Here, we discuss the transition between infused and collapsed states of transverse shallow grooves, considering the capillary number, liquid/lubricant viscosity ratio and the aspect ratio of the groove as parameters for inducing this transition. It is found that, depending on the depth of the grooves, two different scenarios occur. A collapse of lubricant-infused surfaces could happen due to a depinning of the meniscus from the front groove edge. However, for very shallow textures, the meniscus contacts the bottom wall before such a depinning could occur. Our interpretation could help avoid this generally detrimental effect in various applications.

MSC:

76D08 Lubrication theory
76A20 Thin fluid films
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Asmolov, E. S., Nizkaya, T. V. & Vinogradova, O. I.2018Enhanced slip properties of lubricant-infused grooves. Phys. Rev. E98, 033103.
[2] Asmolov, E. S. & Vinogradova, O. I.2012Effective slip boundary conditions for arbitrary one-dimensional surfaces. J. Fluid Mech.706, 108-117. · Zbl 1275.76065
[3] Bico, J., Thiele, U. & Quere, D.2002Wetting of textured surfaces. Colloids Surf. A206, 41-46.
[4] Borkent, B., Dammler, S., Schonherr, H., Vansco, G. & Lohse, D.2007Superstability of surface nanobubbles. Phys. Rev. Lett.98, 204502.
[5] Von Borries Lopes, A., Thiele, U. & Hazel, A. L.2018On the multiple solutions of coating and rimming flows on rotating cylinders. J. Fluid Mech.835, 540-574. · Zbl 1421.76065
[6] Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. & Barrat, J. L.2004Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E15, 489-499.
[7] Doumenc, F. & Guerrier, B.2013Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Let.103 (1), 14001. · Zbl 1194.76017
[8] Dubov, A. L., Mourran, A., Möller, M. & Vinogradova, O. I.2015Regimes of wetting transitions on superhydrophobic textures conditioned by energy of receding contact lines. Appl. Phys. Lett.106, 241601.
[9] Dubov, A. L, Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I.2018Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids3 (1), 014002.
[10] Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M. & Aizenberg, J.2012Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA109, 13182-13187.
[11] Gao, P. & Feng, J. J.2009Enhanced slip on a patterned substrate due to depinning of contact line. Phys. Fluids21, 102102. · Zbl 1183.76207
[12] Gauglitz, P. A. & Radke, C. J.1988An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci.43 (7), 1457-1465.
[13] Ge, Z., Holmgren, H., Kronbichler, M., Brandt, L. & Kreiss, G.2018Effective slip over partially filled microcavities and its possible failure. Phys. Rev. Fluids3 (5), 054201.
[14] Grate, J. W., Dehoff, K. J., Warner, M. G., Pittman, J. W., Wietsma, T. W., Zhang, C. & Oostrom, M.2012Correlation of oil-water and air-water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions. Langmuir28 (18), 7182-7188.
[15] Herminghaus, S., Brinkmann, M. & Seemann, R.2008Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res.38, 101-121.
[16] Hyväluoma, J. & Harting, J.2008Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett.100, 246001.
[17] Jung, Y. C. & Bhushan, B.2009Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir25 (24), 14165-14173.
[18] Karatay, E., Haase, A. S., Visser, C. W., Sun, C., Lohse, D., Tsai, P. A. & Lammertink, R. G. H.2013Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. USA110, 8422-8426.
[19] Keiser, A., Keiser, L., Clanet, C. & Quere, D.2017Drop friction on liquid-infused materials. Soft Matt.13, 6981-6987.
[20] Kim, P., Wong, T. S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E. & Aizenberg, J.2012Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano6, 6569-6577.
[21] Liu, Y., Wexler, J. S., Schönecker, C. & Stone, H. A.2016Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Phys. Rev. Fluids1, 074003.
[22] Maynes, D., Jeffs, K., Woolford, B. & Webb, B. W.2007Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys. Fluids19, 093603. · Zbl 1182.76502
[23] Miksis, M. J. & Davis, S. H.1994Slip over rough and coated surfaces. J. Fluid Mech.173, 125-139. · Zbl 0814.76036
[24] Ng, C. O., Chu, H. C. W. & Wang, C. Y.2010On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls. Phys. Fluids22, 102002.
[25] Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I.2013Flow in channels with superhydrophobic trapezoidal textures. Soft Matt.9, 11671-11679.
[26] Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I.2014Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E90, 043017.
[27] Philip, J. R.1972Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys.23, 353-372. · Zbl 0245.76030
[28] Quere, D.2008Wetting and roughness. Annu. Rev. Mater. Res.38, 71-99.
[29] Reyssat, M., Yeomans, J. M. & Quere, D.2007Impalement of fakir drops. Europhys. Lett.81 (2), 26006.
[30] Sbragaglia, M. & Prosperetti, A.2007A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids19, 043603. · Zbl 1146.76529
[31] Snoeijer, J. H.2006Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids18 (2), 021701.
[32] Solomon, B. R., Khalil, K. S. & Varanasi, K. K.2014Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir30, 10970-10976.
[33] Teo, S. J. & Khoo, B. C.2010Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature. Microfluid Nanofluid9, 499-511.
[34] Thiele, U.2018Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloid Surf. A553, 487-495.
[35] Vinogradova, O. I.1995Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir11, 2213-2220.
[36] Vinogradova, O. I. & Belyaev, A. V.2011Wetting, roughness and flow boundary conditions. J. Phys.: Condens. Matter23, 184104.
[37] Vinogradova, O. I., Bunkin, N. F., Churaev, N. V., Kiseleva, O. A., Lobeyev, A. V. & Ninham, B. W.1995Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J. Colloid Interface Sci.173, 443-447.
[38] Vinogradova, O. I. & Dubov, A. L.2012Superhydrophobic textures for microfluidics. Mendeleev Commun.22, 229-237.
[39] Wexler, J. S., Jacobi, J. & Stone, H. A.2015Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett.114, 168301.
[40] Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J.2011Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature477, 443-447.
[41] Xue, Y., Lv, P., Liu, Y., Shi, Y., Lin, H. & Duan, H.2015Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure. Phys. Fluids27 (9), 092003.
[42] Yakubov, G. E., Vinogradova, O. I. & Butt, H.-J.2000Contact angles on hydrophobic microparticles at water-air and water-hexadecane interfaces. J. Adhes. Sci. Technol.14 (14), 1783-1799.
[43] Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L.2007Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids19, 123601. · Zbl 1182.76848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.