Meslem, Sadia; Abbas, Saïd; Arara, Amaria; Benchohra, Mouffak Diagonalization method and semilinear differential equations on the half line. (English) Zbl 07546775 Palest. J. Math. 11, No. 1, 560-571 (2022). MSC: 34G20 PDF BibTeX XML Cite \textit{S. Meslem} et al., Palest. J. Math. 11, No. 1, 560--571 (2022; Zbl 07546775) Full Text: Link OpenURL
Diop, Amadou; Dieye, Moustapha; Hazarika, Bipan Random integrodifferential equations of Volterra type with delay: attractiveness and stability. (Random integrodifferential equations of Volterra type with delay : attractiveness and stability.) (English) Zbl 07545341 Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022). MSC: 34G20 45D05 47J35 60H10 PDF BibTeX XML Cite \textit{A. Diop} et al., Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022; Zbl 07545341) Full Text: DOI OpenURL
Benkhettou, Nadia; Aissani, Khalida; Salim, Abdelkrim; Benchohra, Mouffak; Tunç, Cemil Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses. (English) Zbl 07545192 Appl. Anal. Optim. 6, No. 1, 79-94 (2022). MSC: 34-XX 26A33 34A12 34A37 34G20 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Appl. Anal. Optim. 6, No. 1, 79--94 (2022; Zbl 07545192) Full Text: Link OpenURL
Tan, Zhong; Zhou, Jianfeng The MHD equations in the Lorentz space with time dependent external forces. (English) Zbl 07543664 J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022). MSC: 35Q35 76W05 76D07 35B65 35B10 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{J. Zhou}, J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022; Zbl 07543664) Full Text: DOI OpenURL
Fu, Qiaobin; Fu, Yongqiang Finite-approximate controllability of nonlocal stochastic control systems driven by hybrid noises. (English) Zbl 07540737 Adv. Differ. Equ. Control Process. 27, No. 1, 1-27 (2022). MSC: 60H15 35A01 47H06 PDF BibTeX XML Cite \textit{Q. Fu} and \textit{Y. Fu}, Adv. Differ. Equ. Control Process. 27, No. 1, 1--27 (2022; Zbl 07540737) Full Text: DOI OpenURL
Manikin, Boris Averaging principle for the one-dimensional parabolic equation driven by stochastic measure. (English) Zbl 07540452 Mod. Stoch., Theory Appl. 9, No. 2, 123-137 (2022). MSC: 60G57 60H15 PDF BibTeX XML Cite \textit{B. Manikin}, Mod. Stoch., Theory Appl. 9, No. 2, 123--137 (2022; Zbl 07540452) Full Text: DOI OpenURL
Tamilarasi, M.; Radhakrishnan, B.; Anukokila, P. Approximate controllability of fractional semi-linear delay differential control system with random impulse. (English) Zbl 07535429 Palest. J. Math. 11, Spec. Iss. I, 141-150 (2022). MSC: 35R11 35R12 35R60 26A33 93B05 34K45 35K20 PDF BibTeX XML Cite \textit{M. Tamilarasi} et al., Palest. J. Math. 11, 141--150 (2022; Zbl 07535429) Full Text: Link OpenURL
Singh, Ajeet; Vijayakumar, Velusamy; Shukla, Anurag; Chauhan, Saurabh A note on asymptotic stability of semilinear thermoelastic system. (English) Zbl 07533980 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 75, 9 p. (2022). MSC: 34A12 34D20 PDF BibTeX XML Cite \textit{A. Singh} et al., Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 75, 9 p. (2022; Zbl 07533980) Full Text: DOI OpenURL
Karczewska, Anna; Szczeciński, Maciej Martingale solution of stochastic hybrid Korteweg-de Vries-Burgers equation. (English) Zbl 07527265 Mem. Differ. Equ. Math. Phys. 85, 103-118 (2022). MSC: 35Q53 35A01 60H15 47H08 47H10 35R60 PDF BibTeX XML Cite \textit{A. Karczewska} and \textit{M. Szczeciński}, Mem. Differ. Equ. Math. Phys. 85, 103--118 (2022; Zbl 07527265) Full Text: Link OpenURL
