Gou, Haide; Li, Yongxiang A study on asymptotically periodic behavior for evolution equations with delay in Banach spaces. (English) Zbl 07759306 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 22, 27 p. (2024). MSC: 34K30 34K13 34K07 35R10 47H10 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 22, 27 p. (2024; Zbl 07759306) Full Text: DOI
Pervaiz, Bakhtawar; Zada, Akbar Existence results for the solution of abstract neutral impulsive differential problems with state-dependent delay. (English) Zbl 07759305 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 21, 12 p. (2024). MSC: 34K30 34K40 34K45 34K43 47H10 PDF BibTeX XML Cite \textit{B. Pervaiz} and \textit{A. Zada}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 21, 12 p. (2024; Zbl 07759305) Full Text: DOI
Xi, Xuan-Xuan; Zhou, Yong; Hou, Mimi Well-posedness of mild solutions for the fractional Navier-Stokes equations in Besov spaces. (English) Zbl 07752316 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 15, 50 p. (2024). MSC: 35Q30 76D05 35B40 35B65 35A01 35A02 33E12 26A33 35R11 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 15, 50 p. (2024; Zbl 07752316) Full Text: DOI
Durga, N.; Muthukumar, P. Exponential behaviour of nonlinear fractional Schrödinger evolution equation with complex potential and Poisson jumps. (English) Zbl 07768795 J. Theor. Probab. 36, No. 4, 1939-1955 (2023). MSC: 35R11 35B40 35Q55 46E20 47J35 60G57 93E15 PDF BibTeX XML Cite \textit{N. Durga} and \textit{P. Muthukumar}, J. Theor. Probab. 36, No. 4, 1939--1955 (2023; Zbl 07768795) Full Text: DOI
Patel, Rohit; Vijayakumar, V.; Jadon, Shimpi Singh; Shukla, Anurag An analysis on the existence of mild solution and optimal control for semilinear thermoelastic system. (English) Zbl 07762549 Numer. Funct. Anal. Optim. 44, No. 14, 1570-1582 (2023). MSC: 74-XX 49J15 PDF BibTeX XML Cite \textit{R. Patel} et al., Numer. Funct. Anal. Optim. 44, No. 14, 1570--1582 (2023; Zbl 07762549) Full Text: DOI
Pavlačková, Martina; Taddei, Valentina The damped vibrating string equation on the positive half-line. (English) Zbl 07758938 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107497, 18 p. (2023). MSC: 34G25 35A01 PDF BibTeX XML Cite \textit{M. Pavlačková} and \textit{V. Taddei}, Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107497, 18 p. (2023; Zbl 07758938) Full Text: DOI
El Matloub, Jaouad; Ezzinbi, Khalil Mild solution in the \(\alpha\)-norm for some partial integrodifferential equations involving a nonlocal condition. (English) Zbl 07753888 Nonauton. Dyn. Syst. 10, Article ID 20230170, 13 p. (2023). MSC: 45J05 47N20 26A33 PDF BibTeX XML Cite \textit{J. El Matloub} and \textit{K. Ezzinbi}, Nonauton. Dyn. Syst. 10, Article ID 20230170, 13 p. (2023; Zbl 07753888) Full Text: DOI
Gou, Haide; Ma, Weifeng A study on decay mild solutions for damped elastic systems in Banach spaces. (English) Zbl 07750831 Monatsh. Math. 202, No. 3, 515-539 (2023). MSC: 34G20 34D05 47H08 47H10 PDF BibTeX XML Cite \textit{H. Gou} and \textit{W. Ma}, Monatsh. Math. 202, No. 3, 515--539 (2023; Zbl 07750831) Full Text: DOI
Gou, Haide; Li, Yongxiang Extremal mild solutions to Hilfer evolution equations with non-instantaneous impulses and nonlocal conditions. (English) Zbl 07748665 Fract. Calc. Appl. Anal. 26, No. 3, 1145-1185 (2023). MSC: 34G20 34K37 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Fract. Calc. Appl. Anal. 26, No. 3, 1145--1185 (2023; Zbl 07748665) Full Text: DOI
Yang, Min; Zhou, Yong Hilfer fractional stochastic evolution equations on infinite interval. (English) Zbl 07748410 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1841-1862 (2023). MSC: 35R11 35R60 60G22 PDF BibTeX XML Cite \textit{M. Yang} and \textit{Y. Zhou}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 5, 1841--1862 (2023; Zbl 07748410) Full Text: DOI
Dhanalakshmi, K.; Balasubramaniam, P. Exponential stability of impulsive fractional neutral stochastic integro-differential equations with nonlocal conditions. (English) Zbl 07745496 Stochastics 95, No. 7, 1260-1293 (2023). MSC: 26A33 34A08 34K50 47H10 60J65 60H10 PDF BibTeX XML Cite \textit{K. Dhanalakshmi} and \textit{P. Balasubramaniam}, Stochastics 95, No. 7, 1260--1293 (2023; Zbl 07745496) Full Text: DOI
Bignamini, D. A. \(L^2\)-theory for transition semigroups associated to dissipative systems. (English) Zbl 07742933 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 988-1043 (2023). MSC: 28C10 28C20 35J15 46G12 60G15 60G40 60H15 PDF BibTeX XML Cite \textit{D. A. Bignamini}, Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 988--1043 (2023; Zbl 07742933) Full Text: DOI arXiv
Bensalem, Abdelhamid; Salim, Abdelkrim; Benchohra, Mouffak; Nieto, Juan J. Controllability results for second-order integro-differential equations with state-dependent delay. (English) Zbl 07742547 Evol. Equ. Control Theory 12, No. 6, 1559-1576 (2023). MSC: 93B05 45J05 35L71 47H10 47H08 35D30 PDF BibTeX XML Cite \textit{A. Bensalem} et al., Evol. Equ. Control Theory 12, No. 6, 1559--1576 (2023; Zbl 07742547) Full Text: DOI
