Barbu, Viorel The controllability of Fokker-Planck equations with reflecting boundary conditions and controllers in diffusion term. (English) Zbl 07319563 SIAM J. Control Optim. 59, No. 1, 709-726 (2021). MSC: 93B05 93C20 35Q84 60H15 93B52 PDF BibTeX XML Cite \textit{V. Barbu}, SIAM J. Control Optim. 59, No. 1, 709--726 (2021; Zbl 07319563) Full Text: DOI
Mishura, Yuliya; Ralchenko, Kostiantyn; Zili, Mounir; Zougar, Eya Fractional stochastic heat equation with piecewise constant coefficients. (English) Zbl 07318763 Stoch. Dyn. 21, No. 1, Article ID 2150002, 39 p. (2021). MSC: 60G22 60H15 35R60 PDF BibTeX XML Cite \textit{Y. Mishura} et al., Stoch. Dyn. 21, No. 1, Article ID 2150002, 39 p. (2021; Zbl 07318763) Full Text: DOI
Gou, Haide Monotone iterative technique for Hilfer fractional evolution equations with nonlocal conditions. (English) Zbl 07317899 Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021). MSC: 34K37 34K30 34K45 34K07 47D06 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021; Zbl 07317899) Full Text: DOI
Andersson, Adam; Jentzen, Arnulf; Kurniawan, Ryan Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. (English) Zbl 07315343 J. Math. Anal. Appl. 495, No. 1, Article ID 124558, 33 p. (2021). MSC: 60 35 PDF BibTeX XML Cite \textit{A. Andersson} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124558, 33 p. (2021; Zbl 07315343) Full Text: DOI
Majdoub, Mohamed; Mliki, Ezzedine Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. (English) Zbl 07301482 Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021). Reviewer: Manil T. Mohan (Roorkee) MSC: 60H15 60H30 35R60 35K05 60G22 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{E. Mliki}, Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021; Zbl 07301482) Full Text: DOI
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 07301372 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 07301372) Full Text: DOI
Ohyama, Hiroki Global well-posedness for the Navier-Stokes equations with the Coriolis force in function spaces characterized by semigroups. (English) Zbl 1455.76031 J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{H. Ohyama}, J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021; Zbl 1455.76031) Full Text: DOI
Klobusicky, Joe; Menon, Govind; Pego, Robert L. Two-dimensional grain boundary networks: stochastic particle models and kinetic limits. (English) Zbl 1455.74011 Arch. Ration. Mech. Anal. 239, No. 1, 301-355 (2021). MSC: 74A99 74E15 74E20 74S60 82B21 82B31 PDF BibTeX XML Cite \textit{J. Klobusicky} et al., Arch. Ration. Mech. Anal. 239, No. 1, 301--355 (2021; Zbl 1455.74011) Full Text: DOI
Vanterler da C. Sousa, J.; Jarad, Fahd; Abdeljawad, Thabet Existence of mild solutions to Hilfer fractional evolution equations in Banach space. (English) Zbl 07296612 Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021). MSC: 34A08 34G20 34A37 34B10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021; Zbl 07296612) Full Text: DOI
Bishop, Sheila A.; Eke, Kanayo S.; Okagbue, Hilary I. Advances on asymptotic stability of impulsive stochastic evolution equations. (English) Zbl 1453.37053 Int. J. Math. Comput. Sci. 16, No. 1, 99-109 (2021). MSC: 37H30 37L55 47J35 47H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Int. J. Math. Comput. Sci. 16, No. 1, 99--109 (2021; Zbl 1453.37053) Full Text: Link
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston M.; Zhou, Yong Periodic mild solutions of infinite delay second order evolution equations with impulses. (English) Zbl 07246086 Electron. J. Math. Analysis Appl. 9, No. 1, 179-190 (2021). MSC: 34K30 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Electron. J. Math. Analysis Appl. 9, No. 1, 179--190 (2021; Zbl 07246086) Full Text: Link
Gou, Haide; Li, Yongxiang The method of lower and upper solutions for damped elastic systems in Banach spaces. (English) Zbl 1455.34063 J. Appl. Anal. Comput. 10, No. 2, 495-513 (2020). MSC: 34G20 34K30 35B10 47D06 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Appl. Anal. Comput. 10, No. 2, 495--513 (2020; Zbl 1455.34063) Full Text: DOI
Pham, Viet Son Lévy-driven causal CARMA random fields. (English) Zbl 1454.60067 Stochastic Processes Appl. 130, No. 12, 7547-7574 (2020). MSC: 60G60 60G51 62M10 PDF BibTeX XML Cite \textit{V. S. Pham}, Stochastic Processes Appl. 130, No. 12, 7547--7574 (2020; Zbl 1454.60067) Full Text: DOI
Mebrat, M.; N’Guérékata, G. M. A Cauchy problem for some fractional differential equation via deformable derivatives. (English) Zbl 07309258 J. Nonlinear Evol. Equ. Appl. 2020, 55-63 (2020). MSC: 34G20 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{M. Mebrat} and \textit{G. M. N'Guérékata}, J. Nonlinear Evol. Equ. Appl. 2020, 55--63 (2020; Zbl 07309258) Full Text: Link