Kassymov, Aidyn; Tokmagambetov, Niyaz; Torebek, Berikbol Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents. (English) Zbl 07523938 Publ. Math. Debr. 100, No. 3-4, 295-321 (2022). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35R11 34B10 35R03 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Publ. Math. Debr. 100, No. 3--4, 295--321 (2022; Zbl 07523938) Full Text: DOI OpenURL
Singh, Vikram; Chaudhary, Renu; Som, Lalit Kumar Approximate controllability of stochastic differential system with non-Lipschitz conditions. (English) Zbl 07517489 Stochastic Anal. Appl. 40, No. 3, 505-519 (2022). MSC: 34H05 34A08 34G20 93B05 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 40, No. 3, 505--519 (2022; Zbl 07517489) Full Text: DOI OpenURL
Xu, Shuli; Feng, Yuqiang; Jiang, Jun; Nie, Na A variation of constant formula for Caputo fractional stochastic differential equations with jump-diffusion. (English) Zbl 07512049 Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022). MSC: 60H10 34K05 34A12 PDF BibTeX XML Cite \textit{S. Xu} et al., Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022; Zbl 07512049) Full Text: DOI OpenURL
Vanterler da Costa Sousa, J.; Kucche, Kishor D.; de Oliveira, E. Capelas Stability of mild solutions of the fractional nonlinear abstract Cauchy problem. (English) Zbl 07510582 Electron Res. Arch. 30, No. 1, 272-288 (2022). MSC: 34G20 34A08 34A12 34D10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Electron Res. Arch. 30, No. 1, 272--288 (2022; Zbl 07510582) Full Text: DOI OpenURL
Ciotir, Ioana; Fayad, Rim Nonlinear Fokker-Planck equation with reflecting boundary conditions. (English) Zbl 07500532 J. Differ. Equations 321, 296-317 (2022). MSC: 60H30 60H10 60G46 35Q84 35D99 PDF BibTeX XML Cite \textit{I. Ciotir} and \textit{R. Fayad}, J. Differ. Equations 321, 296--317 (2022; Zbl 07500532) Full Text: DOI OpenURL
Lan, Do Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. (English) Zbl 07500378 Evol. Equ. Control Theory 11, No. 1, 259-282 (2022). MSC: 35B40 35R11 35C15 45D05 45K05 PDF BibTeX XML Cite \textit{D. Lan}, Evol. Equ. Control Theory 11, No. 1, 259--282 (2022; Zbl 07500378) Full Text: DOI OpenURL
Ramos, Priscila Santos; Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. (English) Zbl 1483.34105 Evol. Equ. Control Theory 11, No. 1, 1-24 (2022). MSC: 34K30 34K37 34K45 45J05 47H08 47H10 PDF BibTeX XML Cite \textit{P. S. Ramos} et al., Evol. Equ. Control Theory 11, No. 1, 1--24 (2022; Zbl 1483.34105) Full Text: DOI OpenURL
Gou, Haide Existence of mild solutions for Hilfer fractional evolution equations in Banach space. (English) Zbl 07499458 Ann. Pol. Math. 128, No. 1, 15-38 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34G20 34B10 47N20 PDF BibTeX XML Cite \textit{H. Gou}, Ann. Pol. Math. 128, No. 1, 15--38 (2022; Zbl 07499458) Full Text: DOI OpenURL
Haq, Abdul; Sukavanam, N. Mild solution and approximate controllability of second-order retarded systems with control delays and nonlocal conditions. (English) Zbl 1483.34085 Bull. Iran. Math. Soc. 48, No. 2, 447-464 (2022). MSC: 34H05 93B05 46N10 46N20 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Bull. Iran. Math. Soc. 48, No. 2, 447--464 (2022; Zbl 1483.34085) Full Text: DOI OpenURL
Xu, Jiaohui; Zhang, Zhengce; Caraballo, Tomás Mild solutions to time fractional stochastic 2D-Stokes equations with bounded and unbounded delay. (English) Zbl 1485.35409 J. Dyn. Differ. Equations 34, No. 1, 583-603 (2022). MSC: 35R11 35Q30 35R60 65F08 60H15 65F10 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Dyn. Differ. Equations 34, No. 1, 583--603 (2022; Zbl 1485.35409) Full Text: DOI OpenURL