Kerboua, Mourad; Bouacida, Ichrak; Segni, Sami Null controllability of \(\psi\)-Hilfer implicit fractional integro-differential equations with \(\psi\)-Hilfer fractional nonlocal conditions. (English) Zbl 07742542 Evol. Equ. Control Theory 12, No. 6, 1473-1491 (2023). MSC: 93B05 34K37 45K05 26A33 PDF BibTeX XML Cite \textit{M. Kerboua} et al., Evol. Equ. Control Theory 12, No. 6, 1473--1491 (2023; Zbl 07742542) Full Text: DOI
Buică, Adriana Ulam-Hyers stability and exponentially dichotomic equations in Banach spaces. (English) Zbl 07742342 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 8, 10 p. (2023). MSC: 47D06 34G10 34G20 PDF BibTeX XML Cite \textit{A. Buică}, Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 8, 10 p. (2023; Zbl 07742342) Full Text: DOI
Radchenko, Vadym Averaging principle for the wave equation driven by a stochastic measure. (English) Zbl 07733992 Stat. Probab. Lett. 201, Article ID 109888, 7 p. (2023). MSC: 60H15 60G57 35R60 PDF BibTeX XML Cite \textit{V. Radchenko}, Stat. Probab. Lett. 201, Article ID 109888, 7 p. (2023; Zbl 07733992) Full Text: DOI
Bensalem, Abdelhamid; Salim, Abdelkrim; Ahmad, Bashir; Benchohra, Mouffak Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces. (English) Zbl 1520.93042 Cubo 25, No. 2, 231-250 (2023). MSC: 93B05 93C25 47H10 46A04 45J05 47H08 35D30 47B40 PDF BibTeX XML Cite \textit{A. Bensalem} et al., Cubo 25, No. 2, 231--250 (2023; Zbl 1520.93042) Full Text: DOI
Gou, Haide A study on \(S\)-asymptotically \(\omega\)-periodic positive mild solutions for damped elastic systems. (English) Zbl 07731028 Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023). MSC: 34G20 34K20 34A08 35B35 47H08 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 187, Article ID 103292, 38 p. (2023; Zbl 07731028) Full Text: DOI
Wang, Cong; Gao, Yu; Xue, Xiaoping Quantitative estimates for space-time analyticity of solutions to the fractional Navier-Stokes equations. (English) Zbl 1520.35114 Commun. Pure Appl. Anal. 22, No. 8, 2619-2645 (2023). MSC: 35Q30 76D05 35K08 35B65 35A20 26A33 35R11 PDF BibTeX XML Cite \textit{C. Wang} et al., Commun. Pure Appl. Anal. 22, No. 8, 2619--2645 (2023; Zbl 1520.35114) Full Text: DOI
Radchenko, Vadym The Burgers equation driven by a stochastic measure. (English) Zbl 07721502 Mod. Stoch., Theory Appl. 10, No. 3, 229-246 (2023). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 60G57 PDF BibTeX XML Cite \textit{V. Radchenko}, Mod. Stoch., Theory Appl. 10, No. 3, 229--246 (2023; Zbl 07721502) Full Text: DOI
Hernandez, Eduardo; Fernandes, Denis; Zada, Akbar Local and global existence and uniqueness of solution for abstract differential equations with state-dependent argument. (English) Zbl 07716330 Proc. Edinb. Math. Soc., II. Ser. 66, No. 2, 305-345 (2023). Reviewer: Mustapha Yebdri (Tlemcen) MSC: 34K43 34K30 47D06 PDF BibTeX XML Cite \textit{E. Hernandez} et al., Proc. Edinb. Math. Soc., II. Ser. 66, No. 2, 305--345 (2023; Zbl 07716330) Full Text: DOI
Zhu, Shouguo Optimal controls for fractional backward nonlocal evolution systems. (English) Zbl 1519.49002 Numer. Funct. Anal. Optim. 44, No. 8, 794-814 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49J15 49J27 34A08 26A33 34G10 35R11 47D06 PDF BibTeX XML Cite \textit{S. Zhu}, Numer. Funct. Anal. Optim. 44, No. 8, 794--814 (2023; Zbl 1519.49002) Full Text: DOI
Gou, Haide; Wang, Tianxiang The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses. (English) Zbl 1514.34109 Indian J. Pure Appl. Math. 54, No. 2, 499-523 (2023). MSC: 34G20 26A33 34A08 34A37 35R12 47D06 PDF BibTeX XML Cite \textit{H. Gou} and \textit{T. Wang}, Indian J. Pure Appl. Math. 54, No. 2, 499--523 (2023; Zbl 1514.34109) Full Text: DOI
Clark, Jason; Misiats, Oleksandr; Mogylova, Viktoriia; Stanzhytskyi, Oleksandr Asymptotic behavior of stochastic functional differential evolution equation. (English) Zbl 1518.35703 Electron. J. Differ. Equ. 2023, Paper No. 35, 21 p. (2023). MSC: 35R60 35B40 60H15 92C35 PDF BibTeX XML Cite \textit{J. Clark} et al., Electron. J. Differ. Equ. 2023, Paper No. 35, 21 p. (2023; Zbl 1518.35703) Full Text: Link
Gou, Haide Study on Sobolev type Hilfer evolution equations with non-instantaneous impulses. (English) Zbl 07705614 Int. J. Comput. Math. 100, No. 5, 1153-1170 (2023). MSC: 34K30 26A33 34K45 47G10 47D06 PDF BibTeX XML Cite \textit{H. Gou}, Int. J. Comput. Math. 100, No. 5, 1153--1170 (2023; Zbl 07705614) Full Text: DOI
Barbu, Viorel; Röckner, Michael Correction to: “Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs”. (English) Zbl 1515.60245 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 1, 426-431 (2023). MSC: 60H30 60H10 35C99 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 1, 426--431 (2023; Zbl 1515.60245) Full Text: DOI