Ge, Zhaoqiang; Ge, Xiaochi Controllability of singular distributed parameter systems in the sense of mild solution. (English) Zbl 1455.93012 J. Syst. Sci. Complex. 33, No. 5, 1485-1496 (2020). MSC: 93B05 93C25 PDF BibTeX XML Cite \textit{Z. Ge} and \textit{X. Ge}, J. Syst. Sci. Complex. 33, No. 5, 1485--1496 (2020; Zbl 1455.93012) Full Text: DOI
Chai, Jianhong; Zhou, Wenxue; Sun, Rui; Zhou, Yuqun Existence of mild solution for initial value problem of fractional differential equations. (English) Zbl 07295144 J. Anhui Norm. Univ., Nat. Sci. 43, No. 2, 115-122 (2020). MSC: 34G20 34A12 34A08 47N20 PDF BibTeX XML Cite \textit{J. Chai} et al., J. Anhui Norm. Univ., Nat. Sci. 43, No. 2, 115--122 (2020; Zbl 07295144) Full Text: DOI
Gou, Haide Existence of \(L\)-quasi mild solutions for damped elastic systems in Banach spaces. (Chinese. English summary) Zbl 07294869 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 408-421 (2020). MSC: 34G20 47N20 PDF BibTeX XML Cite \textit{H. Gou}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 408--421 (2020; Zbl 07294869)
Bodnarchuk, I. M.; Radchenko, V. M. The equation for vibrations of a fixed string driven by a general stochastic measure. (English. Ukrainian original) Zbl 07291162 Theory Probab. Math. Stat. 101, 1-11 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 5-14 (2019). MSC: 60H15 60G17 60G57 60B10 PDF BibTeX XML Cite \textit{I. M. Bodnarchuk} and \textit{V. M. Radchenko}, Theory Probab. Math. Stat. 101, 1--11 (2020; Zbl 07291162); translation from Teor. Jmovirn. Mat. Stat. 101, 5--14 (2019) Full Text: DOI
Haq, Abdul; Sukavanam, N. Controllability of second-order nonlocal retarded semilinear systems with delay in control. (English) Zbl 1454.93026 Appl. Anal. 99, No. 16, 2741-2754 (2020). MSC: 93B05 93C15 93C10 93C43 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Appl. Anal. 99, No. 16, 2741--2754 (2020; Zbl 1454.93026) Full Text: DOI
Lo Grasso, Anna; Totaro, Silvia Analysis of a non-linear model of populations structured by size. (English) Zbl 07286447 Semigroup Forum 101, No. 3, 734-750 (2020). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{A. Lo Grasso} and \textit{S. Totaro}, Semigroup Forum 101, No. 3, 734--750 (2020; Zbl 07286447) Full Text: DOI
Wang, Yuzhu; Li, Weijia Global existence and analyticity of solution for the generalized Hall-magnetohydrodynamics system. (English) Zbl 07271516 Math. Methods Appl. Sci. 43, No. 10, 6363-6377 (2020). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{W. Li}, Math. Methods Appl. Sci. 43, No. 10, 6363--6377 (2020; Zbl 07271516) Full Text: DOI
López, José Luis Well-posedness of a Schrödinger-Poisson model describing nonlinear chiral effects. (English) Zbl 1450.35227 Nonlinearity 33, No. 9, 4837-4856 (2020). MSC: 35Q40 35Q41 35Q60 35A01 35A02 35J05 78A30 PDF BibTeX XML Cite \textit{J. L. López}, Nonlinearity 33, No. 9, 4837--4856 (2020; Zbl 1450.35227) Full Text: DOI
Liu, Yang; Fan, Hongxia Existence of mild solution for a class of abstract impulsive evolution equations with infinite delays. (Chinese. English summary) Zbl 07266627 J. Anhui Norm. Univ., Nat. Sci. 43, No. 1, 11-18 (2020). MSC: 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{H. Fan}, J. Anhui Norm. Univ., Nat. Sci. 43, No. 1, 11--18 (2020; Zbl 07266627) Full Text: DOI
Tapdigoğlu, Ramiz; Torebek, Berikbol Global existence and blow-up of solutions of the time-fractional space-involution reaction-diffusion equation. (English) Zbl 1450.35279 Turk. J. Math. 44, No. 3, 960-969 (2020). MSC: 35R11 35K57 35B44 35K20 PDF BibTeX XML Cite \textit{R. Tapdigoğlu} and \textit{B. Torebek}, Turk. J. Math. 44, No. 3, 960--969 (2020; Zbl 1450.35279) Full Text: DOI
Li, Xiuwen; Liu, Zhenhai; Sofonea, Mircea Unique solvability and exponential stability of differential hemivariational inequalities. (English) Zbl 07250979 Appl. Anal. 99, No. 14, 2489-2506 (2020). MSC: 49J40 47J20 74M15 49J27 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Anal. 99, No. 14, 2489--2506 (2020; Zbl 07250979) Full Text: DOI
Anguraj, A.; Ramkumar, K. Study on stochastic quasi-linear partial differential equations of evolution. (English) Zbl 1441.35266 Discontin. Nonlinearity Complex. 9, No. 1, 1-11 (2020). MSC: 35R60 34G20 34F05 PDF BibTeX XML Cite \textit{A. Anguraj} and \textit{K. Ramkumar}, Discontin. Nonlinearity Complex. 9, No. 1, 1--11 (2020; Zbl 1441.35266) Full Text: DOI
Debbi, Latifa Fractional stochastic active scalar equations generalizing the multi-dimensional quasi-geostrophic & 2D-Navier-Stokes equations: the general case. (English) Zbl 07246850 J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020). MSC: 58J65 60H15 35R11 35Q30 PDF BibTeX XML Cite \textit{L. Debbi}, J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020; Zbl 07246850) Full Text: DOI
Luo, Yan Existence for semilinear impulsive differential inclusions without compactness. (English) Zbl 1454.34090 J. Dyn. Control Syst. 26, No. 4, 663-672 (2020). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A37 34A60 34B10 47N20 PDF BibTeX XML Cite \textit{Y. Luo}, J. Dyn. Control Syst. 26, No. 4, 663--672 (2020; Zbl 1454.34090) Full Text: DOI