Singh, Vikram; Pandey, Dwijendra N. Multi-term time-fractional stochastic differential equations with non-Lipschitz coefficients. (English) Zbl 07491028 Differ. Equ. Dyn. Syst. 30, No. 1, 197-209 (2022). MSC: 34A08 34F05 34G20 26A33 34A12 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 30, No. 1, 197--209 (2022; Zbl 07491028) Full Text: DOI OpenURL
Borah, Jayanta; Bora, Swaroop Nandan Existence of mild solution for mixed Volterra-Fredholm integro fractional differential equation with non-instantaneous impulses. (English) Zbl 1485.45009 Differ. Equ. Dyn. Syst. 30, No. 1, 185-196 (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 34K30 34K37 34K45 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Differ. Equ. Dyn. Syst. 30, No. 1, 185--196 (2022; Zbl 1485.45009) Full Text: DOI OpenURL
Yahagi, Yumi Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. (English) Zbl 1484.35006 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497-1510 (2022). MSC: 35A01 35A02 35B30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Yahagi}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497--1510 (2022; Zbl 1484.35006) Full Text: DOI OpenURL
Guswanto, Bambang Hendriya Nonlocal reaction-diffusion model with subdiffusive kinetics. (English) Zbl 07459024 J. Fract. Calc. Appl. 13, No. 1, 198-211 (2022). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{B. H. Guswanto}, J. Fract. Calc. Appl. 13, No. 1, 198--211 (2022; Zbl 07459024) Full Text: Link OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston Periodic mild solutions of infinite delay not instantaneous impulsive evolution inclusions. (English) Zbl 07438398 Vietnam J. Math. 50, No. 1, 287-299 (2022). Reviewer: Daniel C. Biles (Nashville) MSC: 34K30 34G25 34G20 34K09 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Vietnam J. Math. 50, No. 1, 287--299 (2022; Zbl 07438398) Full Text: DOI OpenURL
Arora, S.; Mohan, Manil T.; Dabas, J. Existence and approximate controllability of non-autonomous functional impulsive evolution inclusions in Banach spaces. (English) Zbl 07433259 J. Differ. Equations 307, 83-113 (2022). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 34K35 93B05 34K45 34K30 34K09 47N20 PDF BibTeX XML Cite \textit{S. Arora} et al., J. Differ. Equations 307, 83--113 (2022; Zbl 07433259) Full Text: DOI arXiv OpenURL
Singh, Ajeet; Shukla, Anurag; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces. (English) Zbl 07544022 Chaos Solitons Fractals 150, Article ID 111095, 9 p. (2021). MSC: 34A08 34D20 37C25 PDF BibTeX XML Cite \textit{A. Singh} et al., Chaos Solitons Fractals 150, Article ID 111095, 9 p. (2021; Zbl 07544022) Full Text: DOI OpenURL
Hashem, H. H. G.; Alrashidi, Hessah O. Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. (English) Zbl 07543294 AIMS Math. 6, No. 4, 3703-3719 (2021). MSC: 26A33 34K37 35B35 PDF BibTeX XML Cite \textit{H. H. G. Hashem} and \textit{H. O. Alrashidi}, AIMS Math. 6, No. 4, 3703--3719 (2021; Zbl 07543294) Full Text: DOI OpenURL
Sousa, J. Vanterler da C.; Oliveira, D. S.; Capelas de Oliveira, E. A note on the mild solutions of Hilfer impulsive fractional differential equations. (English) Zbl 07534508 Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021). MSC: 34G20 34A08 34A37 34D10 34A12 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} et al., Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021; Zbl 07534508) Full Text: DOI OpenURL
Karthikeyan, K.; Akila, M. Existence results for abstract neutral functional differential equations with almost sectorial operators. (English) Zbl 07533257 Appl. Anal. Optim. 5, No. 1, 13-27 (2021). MSC: 34K40 34K30 35R10 47D06 PDF BibTeX XML Cite \textit{K. Karthikeyan} and \textit{M. Akila}, Appl. Anal. Optim. 5, No. 1, 13--27 (2021; Zbl 07533257) Full Text: Link OpenURL