Wang, Zhen; Sun, Luhan Mathematical analysis of the Hadamard-type fractional Fokker-Planck equation. (English) Zbl 1517.35248 Mediterr. J. Math. 20, No. 5, Paper No. 245, 26 p. (2023). MSC: 35R11 35A09 35Q84 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{L. Sun}, Mediterr. J. Math. 20, No. 5, Paper No. 245, 26 p. (2023; Zbl 1517.35248) Full Text: DOI
Pang, Xia; Li, Xiuwen; Liu, Zhenhai Decay mild solutions of Hilfer fractional differential variational-hemivariational inequalities. (English) Zbl 1516.49009 Nonlinear Anal., Real World Appl. 71, Article ID 103834, 26 p. (2023). MSC: 49J40 34A08 34G25 PDF BibTeX XML Cite \textit{X. Pang} et al., Nonlinear Anal., Real World Appl. 71, Article ID 103834, 26 p. (2023; Zbl 1516.49009) Full Text: DOI
Du, Chengxin; Liu, Changchun Time periodic solution to a mechanochemical model in biological patterns. (English) Zbl 1517.35015 Evol. Equ. Control Theory 12, No. 2, 502-524 (2023). MSC: 35B10 35K52 35K58 92C15 45G15 PDF BibTeX XML Cite \textit{C. Du} and \textit{C. Liu}, Evol. Equ. Control Theory 12, No. 2, 502--524 (2023; Zbl 1517.35015) Full Text: DOI
Barbu, Viorel Existence of optimal control for nonlinear Fokker-Planck equations in \(L^1(\mathbb{R}^d)\). (English) Zbl 1516.49024 SIAM J. Control Optim. 61, No. 3, 1213-1230 (2023). MSC: 49K45 49N35 47H05 47J05 PDF BibTeX XML Cite \textit{V. Barbu}, SIAM J. Control Optim. 61, No. 3, 1213--1230 (2023; Zbl 1516.49024) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on non-autonomous second order evolution equations with nonlocal conditions. (English) Zbl 1519.34089 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 111, 22 p. (2023). MSC: 34K30 37C60 34K20 45J05 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 111, 22 p. (2023; Zbl 1519.34089) Full Text: DOI
Bouteffal, Zohra; Salim, Abdelkrim; Litimein, Sara; Benchohra, Mouffak Uniqueness results for fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces. (English) Zbl 07692939 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 35-44 (2023). MSC: 45-XX PDF BibTeX XML Cite \textit{Z. Bouteffal} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 35--44 (2023; Zbl 07692939) Full Text: DOI
Du, Chengxin; Liu, Changchun; Mei, Ming Time-periodic solution to a three-phase model of viscoelastic fluid flow. (English) Zbl 1515.35209 Discrete Contin. Dyn. Syst. 43, No. 1, 276-308 (2023). MSC: 35Q35 76A10 76T99 35B10 35K52 35A01 35A02 35B65 35D35 PDF BibTeX XML Cite \textit{C. Du} et al., Discrete Contin. Dyn. Syst. 43, No. 1, 276--308 (2023; Zbl 1515.35209) Full Text: DOI
Barbu, Viorel; Röckner, Michael Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: the degenerate case. (English) Zbl 1514.60071 J. Funct. Anal. 285, No. 4, Article ID 109980, 37 p. (2023). MSC: 60H15 47H05 47J05 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, J. Funct. Anal. 285, No. 4, Article ID 109980, 37 p. (2023; Zbl 1514.60071) Full Text: DOI arXiv
Shankar, Matap; Bora, Swaroop Nandan Generalized Ulam-Hyers-Rassias stability of solution for the Caputo fractional non-instantaneous impulsive integro-differential equation and its application to fractional RLC circuit. (English) Zbl 1510.94103 Circuits Syst. Signal Process. 42, No. 4, 1959-1983 (2023). MSC: 94C05 45J05 PDF BibTeX XML Cite \textit{M. Shankar} and \textit{S. N. Bora}, Circuits Syst. Signal Process. 42, No. 4, 1959--1983 (2023; Zbl 1510.94103) Full Text: DOI
Moulay Hachemi, Rahma Yasmina; Øksendal, Bernt The fractional stochastic heat equation driven by time-space white noise. (English) Zbl 1511.35371 Fract. Calc. Appl. Anal. 26, No. 2, 513-532 (2023). MSC: 35R11 35R60 35K05 60H15 60H40 26A33 PDF BibTeX XML Cite \textit{R. Y. Moulay Hachemi} and \textit{B. Øksendal}, Fract. Calc. Appl. Anal. 26, No. 2, 513--532 (2023; Zbl 1511.35371) Full Text: DOI
Johnson, M.; Vijayakumar, V. Optimal control results for Sobolev-type fractional stochastic Volterra-Fredholm integrodifferential systems of order \(\vartheta \in (1, 2)\) via sectorial operators. (English) Zbl 1521.49005 Numer. Funct. Anal. Optim. 44, No. 6, 439-460 (2023). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 49J21 45D05 58C30 60H10 PDF BibTeX XML Cite \textit{M. Johnson} and \textit{V. Vijayakumar}, Numer. Funct. Anal. Optim. 44, No. 6, 439--460 (2023; Zbl 1521.49005) Full Text: DOI
Bensalem, Abdelhamid; Salim, Abdelkrim; Benchohra, Mouffak Ulam-Hyers-Rassias stability of neutral functional integrodifferential evolution equations with non-instantaneous impulses on an unbounded interval. (English) Zbl 1514.45009 Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 88, 29 p. (2023). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45M10 45J05 47N20 47H08 34K45 34K40 34K20 PDF BibTeX XML Cite \textit{A. Bensalem} et al., Qual. Theory Dyn. Syst. 22, No. 3, Paper No. 88, 29 p. (2023; Zbl 1514.45009) Full Text: DOI