Tran, Ngoc; Van Au, Vo; Zhou, Yong; Tuan, Nguyen Huy On a final value problem for fractional reaction-diffusion equation with Riemann-Liouville fractional derivative. (English) Zbl 1447.35364 Math. Methods Appl. Sci. 43, No. 6, 3086-3098 (2020). MSC: 35R11 35R25 35K57 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. Tran} et al., Math. Methods Appl. Sci. 43, No. 6, 3086--3098 (2020; Zbl 1447.35364) Full Text: DOI
Zeng, Zirong Mild solutions of the stochastic MHD equations driven by fractional Brownian motions. (English) Zbl 1448.35417 J. Math. Anal. Appl. 491, No. 1, Article ID 124296, 17 p. (2020). MSC: 35Q35 76W05 60G22 35A01 35A02 60H15 35P15 35R60 PDF BibTeX XML Cite \textit{Z. Zeng}, J. Math. Anal. Appl. 491, No. 1, Article ID 124296, 17 p. (2020; Zbl 1448.35417) Full Text: DOI
Hernández, Eduardo Abstract impulsive differential equations without predefined time impulses. (English) Zbl 1452.34066 J. Math. Anal. Appl. 491, No. 1, Article ID 124288, 19 p. (2020). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 34A37 PDF BibTeX XML Cite \textit{E. Hernández}, J. Math. Anal. Appl. 491, No. 1, Article ID 124288, 19 p. (2020; Zbl 1452.34066) Full Text: DOI
Alsarori, Nawal A.; Ghadle, Kirtiwant P. Differential inclusions of fractional order with impulse effects in Banach spaces. (English) Zbl 1452.34068 Nonlinear Funct. Anal. Appl. 25, No. 1, 101-116 (2020). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A08 34B10 47N20 34A37 PDF BibTeX XML Cite \textit{N. A. Alsarori} and \textit{K. P. Ghadle}, Nonlinear Funct. Anal. Appl. 25, No. 1, 101--116 (2020; Zbl 1452.34068) Full Text: Link
Bodnarchuk, I. M.; Radchenko, V. M. The wave equation in the three-dimensional space driven by a general stochastic measure. (English. Ukrainian original) Zbl 1446.60042 Theory Probab. Math. Stat. 100, 43-60 (2020); translation from Teor. Jmovirn. Mat. Stat. 100, 43-59 (2019). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 60G17 60G57 35L05 35R60 PDF BibTeX XML Cite \textit{I. M. Bodnarchuk} and \textit{V. M. Radchenko}, Theory Probab. Math. Stat. 100, 43--60 (2020; Zbl 1446.60042); translation from Teor. Jmovirn. Mat. Stat. 100, 43--59 (2019) Full Text: DOI
Harjani, Jackie; López, Belen; Sadarangani, Kishin Existence and uniqueness of mild solutions for a fractional differential equation under Sturm-Liouville boundary conditions when the data function is of Lipschitzian type. (English) Zbl 07239302 Demonstr. Math. 53, 167-173 (2020). MSC: 47H10 49L20 PDF BibTeX XML Cite \textit{J. Harjani} et al., Demonstr. Math. 53, 167--173 (2020; Zbl 07239302) Full Text: DOI
Hou, Mimi; Xi, Xuanxuan; Zhou, Xianfeng Existence and uniqueness of mild solutions for nonlinear fractional integro-differential evolution equations. (English) Zbl 1449.37049 Math. Appl. 33, No. 1, 45-57 (2020). MSC: 37L05 35R11 26A33 PDF BibTeX XML Cite \textit{M. Hou} et al., Math. Appl. 33, No. 1, 45--57 (2020; Zbl 1449.37049)
N’Guérékata, G. M. An existence result for some fractional evolution equation with nonlocal conditions and compact resolvent operator. (English) Zbl 07224857 Roy, Priti Kumar (ed.) et al., Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9–12, 2018. Singapore: Springer (ISBN 978-981-15-0421-1/hbk; 978-981-15-0422-8/ebook). Springer Proceedings in Mathematics & Statistics 302, 25-32 (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 34G20 47N20 PDF BibTeX XML Cite \textit{G. M. N'Guérékata}, in: Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9--12, 2018. Singapore: Springer. 25--32 (2020; Zbl 07224857) Full Text: DOI
Haq, Abdul; Sukavanam, N. Controllability of semilinear control systems with fixed delay in state. (English) Zbl 07224837 Deo, Naokant (ed.) et al., Mathematical analysis II: Optimisation, differential equations and graph theory. Proceedings of the international conference on recent advances in pure and applied mathematics 2018, ICRAPAM 2018, New Delhi, India, October 23–25, 2018. Dedicated to the memory of Prof. Niranjan Singh. Singapore: Springer (ISBN 978-981-15-1156-1/hbk; 978-981-15-1157-8/ebook). Springer Proceedings in Mathematics & Statistics 307, 41-50 (2020). MSC: 93B05 93C23 93C43 93C10 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, in: Mathematical analysis II: Optimisation, differential equations and graph theory. Proceedings of the international conference on recent advances in pure and applied mathematics 2018, ICRAPAM 2018, New Delhi, India, October 23--25, 2018. Dedicated to the memory of Prof. Niranjan Singh. Singapore: Springer. 41--50 (2020; Zbl 07224837) Full Text: DOI