Borah, Jayanta; Bora, Swaroop Nandan Existence results for non-instantaneous impulsive fractional functional differential equation with infinite delay. (English) Zbl 07530045 Fract. Differ. Calc. 11, No. 1, 35-53 (2021). MSC: 26A33 34A08 35R12 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Fract. Differ. Calc. 11, No. 1, 35--53 (2021; Zbl 07530045) Full Text: DOI OpenURL
Fu, Yongqiang; Yan, Lixu Fully nonlocal stochastic control problems with fractional Brownian motions and Poisson jumps. (English) Zbl 07516024 AIMS Math. 6, No. 5, 5176-5192 (2021). MSC: 60H15 35A01 47H06 60G22 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{L. Yan}, AIMS Math. 6, No. 5, 5176--5192 (2021; Zbl 07516024) Full Text: DOI OpenURL
Liu, Jinghuai; Zhang, Litao Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations. (English) Zbl 07516015 AIMS Math. 6, No. 5, 5040-5052 (2021). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 60H25 34C27 PDF BibTeX XML Cite \textit{J. Liu} and \textit{L. Zhang}, AIMS Math. 6, No. 5, 5040--5052 (2021; Zbl 07516015) Full Text: DOI OpenURL
Gou, Haide; Li, Yongxiang A study on controllability of impulsive fractional evolution equations via resolvent operators. (English) Zbl 07509869 Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021). MSC: 34K30 34K37 34K45 34K35 45J99 47N20 93B05 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021; Zbl 07509869) Full Text: DOI OpenURL
Dhanalakshmi, K.; Balasubramaniam, P. Stability result for fractional neutral stochastic differential system driven by mixed fractional Brownian motion. (English) Zbl 1482.34185 Int. J. Dyn. Syst. Differ. Equ. 11, No. 5-6, 497-513 (2021). MSC: 34K37 34K20 34K40 34K50 26A33 60G22 PDF BibTeX XML Cite \textit{K. Dhanalakshmi} and \textit{P. Balasubramaniam}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 5--6, 497--513 (2021; Zbl 1482.34185) Full Text: DOI OpenURL
Chen, Pengyu; Ma, Weifeng; Tao, Shu; Zhang, Kaibin Blowup and global existence of mild solutions for fractional extended Fisher-Kolmogorov equations. (English) Zbl 07486814 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 641-656 (2021). MSC: 35R11 47J35 PDF BibTeX XML Cite \textit{P. Chen} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 6, 641--656 (2021; Zbl 07486814) Full Text: DOI OpenURL
Aitalioubrahim, M. Viability result for semilinear functional differential inclusions in Banach spaces. (English) Zbl 1480.34087 Carpathian Math. Publ. 13, No. 2, 395-404 (2021). MSC: 34G25 49J52 PDF BibTeX XML Cite \textit{M. Aitalioubrahim}, Carpathian Math. Publ. 13, No. 2, 395--404 (2021; Zbl 1480.34087) Full Text: DOI OpenURL
Suechoei, Apassara; Ngiamsunthorn, Parinya Sa Local well-posedness of nonlinear time-fractional diffusion equation. (English) Zbl 07475070 Thai J. Math. 19, No. 3, 865-884 (2021). MSC: 35R11 26A33 35A01 35B30 35K15 35K58 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. S. Ngiamsunthorn}, Thai J. Math. 19, No. 3, 865--884 (2021; Zbl 07475070) Full Text: Link OpenURL
Li, Qiang; Liu, Lishan; Wei, Mei Existence of positive \(S\)-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces. (English) Zbl 07473962 Nonlinear Anal., Model. Control 26, No. 5, 928-946 (2021). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34G20 34A08 34G25 34B18 34A45 PDF BibTeX XML Cite \textit{Q. Li} et al., Nonlinear Anal., Model. Control 26, No. 5, 928--946 (2021; Zbl 07473962) Full Text: DOI OpenURL
Yang, Min; Gu, Haibo Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. (English) Zbl 07464987 J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang} and \textit{H. Gu}, J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021; Zbl 07464987) Full Text: DOI OpenURL