Pavlačková, Martina; Taddei, Valentina Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness. (English) Zbl 07675578 Arch. Math., Brno 59, No. 1, 99-107 (2023). MSC: 34A60 34G25 PDF BibTeX XML Cite \textit{M. Pavlačková} and \textit{V. Taddei}, Arch. Math., Brno 59, No. 1, 99--107 (2023; Zbl 07675578) Full Text: DOI
Kumar, Surendra; Sharma, Paras On the Faedo-Galerkin method for non-autonomous nonlinear differential systems. (English) Zbl 07673404 Result. Math. 78, No. 3, Paper No. 107, 16 p. (2023). Reviewer: J. Vasundhara Devi (Visakhapatnam) MSC: 34G20 34A12 34A45 47N20 37C60 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{P. Sharma}, Result. Math. 78, No. 3, Paper No. 107, 16 p. (2023; Zbl 07673404) Full Text: DOI
Deng, Dingqun; Duan, Renjun Low regularity solutions for the Vlasov-Poisson-Landau/Boltzmann system. (English) Zbl 1511.35252 Nonlinearity 36, No. 5, 2193-2248 (2023). MSC: 35Q20 35Q83 35J05 76X05 82C22 82C40 35B65 35A01 PDF BibTeX XML Cite \textit{D. Deng} and \textit{R. Duan}, Nonlinearity 36, No. 5, 2193--2248 (2023; Zbl 1511.35252) Full Text: DOI arXiv
Haloi, Rajib; Chutia, Duranta On the existence of mild solutions for a class of nonlocal quasi-linear differential equations with iterated deviating arguments. (English) Zbl 1510.35160 J. Anal. 31, No. 1, 57-76 (2023). MSC: 35K59 35K90 93B05 93C25 PDF BibTeX XML Cite \textit{R. Haloi} and \textit{D. Chutia}, J. Anal. 31, No. 1, 57--76 (2023; Zbl 1510.35160) Full Text: DOI
Yin, Qian-Bao; Guo, Yu; Wu, Dan; Shu, Xiao-Bao Existence and multiplicity of mild solutions for first-order Hamilton random impulsive differential equations with Dirichlet boundary conditions. (English) Zbl 1512.37074 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 47, 23 p. (2023). MSC: 37J51 34B37 34K45 34K50 60H10 PDF BibTeX XML Cite \textit{Q.-B. Yin} et al., Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 47, 23 p. (2023; Zbl 1512.37074) Full Text: DOI
Salim, Abdelkrim; Mesri, Fatima; Benchohra, Mouffak; Tunç, Cemil Controllability of second order semilinear random differential equations in Fréchet spaces. (English) Zbl 1505.34098 Mediterr. J. Math. 20, No. 2, Paper No. 84, 12 p. (2023). MSC: 34G20 93B05 PDF BibTeX XML Cite \textit{A. Salim} et al., Mediterr. J. Math. 20, No. 2, Paper No. 84, 12 p. (2023; Zbl 1505.34098) Full Text: DOI
Gou, Haide A study on decay mild solutions of damped elastic systems with nonlocal conditions in Banach spaces. (English) Zbl 1505.34095 Mediterr. J. Math. 20, No. 2, Paper No. 54, 24 p. (2023). MSC: 34G20 34B10 35B35 47H08 47H10 PDF BibTeX XML Cite \textit{H. Gou}, Mediterr. J. Math. 20, No. 2, Paper No. 54, 24 p. (2023; Zbl 1505.34095) Full Text: DOI
Li, Xiuwen; Liu, Zhenhai; Papageorgiou, Nikolaos S. Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications. (English) Zbl 07646812 Nonlinearity 36, No. 2, 1323-1348 (2023). MSC: 35R70 35K86 35K87 47H04 49J52 93B52 PDF BibTeX XML Cite \textit{X. Li} et al., Nonlinearity 36, No. 2, 1323--1348 (2023; Zbl 07646812) Full Text: DOI
Nguyen, Nhu Thang; Tran, Dinh Ke; Nguyen, Van Dac Stability analysis for nonlocal evolution equations involving infinite delays. (English) Zbl 1515.34077 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 22, 33 p. (2023). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K30 34K20 34K38 47N20 PDF BibTeX XML Cite \textit{N. T. Nguyen} et al., J. Fixed Point Theory Appl. 25, No. 1, Paper No. 22, 33 p. (2023; Zbl 1515.34077) Full Text: DOI
Bouacida, Ichrak; Kerboua, Mourad; Segni, Sami Controllability results for Sobolev type \(\psi\)-Hilfer fractional backward perturbed integro-differential equations in Hilbert space. (English) Zbl 1510.93047 Evol. Equ. Control Theory 12, No. 1, 213-229 (2023). Reviewer: Dimplekumar Chalishajar (Lexington) MSC: 93B05 26A33 46E39 34A12 47H10 93C25 PDF BibTeX XML Cite \textit{I. Bouacida} et al., Evol. Equ. Control Theory 12, No. 1, 213--229 (2023; Zbl 1510.93047) Full Text: DOI
Aniţa, Ștefana-Lucia Optimal control for stochastic differential equations and related Kolmogorov equations. (English) Zbl 1505.93279 Evol. Equ. Control Theory 12, No. 1, 118-137 (2023). MSC: 93E20 60H10 93B52 49J20 35D30 PDF BibTeX XML Cite \textit{Ș.-L. Aniţa}, Evol. Equ. Control Theory 12, No. 1, 118--137 (2023; Zbl 1505.93279) Full Text: DOI
Kumar, Manoj; Abbas, Syed Diffusive size-structured population model with time-varying diffusion rate. (English) Zbl 1514.92090 Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 1414-1435 (2023). MSC: 92D25 35K57 47J35 47H20 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{S. Abbas}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 1414--1435 (2023; Zbl 1514.92090) Full Text: DOI