Nguyen, Dang H.; Nguyen, Nhu N.; Yin, George Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model. (English) Zbl 1443.60068 J. Appl. Probab. 57, No. 2, 613-636 (2020). MSC: 60H15 92D25 92D30 35Q92 PDF BibTeX XML Cite \textit{D. H. Nguyen} et al., J. Appl. Probab. 57, No. 2, 613--636 (2020; Zbl 1443.60068) Full Text: DOI
Mazzonetto, Sara; Salimova, Diyora Existence, uniqueness, and numerical approximations for stochastic Burgers equations. (English) Zbl 1447.60117 Stochastic Anal. Appl. 38, No. 4, 623-646 (2020). MSC: 60H15 65C30 60H35 35B45 PDF BibTeX XML Cite \textit{S. Mazzonetto} and \textit{D. Salimova}, Stochastic Anal. Appl. 38, No. 4, 623--646 (2020; Zbl 1447.60117) Full Text: DOI
Bhar, Suprio; Rajeev, Bhaskaran; Sarkar, Barun Solutions of SPDE’s associated with a stochastic flow. (English) Zbl 1451.60062 Potential Anal. 53, No. 1, 203-221 (2020). MSC: 60H15 PDF BibTeX XML Cite \textit{S. Bhar} et al., Potential Anal. 53, No. 1, 203--221 (2020; Zbl 1451.60062) Full Text: DOI
Chaudhary, Renu; Pandey, Dwijendra N. Approximation of solutions to stochastic fractional integro-differential equation with deviated argument. (English) Zbl 1445.34112 Differ. Equ. Dyn. Syst. 28, No. 2, 337-356 (2020). MSC: 34K30 34K50 45J99 47N20 34K37 34K07 PDF BibTeX XML Cite \textit{R. Chaudhary} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 28, No. 2, 337--356 (2020; Zbl 1445.34112) Full Text: DOI
Furukawa, Ken Asymptotic stability of small Oseen-type vortex under three-dimensional large perturbation. (English) Zbl 1440.35009 Analysis, München 40, No. 2, 57-83 (2020). MSC: 35B35 35B40 35Q30 PDF BibTeX XML Cite \textit{K. Furukawa}, Analysis, München 40, No. 2, 57--83 (2020; Zbl 1440.35009) Full Text: DOI
Zerrik, El Hassan; El Boukhari, Nihale Optimal control of a parabolic through receiver distributed model. (English) Zbl 1440.49005 Zerrik, El Hassan (ed.) et al., Recent advances in modeling, analysis and systems control: theoretical aspects and applications. Selected papers of the 8th workshop on modeling, analysis and systems control, Meknes, Morocco, October 26–27, 2018. Cham: Springer. Stud. Syst. Decis. Control 243, 205-219 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 49J20 49M25 76B75 49S05 PDF BibTeX XML Cite \textit{E. H. Zerrik} and \textit{N. El Boukhari}, Stud. Syst. Decis. Control 243, 205--219 (2020; Zbl 1440.49005) Full Text: DOI
Gou, Haide; Li, Yongxiang Mixed monotone iterative technique for damped elastic systems in Banach spaces. (English) Zbl 1443.34056 J. Pseudo-Differ. Oper. Appl. 11, No. 2, 917-933 (2020). MSC: 34G20 34A45 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Pseudo-Differ. Oper. Appl. 11, No. 2, 917--933 (2020; Zbl 1443.34056) Full Text: DOI
Kuehn, Christian; Neamţu, Alexandra Pathwise mild solutions for quasilinear stochastic partial differential equations. (English) Zbl 1434.60159 J. Differ. Equations 269, No. 3, 2185-2227 (2020). MSC: 60H15 47D06 35K55 92D25 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{A. Neamţu}, J. Differ. Equations 269, No. 3, 2185--2227 (2020; Zbl 1434.60159) Full Text: DOI
Subashini, Ramasamy; Ravichandran, Chokkalingam; Jothimani, Kasthurisamy; Baskonus, Haci Mehmet Existence results of Hilfer integro-differential equations with fractional order. (English) Zbl 1450.45006 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 911-923 (2020). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 34A08 47J35 PDF BibTeX XML Cite \textit{R. Subashini} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 911--923 (2020; Zbl 1450.45006) Full Text: DOI
Kalinin, Alexander Markovian integral equations. (English. French summary) Zbl 07199302 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 155-174 (2020). MSC: 60H30 60J25 35K40 35K58 45G15 PDF BibTeX XML Cite \textit{A. Kalinin}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 155--174 (2020; Zbl 07199302) Full Text: DOI Euclid
Zhao, Huiyan; Xu, Siyan A stochastic Fubini theorem for \(\alpha\)-stable process. (English) Zbl 1437.60029 Stat. Probab. Lett. 160, Article ID 108700, 9 p. (2020). MSC: 60G52 60G51 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{S. Xu}, Stat. Probab. Lett. 160, Article ID 108700, 9 p. (2020; Zbl 1437.60029) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Cauchy problem for fractional non-autonomous evolution equations. (English) Zbl 1452.35236 Banach J. Math. Anal. 14, No. 2, 559-584 (2020). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35R11 45K05 47H08 35R09 47D06 35K90 PDF BibTeX XML Cite \textit{P. Chen} et al., Banach J. Math. Anal. 14, No. 2, 559--584 (2020; Zbl 1452.35236) Full Text: DOI
Gu, Chuan-Yun; Li, Hong-Xu Piecewise weighted pseudo almost periodicity of impulsive integro-differential equations with fractional order \(1<\alpha<2\). (English) Zbl 1441.34077 Banach J. Math. Anal. 14, No. 2, 487-502 (2020). MSC: 34K14 34K30 34K37 34K45 45K05 47D03 47N20 PDF BibTeX XML Cite \textit{C.-Y. Gu} and \textit{H.-X. Li}, Banach J. Math. Anal. 14, No. 2, 487--502 (2020; Zbl 1441.34077) Full Text: DOI