Kyelem, Bila Adolphe Regularity results for some class of nonautonomous partial neutral functional differential equations with finite delay. (English) Zbl 1478.34083 S\(\vec{\text{e}}\)MA J. 78, No. 4, 515-540 (2021). MSC: 34K30 34G20 34K40 47N20 PDF BibTeX XML Cite \textit{B. A. Kyelem}, S\(\vec{\text{e}}\)MA J. 78, No. 4, 515--540 (2021; Zbl 1478.34083) Full Text: DOI OpenURL
Boufoussi, Brahim; Mouchtabih, Soufiane Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion with Hurst parameter lesser than \(1/2\). (English) Zbl 07460245 Evol. Equ. Control Theory 10, No. 4, 921-935 (2021). MSC: 60H20 60G22 93E03 93B05 PDF BibTeX XML Cite \textit{B. Boufoussi} and \textit{S. Mouchtabih}, Evol. Equ. Control Theory 10, No. 4, 921--935 (2021; Zbl 07460245) Full Text: DOI arXiv OpenURL
Roy, Bandita; Bora, Swaroop Nandan On mild solutions of Volterra fractional differential equations of Sobolev type with finite delay. (English) Zbl 07458977 J. Fract. Calc. Appl. 12, No. 2, 94-113 (2021). MSC: 26A33 34G20 34K37 PDF BibTeX XML Cite \textit{B. Roy} and \textit{S. N. Bora}, J. Fract. Calc. Appl. 12, No. 2, 94--113 (2021; Zbl 07458977) Full Text: Link OpenURL
Borah, Jayanta; Bora, Swaroop Nandan Non-instantaneous impulsive fractional semilinear evolution equation with finite delay. (English) Zbl 07458959 J. Fract. Calc. Appl. 12, No. 1, 120-132 (2021). MSC: 34A08 34A37 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, J. Fract. Calc. Appl. 12, No. 1, 120--132 (2021; Zbl 07458959) Full Text: Link OpenURL
Barbu, Viorel; Röckner, Michael Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs. (English) Zbl 07450815 Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702-713 (2021). MSC: 60H30 60H10 35C99 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702--713 (2021; Zbl 07450815) Full Text: DOI arXiv OpenURL
Ciotir, Ioana; Forcadel, Nicolas; Salazar, Wilfredo Homogenization of a stochastic viscous transport equation. (English) Zbl 1480.35015 Evol. Equ. Control Theory 10, No. 2, 353-364 (2021). MSC: 35B27 35Q49 35R60 60H15 76A30 76F25 PDF BibTeX XML Cite \textit{I. Ciotir} et al., Evol. Equ. Control Theory 10, No. 2, 353--364 (2021; Zbl 1480.35015) Full Text: DOI OpenURL
Omaba, McSylvester Ejighikeme On a measurable solution of a class of higher-order stochastic heat-type equation. (English) Zbl 07450589 Jordan J. Math. Stat. 14, No. 2, 253-266 (2021). MSC: 35R60 60H15 82B44 PDF BibTeX XML Cite \textit{M. E. Omaba}, Jordan J. Math. Stat. 14, No. 2, 253--266 (2021; Zbl 07450589) Full Text: Link OpenURL
Tappe, S. The dual Yamada-Watanabe theorem for mild solutions to stochastic partial differential equations. (English) Zbl 1485.60062 Theory Probab. Math. Stat. 105, 51-68 (2021). Reviewer: Jing Cui (Wuhu) MSC: 60H15 60H10 PDF BibTeX XML Cite \textit{S. Tappe}, Theory Probab. Math. Stat. 105, 51--68 (2021; Zbl 1485.60062) Full Text: DOI arXiv OpenURL
Ma, Li’na; Gu, Haibo; Chen, Yiru Approximate controllability of fractional order evolution equations with integral impulse conditions. (English) Zbl 07448578 J. Shanghai Norm. Univ., Nat. Sci. 50, No. 3, 376-390 (2021). MSC: 93B05 93C15 34A08 93C27 34G10 PDF BibTeX XML Cite \textit{L. Ma} et al., J. Shanghai Norm. Univ., Nat. Sci. 50, No. 3, 376--390 (2021; Zbl 07448578) Full Text: DOI OpenURL
Xie, Qiaoqiao; Yang, Bin; Li, Zhi Global attracting sets of neutral stochastic functional differential equations driven by Poisson jumps. (English) Zbl 07448554 J. Partial Differ. Equations 34, No. 2, 103-115 (2021). MSC: 34K50 34K30 47N20 34K25 34K20 34K40 PDF BibTeX XML Cite \textit{Q. Xie} et al., J. Partial Differ. Equations 34, No. 2, 103--115 (2021; Zbl 07448554) Full Text: DOI OpenURL