Xuan, Pham Truong; Van, Nguyen Thi; Quoc, Bui Asymptotically almost periodic solutions to parabolic equations on the real hyperbolic manifold. (English) Zbl 1504.35242 J. Math. Anal. Appl. 517, No. 1, Article ID 126578, 19 p. (2023). MSC: 35Q30 35Q79 76D05 35K05 35B10 35B40 35A01 35A02 35R01 PDF BibTeX XML Cite \textit{P. T. Xuan} et al., J. Math. Anal. Appl. 517, No. 1, Article ID 126578, 19 p. (2023; Zbl 1504.35242) Full Text: DOI arXiv
El Hassnaoui, Mariam; Melliani, Said; Oukessou, Mohamed Application of accretive operators theory to linear SIR model. (English) Zbl 07696816 Nonlinear Dyn. Syst. Theory 22, No. 4, 379-389 (2022). MSC: 92D30 92C60 47H06 35F10 PDF BibTeX XML Cite \textit{M. El Hassnaoui} et al., Nonlinear Dyn. Syst. Theory 22, No. 4, 379--389 (2022; Zbl 07696816) Full Text: Link
Sutrima, Sutrima; Setiyowati, Ririn Equivalent conditions and persistence for uniformly exponential dichotomy. (English) Zbl 07696813 Nonlinear Dyn. Syst. Theory 22, No. 3, 341-354 (2022). MSC: 34D09 47D03 34G10 PDF BibTeX XML Cite \textit{S. Sutrima} and \textit{R. Setiyowati}, Nonlinear Dyn. Syst. Theory 22, No. 3, 341--354 (2022; Zbl 07696813) Full Text: Link
Chaouche, Meryem; Guendouzi, Toufik Stochastic differential inclusions with Hilfer fractional derivative. (English) Zbl 07674991 An. Univ. Craiova, Ser. Mat. Inf. 49, No. 1, 158-173 (2022). MSC: 60H10 34F05 60H15 PDF BibTeX XML Cite \textit{M. Chaouche} and \textit{T. Guendouzi}, An. Univ. Craiova, Ser. Mat. Inf. 49, No. 1, 158--173 (2022; Zbl 07674991) Full Text: DOI
Benchaabane, Abbes Approximate controllability of impulsive stochastic systems driven by Rosenblatt process and Brownian motion. (English) Zbl 1516.34090 Ural Math. J. 8, No. 2, 59-70 (2022). MSC: 34G20 34H05 34F05 47N20 34A37 60H10 93B05 93C25 60J65 PDF BibTeX XML Cite \textit{A. Benchaabane}, Ural Math. J. 8, No. 2, 59--70 (2022; Zbl 1516.34090) Full Text: DOI MNR
Fall, M.; Didiya, M. D.; Gnonlonfoun, A. W.; Diop, M. A. On impulsive integrodifferential equations with state-dependent delay. (English) Zbl 07663598 J. Numer. Math. Stoch. 13, No. 1, 31-56 (2022). MSC: 34K30 45J05 34K45 34K43 47N20 PDF BibTeX XML Cite \textit{M. Fall} et al., J. Numer. Math. Stoch. 13, No. 1, 31--56 (2022; Zbl 07663598) Full Text: Link
Arjunan, Mani Mallika; Kavitha, Velusamy; Baleanu, Dumitru A new existence results on fractional differential inclusions with state-dependent delay and Mittag-Leffler kernel in Banach space. (English) Zbl 07660086 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 30, No. 2, 5-24 (2022). MSC: 34-XX 26A33 34A60 PDF BibTeX XML Cite \textit{M. M. Arjunan} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 30, No. 2, 5--24 (2022; Zbl 07660086)
Iqbal, Naveed; Niazi, Azmat Ullah Khan; Khan, Ikram Ullah; Karaca, Yeliz Non-autonomous fractional evolution equations with non-instantaneous impulse conditions of order \((1, 2)\): a Cauchy problem. (English) Zbl 1515.34081 Fractals 30, No. 9, Article ID 2250196, 16 p. (2022). MSC: 34K37 34K30 34K45 45J99 47N20 37C60 PDF BibTeX XML Cite \textit{N. Iqbal} et al., Fractals 30, No. 9, Article ID 2250196, 16 p. (2022; Zbl 1515.34081) Full Text: DOI
Fu, Yongqiang; Zhang, Xiaoju Global existence, local existence and blow-up of mild solutions for abstract time-space fractional diffusion equations. (English) Zbl 07658836 Topol. Methods Nonlinear Anal. 60, No. 2, 415-440 (2022). MSC: 35R11 26A33 35B44 35K15 35K90 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{X. Zhang}, Topol. Methods Nonlinear Anal. 60, No. 2, 415--440 (2022; Zbl 07658836) Full Text: DOI Link
Haq, Abdul; Sukavanam, N. Existence and partial approximate controllability of nonlinear Riemann-Liouville fractional systems of higher order. (English) Zbl 1507.93036 Chaos Solitons Fractals 165, Part 1, Article ID 112783, 9 p. (2022). MSC: 93B05 93C20 35R11 26A33 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Chaos Solitons Fractals 165, Part 1, Article ID 112783, 9 p. (2022; Zbl 1507.93036) Full Text: DOI
Es-saiydy, M.; Oumadane, I.; Zitane, M. Massera problem for some nonautonomous functional differential equations of neutral type with finite delay. (English. Russian original) Zbl 1519.34083 Russ. Math. 66, No. 5, 49-59 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 61-73 (2022). Reviewer: Jiří Šremr (Brno) MSC: 34K13 34K30 34K12 37C60 47H10 34K40 PDF BibTeX XML Cite \textit{M. Es-saiydy} et al., Russ. Math. 66, No. 5, 49--59 (2022; Zbl 1519.34083); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 61--73 (2022) Full Text: DOI
Herzallah, Mohamed A. E. Existence and uniqueness of solution to a fractional Euler-Lagrange equation with both Riemann-Liouville and Caputo derivatives. (English) Zbl 07641769 J. Fract. Calc. Appl. 13, No. 2, 259-265 (2022). MSC: 34A08 26A33 34C25 34B10 47N20 PDF BibTeX XML Cite \textit{M. A. E. Herzallah}, J. Fract. Calc. Appl. 13, No. 2, 259--265 (2022; Zbl 07641769) Full Text: Link