Alejo, Miguel A.; López, José Luis On global solutions to some non-Markovian quantum kinetic models of Fokker-Planck type. (English) Zbl 1439.35477 Z. Angew. Math. Phys. 71, No. 2, Paper No. 72, 33 p. (2020). MSC: 35Q84 35A01 35A02 35A08 35Q40 35S10 81Q99 35B45 PDF BibTeX XML Cite \textit{M. A. Alejo} and \textit{J. L. López}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 72, 33 p. (2020; Zbl 1439.35477) Full Text: DOI
Clarke, Jorge; Olivera, Christian Local \(L^p\)-solution for semilinear heat equation with fractional noise. (English) Zbl 1437.60036 Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305-312 (2020). MSC: 60H15 60H30 35R60 35K05 35K10 35K58 PDF BibTeX XML Cite \textit{J. Clarke} and \textit{C. Olivera}, Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305--312 (2020; Zbl 1437.60036) Full Text: DOI
Antoniouk, Alexandra V.; Khrennikov, Andrei Yu.; Kochubei, Anatoly N. Multidimensional nonlinear pseudo-differential evolution equation with \(p\)-adic spatial variables. (English) Zbl 1454.35423 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311-343 (2020). Reviewer: Manuel Cruz-López (Guanajuato) MSC: 35S10 47J35 11S80 60J25 76S05 35K65 35R11 PDF BibTeX XML Cite \textit{A. V. Antoniouk} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311--343 (2020; Zbl 1454.35423) Full Text: DOI
Mishura, Yuliya; Ralchenko, Kostiantyn; Zili, Mounir On mild and weak solutions for stochastic heat equations with piecewise-constant conductivity. (English) Zbl 1436.60037 Stat. Probab. Lett. 159, Article ID 108682, 9 p. (2020). MSC: 60G15 60H15 35R60 PDF BibTeX XML Cite \textit{Y. Mishura} et al., Stat. Probab. Lett. 159, Article ID 108682, 9 p. (2020; Zbl 1436.60037) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on damped elastic systems in Banach spaces. (English) Zbl 07187976 Numer. Funct. Anal. Optim. 41, No. 5, 542-570 (2020). MSC: 34G20 34B15 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Numer. Funct. Anal. Optim. 41, No. 5, 542--570 (2020; Zbl 07187976) Full Text: DOI
Ponce, Rodrigo Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces. (English) Zbl 07187434 Appl. Math. Lett. 105, Article ID 106322, 9 p. (2020). MSC: 47 34 PDF BibTeX XML Cite \textit{R. Ponce}, Appl. Math. Lett. 105, Article ID 106322, 9 p. (2020; Zbl 07187434) Full Text: DOI
Qin, Guoquan Existence and large time behavior to the nematic liquid crystal equations in Besov-Morrey spaces. (English) Zbl 1435.35065 J. Math. Anal. Appl. 486, No. 1, Article ID 123884, 20 p. (2020). MSC: 35B40 76A15 35B35 PDF BibTeX XML Cite \textit{G. Qin}, J. Math. Anal. Appl. 486, No. 1, Article ID 123884, 20 p. (2020; Zbl 1435.35065) Full Text: DOI
Manou-Abi, Solym Mawaki; Dimbour, William Asymptotically periodic solution of a stochastic differential equation. (English) Zbl 1440.34061 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 911-939 (2020). MSC: 34F05 34C25 60H30 34D20 60H10 PDF BibTeX XML Cite \textit{S. M. Manou-Abi} and \textit{W. Dimbour}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 911--939 (2020; Zbl 1440.34061) Full Text: DOI
Hao, Xinan; Liu, Lishan Mild solution of second-order impulsive integro-differential evolution equations of Volterra type in Banach spaces. (English) Zbl 1450.34054 Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 5, 18 p. (2020). MSC: 34K30 34K45 45J99 47N20 PDF BibTeX XML Cite \textit{X. Hao} and \textit{L. Liu}, Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 5, 18 p. (2020; Zbl 1450.34054) Full Text: DOI
Jiang, Yirong; Huang, Nanjing; Wei, Zhouchao Existence of a global attractor for fractional differential hemivariational inequalities. (English) Zbl 1436.49011 Discrete Contin. Dyn. Syst., Ser. B 25, No. 4, 1193-1212 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 49J40 35R11 35R70 49J53 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 4, 1193--1212 (2020; Zbl 1436.49011) Full Text: DOI
Dhanalakshmi, K.; Balasubramaniam, P. Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process. (English) Zbl 1440.60049 Stochastic Anal. Appl. 38, No. 2, 352-372 (2020). MSC: 60H10 60H05 34A08 45M10 PDF BibTeX XML Cite \textit{K. Dhanalakshmi} and \textit{P. Balasubramaniam}, Stochastic Anal. Appl. 38, No. 2, 352--372 (2020; Zbl 1440.60049) Full Text: DOI
Guo, Faming; Li, Wei; Xiao, Yi-Bin; Migórski, Stanisław Stability analysis of partial differential variational inequalities in Banach spaces. (English) Zbl 07159744 Nonlinear Anal., Model. Control 25, No. 1, 69-83 (2020). MSC: 65K 49M 90C 49J PDF BibTeX XML Cite \textit{F. Guo} et al., Nonlinear Anal., Model. Control 25, No. 1, 69--83 (2020; Zbl 07159744) Full Text: DOI
Ke, Tran Dinh; Thang, Nguyen Nhu; Thuy, Lam Tran Phuong Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces. (English) Zbl 1429.34068 J. Math. Anal. Appl. 483, No. 2, Article ID 123655, 23 p. (2020). MSC: 34G20 34K20 47N20 PDF BibTeX XML Cite \textit{T. D. Ke} et al., J. Math. Anal. Appl. 483, No. 2, Article ID 123655, 23 p. (2020; Zbl 1429.34068) Full Text: DOI arXiv