Fan, Hongxia; Wang, Tingting Existence of solutions for a class of non-instantaneous impulsive evolution equations. (Chinese. English summary) Zbl 07448181 Acta Math. Appl. Sin. 44, No. 4, 542-552 (2021). MSC: 34K30 34K45 47N20 45J99 PDF BibTeX XML Cite \textit{H. Fan} and \textit{T. Wang}, Acta Math. Appl. Sin. 44, No. 4, 542--552 (2021; Zbl 07448181) OpenURL
Durga, N.; Muthukumar, P.; Fu, Xianlong Stochastic time-optimal control for time-fractional Ginzburg-Landau equation with mixed fractional Brownian motion. (English) Zbl 1479.35833 Stochastic Anal. Appl. 39, No. 6, 1144-1165 (2021). MSC: 35Q56 26A33 35R11 49J20 60G22 60G57 60H15 35A01 PDF BibTeX XML Cite \textit{N. Durga} et al., Stochastic Anal. Appl. 39, No. 6, 1144--1165 (2021; Zbl 1479.35833) Full Text: DOI OpenURL
Buică, Adriana Ulam-Hyers stability and exponentially stable evolution equations in Banach spaces. (English) Zbl 07445730 Carpathian J. Math. 37, No. 2, 339-344 (2021). MSC: 34G10 34D10 37C60 34D20 PDF BibTeX XML Cite \textit{A. Buică}, Carpathian J. Math. 37, No. 2, 339--344 (2021; Zbl 07445730) Full Text: DOI OpenURL
Zhang, Xuping; Chen, Pengyu; O’Regan, Donal Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations. (English) Zbl 07443871 Fract. Calc. Appl. Anal. 24, No. 6, 1758-1776 (2021). MSC: 26A33 34A07 47D06 PDF BibTeX XML Cite \textit{X. Zhang} et al., Fract. Calc. Appl. Anal. 24, No. 6, 1758--1776 (2021; Zbl 07443871) Full Text: DOI OpenURL
Nisar, Kottakkaran Sooppy; Vijayakumar, V. Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. (English) Zbl 1482.93082 Math. Methods Appl. Sci. 44, No. 17, 13615-13632 (2021). MSC: 93B05 93C23 34A08 34K35 34K37 PDF BibTeX XML Cite \textit{K. S. Nisar} and \textit{V. Vijayakumar}, Math. Methods Appl. Sci. 44, No. 17, 13615--13632 (2021; Zbl 1482.93082) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Hammouch, Zakia; Karapinar, Erdal; Tuan, Nguyen Huy On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation. (English) Zbl 1484.35388 Math. Methods Appl. Sci. 44, No. 18, 14791-14806 (2021). MSC: 35R11 26A33 35B65 35K58 35K70 PDF BibTeX XML Cite \textit{A. T. Nguyen} et al., Math. Methods Appl. Sci. 44, No. 18, 14791--14806 (2021; Zbl 1484.35388) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Nguyen, Huu Can; Wang, Renhai; Zhou, Yong Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. (English) Zbl 1478.35226 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6483-6510 (2021). MSC: 35R11 35B44 35K20 35K58 35K70 35K92 35R09 47A52 47J06 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6483--6510 (2021; Zbl 1478.35226) Full Text: DOI OpenURL
Pérez, Aroldo; Villa-Morales, José Blow up of solutions of a nonlinear anomalous reaction-diffusion system. (English) Zbl 1479.35147 Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 791-802 (2021). MSC: 35B44 35K45 35K57 35K58 PDF BibTeX XML Cite \textit{A. Pérez} and \textit{J. Villa-Morales}, Bull. Braz. Math. Soc. (N.S.) 52, No. 4, 791--802 (2021; Zbl 1479.35147) Full Text: DOI OpenURL
Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Sooppy Nisar, Kottakkaran; Shukla, Anurag A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1 < r < 2\). (English) Zbl 07431556 Math. Comput. Simul. 190, 1003-1026 (2021). MSC: 93-XX 60-XX PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Math. Comput. Simul. 190, 1003--1026 (2021; Zbl 07431556) Full Text: DOI OpenURL