Kumar, Surendra; Sharma, Paras Faedo-Galerkin method for impulsive second-order stochastic integro-differential systems. (English) Zbl 1505.65238 Chaos Solitons Fractals 158, Article ID 111946, 16 p. (2022). MSC: 65L60 34K30 34G20 34K50 47N20 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{P. Sharma}, Chaos Solitons Fractals 158, Article ID 111946, 16 p. (2022; Zbl 1505.65238) Full Text: DOI
Mohan Raja, M.; Vijayakumar, V. Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order \(r\in (1,2)\) with sectorial operators. (English) Zbl 1505.34096 Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022). MSC: 34G20 45D05 45B05 34A08 26A33 34K37 47N20 PDF BibTeX XML Cite \textit{M. Mohan Raja} and \textit{V. Vijayakumar}, Chaos Solitons Fractals 159, Article ID 112127, 8 p. (2022; Zbl 1505.34096) Full Text: DOI
Xu, Jiaohui; Caraballo, Tomás Well-posedness of stochastic time fractional 2D-Stokes models with finite and infinite delay. (English) Zbl 1505.35291 Electron. J. Differ. Equ. 2022, Paper No. 86, 29 p. (2022). MSC: 35Q30 35B65 35A01 35A02 33E12 60J65 60G22 60H15 65F08 65F10 26A33 35R11 35R07 35R60 PDF BibTeX XML Cite \textit{J. Xu} and \textit{T. Caraballo}, Electron. J. Differ. Equ. 2022, Paper No. 86, 29 p. (2022; Zbl 1505.35291) Full Text: Link
El Mfadel, Ali; Melliani, Said; Kassidi, Abderrazak; Elomari, M’hamed Existence of mild solutions for nonlocal \(\psi\)-Caputo-type fractional evolution equations with nondense domain. (English) Zbl 1516.34014 Nonauton. Dyn. Syst. 9, 272-289 (2022). Reviewer: J. Vasundhara Devi (Visakhapatnam) MSC: 34A08 34G20 34B10 47N20 26A33 45G10 PDF BibTeX XML Cite \textit{A. El Mfadel} et al., Nonauton. Dyn. Syst. 9, 272--289 (2022; Zbl 1516.34014) Full Text: DOI
Diop, Mamadou Abdoul; Ezzinbi, Khalil; Kyelem, Bila Adolphe Local existence and blowing up phenomena for a class of non-autonomous partial functional differential equations with infinite delay. (English) Zbl 1512.34141 Nonauton. Dyn. Syst. 9, 237-255 (2022). Reviewer: Xuping Zhang (Lanzhou) MSC: 34K30 34K12 37C60 47N20 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Nonauton. Dyn. Syst. 9, 237--255 (2022; Zbl 1512.34141) Full Text: DOI
Mishra, Kamla Kant; Dubey, Shruti; Baleanu, Dumitru Existence and controllability of a class of non-autonomous nonlinear evolution fractional integrodifferential equations with delay. (English) Zbl 1510.34168 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022). MSC: 34K30 34K37 34K35 93B05 47N20 PDF BibTeX XML Cite \textit{K. K. Mishra} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 165, 22 p. (2022; Zbl 1510.34168) Full Text: DOI
Anh, Nguyen Thi Van; Dac, Nguyen Van; Tuan, Tran Van Decay solutions to abstract impulsive fractional mobile-immobile equations involving superlinear nonlinearities. (English) Zbl 1503.35245 Fract. Calc. Appl. Anal. 25, No. 6, 2275-2297 (2022). MSC: 35R11 35R12 47H08 47H10 47N20 PDF BibTeX XML Cite \textit{N. T. Van Anh} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2275--2297 (2022; Zbl 1503.35245) Full Text: DOI
Manikin, Boris Asymptotic properties of the parabolic equation driven by stochastic measure. (English) Zbl 1499.60156 Mod. Stoch., Theory Appl. 9, No. 4, 483-498 (2022). MSC: 60G57 PDF BibTeX XML Cite \textit{B. Manikin}, Mod. Stoch., Theory Appl. 9, No. 4, 483--498 (2022; Zbl 1499.60156) Full Text: DOI
Diop, Amadou; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Guindo, Paul dit Akouni Optimal controls problems for some impulsive stochastic integro-differential equations with state-dependent delay. (English) Zbl 1499.34384 Stochastics 94, No. 8, 1186-1220 (2022). MSC: 34K30 34K45 45J05 45N05 60H10 34K50 37L55 49J20 PDF BibTeX XML Cite \textit{A. Diop} et al., Stochastics 94, No. 8, 1186--1220 (2022; Zbl 1499.34384) Full Text: DOI
Haq, Abdul Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. (English) Zbl 1498.93045 Chaos Solitons Fractals 157, Article ID 111923, 8 p. (2022). MSC: 93B05 34A08 47N20 26A33 PDF BibTeX XML Cite \textit{A. Haq}, Chaos Solitons Fractals 157, Article ID 111923, 8 p. (2022; Zbl 1498.93045) Full Text: DOI
Tappe, Stefan An addendum to: “Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients”. (English) Zbl 1502.60106 Theory Probab. Math. Stat. 107, 173-184 (2022). MSC: 60H15 60H10 PDF BibTeX XML Cite \textit{S. Tappe}, Theory Probab. Math. Stat. 107, 173--184 (2022; Zbl 1502.60106) Full Text: DOI arXiv
Bouteraa, N. Existence and stability of solutions for a class of stochastic fractional partial differential equation with a noise. (English) Zbl 1501.35433 Izv. Irkutsk. Gos. Univ., Ser. Mat. 41, 107-120 (2022). MSC: 35R11 35R60 PDF BibTeX XML Cite \textit{N. Bouteraa}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 41, 107--120 (2022; Zbl 1501.35433) Full Text: DOI Link
Nguyen, Hoang Luc Remarks on the initial and terminal value problem for time and space fractional diffusion equation. (English) Zbl 1500.35302 J. Funct. Spaces 2022, Article ID 1938290, 8 p. (2022). MSC: 35R11 35B30 35K20 PDF BibTeX XML Cite \textit{H. L. Nguyen}, J. Funct. Spaces 2022, Article ID 1938290, 8 p. (2022; Zbl 1500.35302) Full Text: DOI