Pei, Bin; Xu, Yong; Bai, Yuzhen Convergence of \(p\)-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. (English) Zbl 1428.60056 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1141-1158 (2020). MSC: 60G22 60H15 PDF BibTeX XML Cite \textit{B. Pei} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 1141--1158 (2020; Zbl 1428.60056) Full Text: DOI
Nguyen, Nhu N.; Yin, George Stochastic partial differential equation models for spatially dependent predator-prey equations. (English) Zbl 1433.60060 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 117-139 (2020). MSC: 60H15 92D25 92D40 35Q92 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 117--139 (2020; Zbl 1433.60060) Full Text: DOI
Nirmalkumar, R.; Murugesu, R. Approximate controllability results for neutral stochastic differential equations of Sobolev type with unbounded delay in Hilbert spaces. (English) Zbl 07284851 J. Indian Math. Soc., New Ser. 86, No. 1-2, 79-94 (2019). MSC: 65C30 34K40 34K50 PDF BibTeX XML Cite \textit{R. Nirmalkumar} and \textit{R. Murugesu}, J. Indian Math. Soc., New Ser. 86, No. 1--2, 79--94 (2019; Zbl 07284851) Full Text: DOI
Bodnarchuk, I. M. Asymptotics of the mild solution of a wave equation in three-dimensional space driven by a general stochastic measure. (English) Zbl 07277706 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 12-17 (2019). MSC: 60H15 60G57 35L05 35R60 PDF BibTeX XML Cite \textit{I. M. Bodnarchuk}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 12--17 (2019; Zbl 07277706) Full Text: DOI
Xu, Pengfei; Zou, Guang-an; Huang, Jianhua Time-space fractional stochastic Ginzburg-Landau equation driven by fractional Brownian motion. (English) Zbl 1443.60069 Comput. Math. Appl. 78, No. 12, 3790-3806 (2019). MSC: 60H15 35R11 35Q55 35R60 60G22 PDF BibTeX XML Cite \textit{P. Xu} et al., Comput. Math. Appl. 78, No. 12, 3790--3806 (2019; Zbl 1443.60069) Full Text: DOI
Xu, Liyang; Shen, Tianlong; Yang, Xuejun; Liang, Jiarui Analysis of time fractional and space nonlocal stochastic incompressible Navier-Stokes equation driven by white noise. (English) Zbl 1442.60069 Comput. Math. Appl. 78, No. 5, 1669-1680 (2019). MSC: 60H15 35R11 35Q30 35R60 76D06 PDF BibTeX XML Cite \textit{L. Xu} et al., Comput. Math. Appl. 78, No. 5, 1669--1680 (2019; Zbl 1442.60069) Full Text: DOI
Huang, Yong; Liu, Zhenhai; Wen, Ching-Feng Approximate controllability for fractional semilinear parabolic equations. (English) Zbl 1442.93008 Comput. Math. Appl. 77, No. 11, 2971-2979 (2019). MSC: 93B05 93C20 35K58 35R11 PDF BibTeX XML Cite \textit{Y. Huang} et al., Comput. Math. Appl. 77, No. 11, 2971--2979 (2019; Zbl 1442.93008) Full Text: DOI
Aissani, Khalida; Benchohra, Mouffak; Benkhettou, Nadia On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. (English) Zbl 1446.34093 Cubo 21, No. 1, 61-75 (2019). MSC: 34K30 34K37 34K45 45J99 47N20 PDF BibTeX XML Cite \textit{K. Aissani} et al., Cubo 21, No. 1, 61--75 (2019; Zbl 1446.34093) Full Text: DOI
Cernea, Aurelian Differentiability properties of solutions of a second-order evolution inclusion. (English) Zbl 1443.34057 Area, Iván (ed.) et al., Nonlinear analysis and boundary value problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7, 2018. Proceedings of the international conference. Dedicated to Juan J. Nieto on the occasion of his 60th birthday. Cham: Springer. Springer Proc. Math. Stat. 292, 19-28 (2019). MSC: 34G25 34A12 49J53 PDF BibTeX XML Cite \textit{A. Cernea}, Springer Proc. Math. Stat. 292, 19--28 (2019; Zbl 1443.34057) Full Text: DOI
Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre C\(^{1,1}\)-smoothness of constrained solutions in the calculus of variations with application to mean field games. (English) Zbl 1433.49002 Math. Eng. (Springfield) 1, No. 1, 174-203 (2019). Reviewer: George Stoica (Saint John) MSC: 49J15 49J30 49J53 49N80 35F21 49N90 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., Math. Eng. (Springfield) 1, No. 1, 174--203 (2019; Zbl 1433.49002) Full Text: DOI
Radchenko, V. M.; Stefans’ka, N. O. Approximation of solutions of the wave equation driven by a stochastic measure. (English. Ukrainian original) Zbl 1431.60063 Theory Probab. Math. Stat. 99, 229-238 (2019); translation from Teor. Jmovirn. Mat. Stat. 99, 203-211 (2018). MSC: 60H15 60H05 60G57 PDF BibTeX XML Cite \textit{V. M. Radchenko} and \textit{N. O. Stefans'ka}, Theory Probab. Math. Stat. 99, 229--238 (2019; Zbl 1431.60063); translation from Teor. Jmovirn. Mat. Stat. 99, 203--211 (2018) Full Text: DOI
Arara, Amaria; Benchohra, Mouffak; Mesri, Fatima Measure of noncompactness and semilinear differential equations in Fréchet spaces. (English) Zbl 1440.34062 Tbil. Math. J. 12, No. 1, 69-81 (2019). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G20 47H08 47H10 PDF BibTeX XML Cite \textit{A. Arara} et al., Tbil. Math. J. 12, No. 1, 69--81 (2019; Zbl 1440.34062) Full Text: DOI Euclid