Singh, Vikram Some existence results for a stochastic differential system with non-Lipschitz conditions. (English) Zbl 1512.60037 Stochastics 94, No. 6, 891-904 (2022). Reviewer: Nikolaos Halidias (Athína) MSC: 60H10 34F05 47N20 60H30 PDF BibTeX XML Cite \textit{V. Singh}, Stochastics 94, No. 6, 891--904 (2022; Zbl 1512.60037) Full Text: DOI
Ouaro, Stanislas; Rabo, Noufou; Traoré, Urbain Numerical analysis of nonlinear elliptic-parabolic problems with variable exponent and \(L^1\) data. (English) Zbl 1513.65336 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 55-78 (2022). MSC: 65M22 65M12 65N22 35K55 35K65 46E35 PDF BibTeX XML Cite \textit{S. Ouaro} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 55--78 (2022; Zbl 1513.65336) Full Text: DOI
Diop, Mamadou Abdul; Ezzinbi, Khalil; Ly, Mamadou Pathe Nonlocal problems for integrodifferential equations via resolvent operators and optimal controls. (English) Zbl 1513.49023 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5-25 (2022). MSC: 49J30 47G20 47J35 93B05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5--25 (2022; Zbl 1513.49023) Full Text: DOI
Wei, Mei; Li, Yongxiang; Li, Qiang Positive mild solutions for damped elastic systems with delay and nonlocal conditions in ordered Banach space. (English) Zbl 1507.34085 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022). MSC: 34K30 34A45 47N20 PDF BibTeX XML Cite \textit{M. Wei} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022; Zbl 1507.34085) Full Text: DOI
Jiang, Yi-rong Topological properties of solution sets for Riemann-Liouville fractional nonlocal delay control systems with noncompact semigroups and applications to approximate controllability. (English) Zbl 1498.35581 Bull. Sci. Math. 180, Article ID 103195, 22 p. (2022). MSC: 35R11 35R12 93B05 93C10 PDF BibTeX XML Cite \textit{Y.-r. Jiang}, Bull. Sci. Math. 180, Article ID 103195, 22 p. (2022; Zbl 1498.35581) Full Text: DOI
Balasubramaniam, P.; Sathiyaraj, T.; Ratnavelu, K. Optimality of non-instantaneous impulsive fractional stochastic differential inclusion with fBm. (English) Zbl 1507.34069 Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2787-2819 (2022). MSC: 34G25 34A08 34A37 34A12 34F05 60G22 47N20 49J15 26A33 PDF BibTeX XML Cite \textit{P. Balasubramaniam} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2787--2819 (2022; Zbl 1507.34069) Full Text: DOI
Dieye, Moustapha; Diop, Amadou; Mckibben, Mark A. Existence of solutions for mean-field integrodifferential equations with delay. (English) Zbl 1504.45007 Stoch. Dyn. 22, No. 5, Article ID 2250017, 19 p. (2022). Reviewer: Nikolaos Halidias (Athína) MSC: 45J05 45R05 45N05 60H20 34G20 47J35 PDF BibTeX XML Cite \textit{M. Dieye} et al., Stoch. Dyn. 22, No. 5, Article ID 2250017, 19 p. (2022; Zbl 1504.45007) Full Text: DOI
Criens, David; Ritter, Moritz On a theorem by A.S. Cherny for semilinear stochastic partial differential equations. (English) Zbl 1498.35637 J. Theor. Probab. 35, No. 3, 2052-2067 (2022). MSC: 35R60 35A02 35D30 60G44 60H05 PDF BibTeX XML Cite \textit{D. Criens} and \textit{M. Ritter}, J. Theor. Probab. 35, No. 3, 2052--2067 (2022; Zbl 1498.35637) Full Text: DOI arXiv
Mohan, Manil T. Mild solutions for the stochastic generalized Burgers-Huxley equation. (English) Zbl 1497.60089 J. Theor. Probab. 35, No. 3, 1511-1536 (2022). MSC: 60H15 35K58 35Q35 37H10 60H40 PDF BibTeX XML Cite \textit{M. T. Mohan}, J. Theor. Probab. 35, No. 3, 1511--1536 (2022; Zbl 1497.60089) Full Text: DOI
Hu, Jing; Meyer-Baese, Anke; Zhang, Qimin Analysis of a stochastic reaction-diffusion Alzheimer’s disease system driven by space-time white noise. (English) Zbl 1498.92059 Appl. Math. Lett. 134, Article ID 108308, 8 p. (2022). MSC: 92C32 35K57 60H40 PDF BibTeX XML Cite \textit{J. Hu} et al., Appl. Math. Lett. 134, Article ID 108308, 8 p. (2022; Zbl 1498.92059) Full Text: DOI
Li, Changpin; Li, Zhiqiang The finite-time blow-up for semilinear fractional diffusion equations with time \(\psi\)-Caputo derivative. (English) Zbl 1498.35109 J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022). MSC: 35B44 35R11 35D30 35K45 35K58 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022; Zbl 1498.35109) Full Text: DOI
Ahmed, A. M. Sayed Existence and uniqueness of mild solutions to neutral impulsive fractional stochastic delay differential equations driven by both Brownian motion and fractional Brownian motion. (English) Zbl 1513.60040 Differ. Equ. Appl. 14, No. 3, 433-446 (2022). MSC: 60G22 45N05 60H15 35R12 PDF BibTeX XML Cite \textit{A. M. S. Ahmed}, Differ. Equ. Appl. 14, No. 3, 433--446 (2022; Zbl 1513.60040) Full Text: DOI