Koumla, Sylvain; Precup, Radu; Sene, Abdou Existence results for some neutral functional integrodifferential equations with bounded delay. (English) Zbl 1441.45008 Turk. J. Math. 43, No. 4, 1809-1822 (2019). MSC: 45J05 45N05 47D06 PDF BibTeX XML Cite \textit{S. Koumla} et al., Turk. J. Math. 43, No. 4, 1809--1822 (2019; Zbl 1441.45008) Full Text: Link
Kostić, Marko The existence and uniqueness of almost periodic and asymptotically almost periodic solutions of semilinear Cauchy inclusions. (English) Zbl 1435.34062 Funct. Anal. Approx. Comput. 11, No. 2, 23-37 (2019). Reviewer: Garik Petrosyan (Voronezh) MSC: 34G25 47D03 47D06 34C27 PDF BibTeX XML Cite \textit{M. Kostić}, Funct. Anal. Approx. Comput. 11, No. 2, 23--37 (2019; Zbl 1435.34062) Full Text: Link
Zhan, Wentao; Li, Zhi Sobolev-type fractional stochastic differential equations driven by fractional Brownian motion with non-Lipschitz coefficients. (English) Zbl 1449.60112 J. Partial Differ. Equations 32, No. 2, 144-155 (2019). MSC: 60H15 60G22 26A33 PDF BibTeX XML Cite \textit{W. Zhan} and \textit{Z. Li}, J. Partial Differ. Equations 32, No. 2, 144--155 (2019; Zbl 1449.60112) Full Text: DOI
Shi, Wei Global existence of mild solutions for the elastic system with structural damping. (English) Zbl 1449.35187 Ann. Appl. Math. 35, No. 2, 180-188 (2019). MSC: 35G40 47D60 47N20 PDF BibTeX XML Cite \textit{W. Shi}, Ann. Appl. Math. 35, No. 2, 180--188 (2019; Zbl 1449.35187)
Rebey, Amor Existence of local stable manifolds for some nondensely defined nonautonomous partial functional differential equations. (English) Zbl 1440.34064 Int. J. Biomath. 12, No. 8, Article ID 1950088, 15 p. (2019). Reviewer: Miklavž Mastinšek (Maribor) MSC: 34G20 34C45 47D06 PDF BibTeX XML Cite \textit{A. Rebey}, Int. J. Biomath. 12, No. 8, Article ID 1950088, 15 p. (2019; Zbl 1440.34064) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Fractional non-autonomous evolution equation with nonlocal conditions. (English) Zbl 1427.34006 J. Pseudo-Differ. Oper. Appl. 10, No. 4, 955-973 (2019). MSC: 34A08 45J05 47H08 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Pseudo-Differ. Oper. Appl. 10, No. 4, 955--973 (2019; Zbl 1427.34006) Full Text: DOI
Wang, Bingjun; Gao, Hongjun Neutral stochastic partial functional integro-differential equations driven by \(G\)-Brownian motion. (English) Zbl 1425.60060 Electron. J. Differ. Equ. 2019, Paper No. 120, 15 p. (2019). MSC: 60H15 60H20 34K50 93E03 PDF BibTeX XML Cite \textit{B. Wang} and \textit{H. Gao}, Electron. J. Differ. Equ. 2019, Paper No. 120, 15 p. (2019; Zbl 1425.60060) Full Text: Link
Boudaoui, A.; Blouhi, T. Existence results systems coupled impulsive neutral stochastic functional differential equations with the measure of noncompactness. (English) Zbl 1438.34286 Afr. Mat. 30, No. 7-8, 1067-1091 (2019). MSC: 34K50 34G20 34K45 60H15 60H20 PDF BibTeX XML Cite \textit{A. Boudaoui} and \textit{T. Blouhi}, Afr. Mat. 30, No. 7--8, 1067--1091 (2019; Zbl 1438.34286) Full Text: DOI
Cernea, Aurelian On the mild solutions of a class of second-order integro-differential inclusions. (English) Zbl 1437.45005 J. Nonlinear Var. Anal. 3, No. 3, 247-256 (2019). MSC: 45J05 PDF BibTeX XML Cite \textit{A. Cernea}, J. Nonlinear Var. Anal. 3, No. 3, 247--256 (2019; Zbl 1437.45005) Full Text: DOI
Vivek, Devaraj; Baghani, Omid; Kanagarajan, Kuppusamy Theory of hybrid fractional differential equations with complex order. (English) Zbl 1449.34033 Sahand Commun. Math. Anal. 15, No. 1, 65-76 (2019). MSC: 34A08 26A33 34A38 34A12 34G20 PDF BibTeX XML Cite \textit{D. Vivek} et al., Sahand Commun. Math. Anal. 15, No. 1, 65--76 (2019; Zbl 1449.34033) Full Text: DOI
Xu, Pengfei; Huang, Jianhua; Zou, Guangan Well-posedness of time-space fractional stochastic evolution equations driven by \(\alpha\)-stable noise. (English) Zbl 1431.35188 Math. Methods Appl. Sci. 42, No. 11, 3818-3830 (2019). MSC: 35Q56 37L55 60H15 35R11 35R60 35Q30 35B65 33E12 47H10 65N06 PDF BibTeX XML Cite \textit{P. Xu} et al., Math. Methods Appl. Sci. 42, No. 11, 3818--3830 (2019; Zbl 1431.35188) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families. (English) Zbl 1423.35425 J. Fixed Point Theory Appl. 21, No. 3, Paper No. 84, 17 p. (2019). MSC: 35R12 65J08 35K90 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Fixed Point Theory Appl. 21, No. 3, Paper No. 84, 17 p. (2019; Zbl 1423.35425) Full Text: DOI
Borah, Jayanta; Nandan Bora, Swaroop Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous impulses. (English) Zbl 1428.34114 Fract. Calc. Appl. Anal. 22, No. 2, 495-508 (2019). MSC: 34K37 34K45 47N20 34K10 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. Nandan Bora}, Fract. Calc. Appl. Anal. 22, No. 2, 495--508 (2019; Zbl 1428.34114) Full Text: DOI