Zhu, Bo; Han, Baoyan Approximate controllability for mixed type non-autonomous fractional differential equations. (English) Zbl 1504.34228 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 111, 12 p. (2022). MSC: 34K35 34K37 34K30 93B05 37C60 PDF BibTeX XML Cite \textit{B. Zhu} and \textit{B. Han}, Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 111, 12 p. (2022; Zbl 1504.34228) Full Text: DOI
Xi, Xuan-Xuan; Hou, Mimi; Zhou, Xian-Feng; Wen, Yanhua Approximate controllability of fractional neutral evolution systems of hyperbolic type. (English) Zbl 1509.34076 Evol. Equ. Control Theory 11, No. 4, 1037-1069 (2022). Reviewer: Jiří Šremr (Brno) MSC: 34K30 34K37 34K35 34K40 34K05 93B05 47N20 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Evol. Equ. Control Theory 11, No. 4, 1037--1069 (2022; Zbl 1509.34076) Full Text: DOI
Ouaro, Stanislas; Rabo, Noufou; Traoré, Urbain Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data. (English) Zbl 1493.65143 Cubo 24, No. 2, 187-209 (2022). MSC: 65M12 65N22 35K55 35K65 46E35 PDF BibTeX XML Cite \textit{S. Ouaro} et al., Cubo 24, No. 2, 187--209 (2022; Zbl 1493.65143) Full Text: DOI
Mebrat, Markus; N’Guérékata, Gaston Mandata An existence result for some fractional-integro differential equations in Banach spaces via deformable derivatives. (English) Zbl 07563316 J. Math. Ext. 16, No. 8, Paper No. 1, 19 p. (2022). MSC: 34K30 26A33 47H10 34K37 45J05 PDF BibTeX XML Cite \textit{M. Mebrat} and \textit{G. M. N'Guérékata}, J. Math. Ext. 16, No. 8, Paper No. 1, 19 p. (2022; Zbl 07563316)
Foko Tiomela, R. G.; N’guérékata, G. M. \((\omega, c)\)-asymptotically periodic solutions to some fractional integro-differential equations. (English) Zbl 1513.35042 J. Fract. Calc. Appl. 13, No. 2, 100-115 (2022). MSC: 35B10 26A33 46E15 47D06 47J35 PDF BibTeX XML Cite \textit{R. G. Foko Tiomela} and \textit{G. M. N'guérékata}, J. Fract. Calc. Appl. 13, No. 2, 100--115 (2022; Zbl 1513.35042) Full Text: Link
Kumar, Manoj; Abbas, Syed Analysis of diffusive size-structured population model with stochastic perturbation. (English) Zbl 07547236 Differ. Integral Equ. 35, No. 9-10, 641-658 (2022). Reviewer: Feng-Yu Wang (Tianjin) MSC: 35R60 60H15 60J70 35F16 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{S. Abbas}, Differ. Integral Equ. 35, No. 9--10, 641--658 (2022; Zbl 07547236) Full Text: DOI
Meslem, Sadia; Abbas, Saïd; Arara, Amaria; Benchohra, Mouffak Diagonalization method and semilinear differential equations on the half line. (English) Zbl 1489.34091 Palest. J. Math. 11, No. 1, 560-571 (2022). MSC: 34G20 PDF BibTeX XML Cite \textit{S. Meslem} et al., Palest. J. Math. 11, No. 1, 560--571 (2022; Zbl 1489.34091) Full Text: Link
Diop, Amadou; Dieye, Moustapha; Hazarika, Bipan Random integrodifferential equations of Volterra type with delay: attractiveness and stability. (Random integrodifferential equations of Volterra type with delay : attractiveness and stability.) (English) Zbl 1510.34127 Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022). MSC: 34G20 45D05 47J35 60H10 PDF BibTeX XML Cite \textit{A. Diop} et al., Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022; Zbl 1510.34127) Full Text: DOI
Benkhettou, Nadia; Aissani, Khalida; Salim, Abdelkrim; Benchohra, Mouffak; Tunç, Cemil Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses. (English) Zbl 1501.34064 Appl. Anal. Optim. 6, No. 1, 79-94 (2022). MSC: 34K30 34K37 34K35 34K45 47N20 45J05 93B05 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Appl. Anal. Optim. 6, No. 1, 79--94 (2022; Zbl 1501.34064) Full Text: Link
Tan, Zhong; Zhou, Jianfeng The MHD equations in the Lorentz space with time dependent external forces. (English) Zbl 1491.35349 J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022). MSC: 35Q35 76W05 76D07 35B65 35B10 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{J. Zhou}, J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022; Zbl 1491.35349) Full Text: DOI
Fu, Qiaobin; Fu, Yongqiang Finite-approximate controllability of nonlocal stochastic control systems driven by hybrid noises. (English) Zbl 1513.93006 Adv. Differ. Equ. Control Process. 27, 1-27 (2022). MSC: 93B05 93E03 34A08 PDF BibTeX XML Cite \textit{Q. Fu} and \textit{Y. Fu}, Adv. Differ. Equ. Control Process. 27, 1--27 (2022; Zbl 1513.93006) Full Text: DOI
Manikin, Boris Averaging principle for the one-dimensional parabolic equation driven by stochastic measure. (English) Zbl 1495.60041 Mod. Stoch., Theory Appl. 9, No. 2, 123-137 (2022). MSC: 60G57 60H15 PDF BibTeX XML Cite \textit{B. Manikin}, Mod. Stoch., Theory Appl. 9, No. 2, 123--137 (2022; Zbl 1495.60041) Full Text: DOI
Tamilarasi, M.; Radhakrishnan, B.; Anukokila, P. Approximate controllability of fractional semi-linear delay differential control system with random impulse. (English) Zbl 1490.35527 Palest. J. Math. 11, Spec. Iss. I, 141-150 (2022). MSC: 35R11 35R12 35R60 26A33 93B05 34K45 35K20 PDF BibTeX XML Cite \textit{M. Tamilarasi} et al., Palest. J. Math. 11, 141--150 (2022; Zbl 1490.35527) Full Text: Link