Lian, TingTing; Fan, ZhenBin; Li, Gang Time optimal controls for fractional differential systems with Riemann-Liouville derivatives. (English) Zbl 1425.93137 Fract. Calc. Appl. Anal. 21, No. 6, 1524-1541 (2019). MSC: 93C23 26A33 49J15 34K37 PDF BibTeX XML Cite \textit{T. Lian} et al., Fract. Calc. Appl. Anal. 21, No. 6, 1524--1541 (2019; Zbl 1425.93137) Full Text: DOI
Sang, Liheng; Lv, Wenhua; Tang, Zheng Stochastic evolution equations driven by Rosenblatt process in a Hilbert space with finite delay. (Chinese. English summary) Zbl 1438.60080 Chin. J. Eng. Math. 36, No. 3, 309-321 (2019). MSC: 60H10 PDF BibTeX XML Cite \textit{L. Sang} et al., Chin. J. Eng. Math. 36, No. 3, 309--321 (2019; Zbl 1438.60080) Full Text: DOI
Chen, Jing; Chen, Minxia Existence of solutions to boundary value problems for a class of Caputo fractional differential equations. (Chinese. English summary) Zbl 1438.34023 Acta Anal. Funct. Appl. 21, No. 1, 83-92 (2019). MSC: 34A08 34B15 47N20 34G20 34B27 PDF BibTeX XML Cite \textit{J. Chen} and \textit{M. Chen}, Acta Anal. Funct. Appl. 21, No. 1, 83--92 (2019; Zbl 1438.34023) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Non-autonomous evolution equations of parabolic type with non-instantaneous impulses. (English) Zbl 07110763 Mediterr. J. Math. 16, No. 5, Paper No. 118, 14 p. (2019). MSC: 34K45 35R12 65J08 PDF BibTeX XML Cite \textit{P. Chen} et al., Mediterr. J. Math. 16, No. 5, Paper No. 118, 14 p. (2019; Zbl 07110763) Full Text: DOI
Xie, Sheng-li; Xie, Yi-ming Existence results of damped second order impulsive functional differential equations with infinite delay. (English) Zbl 1426.34108 Acta Math. Appl. Sin., Engl. Ser. 35, No. 3, 564-579 (2019). MSC: 34K30 47D09 34K45 47N20 PDF BibTeX XML Cite \textit{S.-l. Xie} and \textit{Y.-m. Xie}, Acta Math. Appl. Sin., Engl. Ser. 35, No. 3, 564--579 (2019; Zbl 1426.34108) Full Text: DOI
Dieye, Moustapha; Diop, Mamadou Abdoul; Ezzinbi, Khalil Almost sure asymptotic stability for some stochastic partial functional integrodifferential equations on Hilbert spaces. (English) Zbl 1426.60085 Cogent Math. Stat. 6, Article ID 1602928, 16 p. (2019). MSC: 60H15 35B35 PDF BibTeX XML Cite \textit{M. Dieye} et al., Cogent Math. Stat. 6, Article ID 1602928, 16 p. (2019; Zbl 1426.60085) Full Text: DOI
Wang, Yejuan; Liang, Tongtong Mild solutions to the time fractional Navier-Stokes delay differential inclusions. (English) Zbl 1423.35420 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713-3740 (2019). MSC: 35R11 33E12 34K37 35Q30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{T. Liang}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713--3740 (2019; Zbl 1423.35420) Full Text: DOI
Kyelem, Bila Adolphe; Ouedraogo, Arouna; Zongo, Frédéric D. Y. Existence and uniqueness of entropy solutions to nonlinear parabolic problem with homogeneous Dirichlet boundary conditions involving variable exponent. (English) Zbl 1420.35123 S\(\vec{\text{e}}\)MA J. 76, No. 1, 153-180 (2019). MSC: 35K55 35D30 46E35 76D03 PDF BibTeX XML Cite \textit{B. A. Kyelem} et al., S\(\vec{\text{e}}\)MA J. 76, No. 1, 153--180 (2019; Zbl 1420.35123) Full Text: DOI
Bodnarchuk, I. M.; Radchenko, V. M. Wave equation in the plane driven by a general stochastic measure. (English. Ukrainian original) Zbl 1447.60089 Theory Probab. Math. Stat. 98, 73-90 (2019); translation from Teor. Jmovirn. Mat. Stat. 98, 70-86 (2018). MSC: 60H15 60G17 60G57 PDF BibTeX XML Cite \textit{I. M. Bodnarchuk} and \textit{V. M. Radchenko}, Theory Probab. Math. Stat. 98, 73--90 (2019; Zbl 1447.60089); translation from Teor. Jmovirn. Mat. Stat. 98, 70--86 (2018) Full Text: DOI
Benner, Peter; Trautwein, Christoph Optimal control problems constrained by the stochastic Navier-Stokes equations with multiplicative Lévy noise. (English) Zbl 1420.93036 Math. Nachr. 292, No. 7, 1444-1461 (2019). MSC: 93E20 93C20 49J20 35Q30 PDF BibTeX XML Cite \textit{P. Benner} and \textit{C. Trautwein}, Math. Nachr. 292, No. 7, 1444--1461 (2019; Zbl 1420.93036) Full Text: DOI
Ciake Ciake, Fidele Lavenir; Takou, Etienne The relativistic Enskog equation near the vacuum in the Robertson-Walker space-time. (English) Zbl 1418.76048 Adv. Pure Appl. Math. 10, No. 3, 273-284 (2019). MSC: 76P05 35Q20 PDF BibTeX XML Cite \textit{F. L. Ciake Ciake} and \textit{E. Takou}, Adv. Pure Appl. Math. 10, No. 3, 273--284 (2019; Zbl 1418.76048) Full Text: DOI
Aissani, Khalida; Benchohra, Mouffak; Nieto, Juan J. Controllability for impulsive fractional evolution inclusions with state-dependent delay. (English) Zbl 1449.34269 Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 18-34 (2019). MSC: 34K35 34K37 93B05 34K45 34K09 34K43 47N20 PDF BibTeX XML Cite \textit{K. Aissani} et al., Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 18--34 (2019; Zbl 1449.34269) Full Text: DOI