Ahmadova, Arzu; Mahmudov, Nazim I. Strong convergence of a Euler-Maruyama method for fractional stochastic Langevin equations. (English) Zbl 07431525 Math. Comput. Simul. 190, 429-448 (2021). MSC: 60-XX 65-XX PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Math. Comput. Simul. 190, 429--448 (2021; Zbl 07431525) Full Text: DOI OpenURL
Bakka, Abdelfouad; Hajji, Salah Global attracting sets of stochastic functional differential equations driven by a square integrable Lévy martingale. (English) Zbl 07430295 Afr. Mat. 32, No. 7-8, 1173-1178 (2021). MSC: 60H15 PDF BibTeX XML Cite \textit{A. Bakka} and \textit{S. Hajji}, Afr. Mat. 32, No. 7--8, 1173--1178 (2021; Zbl 07430295) Full Text: DOI OpenURL
Dhariwal, Gaurav; Huber, Florian; Neamţu, Alexandra On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs. (English) Zbl 07429247 Stochastic Anal. Appl. 39, No. 5, 898-925 (2021). MSC: 60H15 35R60 35Q35 35Q92 35D30 PDF BibTeX XML Cite \textit{G. Dhariwal} et al., Stochastic Anal. Appl. 39, No. 5, 898--925 (2021; Zbl 07429247) Full Text: DOI arXiv OpenURL
Meryem, Chaouche; Guendouzi, Toufik Impulsive fractional stochastic differential inclusions driven by sub-fractional Brownian motion with infinite delay and sectorial operators. (English) Zbl 07425655 Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 2, 87-126 (2021). MSC: 60G22 34K40 35R11 60H15 PDF BibTeX XML Cite \textit{C. Meryem} and \textit{T. Guendouzi}, Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 2, 87--126 (2021; Zbl 07425655) Full Text: DOI OpenURL
Kumar, Surendra; Yadav, Shobha Infinite-delayed stochastic impulsive differential systems with Poisson jumps. (English) Zbl 1473.34009 Indian J. Pure Appl. Math. 52, No. 2, 344-362 (2021). MSC: 34A12 34A37 34K35 60H15 93E20 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Yadav}, Indian J. Pure Appl. Math. 52, No. 2, 344--362 (2021; Zbl 1473.34009) Full Text: DOI OpenURL
Li, Zhi; Xu, Liping; Xu, Liguang Global attracting sets and exponential stability of stochastic partial functional differential equations. (English) Zbl 1478.93550 Syst. Control Lett. 148, Article ID 104859, 7 p. (2021). MSC: 93D23 93E15 93C20 93C23 35R10 60H15 PDF BibTeX XML Cite \textit{Z. Li} et al., Syst. Control Lett. 148, Article ID 104859, 7 p. (2021; Zbl 1478.93550) Full Text: DOI OpenURL
Mohan, Manil T. \(\mathbb{L}^p\)-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations. (English) Zbl 07422093 Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021). MSC: 76D06 35Q30 76D03 47D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021; Zbl 07422093) Full Text: DOI arXiv OpenURL
Bakka, A.; Hajji, S.; Kiouach, D. Global attracting sets of neutral stochastic functional integro-differential equations driven by a fractional Brownian motion. (English) Zbl 1479.60142 Random Oper. Stoch. Equ. 29, No. 3, 149-159 (2021). MSC: 60H20 60H15 60G22 PDF BibTeX XML Cite \textit{A. Bakka} et al., Random Oper. Stoch. Equ. 29, No. 3, 149--159 (2021; Zbl 1479.60142) Full Text: DOI OpenURL
Floreani, Simone; Redig, Frank; Sau, Federico Hydrodynamics for the partial exclusion process in random environment. (English) Zbl 1479.60194 Stochastic Processes Appl. 142, 124-158 (2021). MSC: 60K35 60K37 60F17 PDF BibTeX XML Cite \textit{S. Floreani} et al., Stochastic Processes Appl. 142, 124--158 (2021; Zbl 1479.60194) Full Text: DOI arXiv OpenURL
Jiang, Kerui; Ling, Zhi; Liu, Zuhan; Zhou, Ling Existence, uniqueness and decay estimates on mild solutions to fractional chemotaxis-fluid systems. (English) Zbl 1475.35388 Topol. Methods Nonlinear Anal. 57, No. 1, 25-56 (2021). MSC: 35R11 35B40 35K45 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{K. Jiang} et al., Topol. Methods Nonlinear Anal. 57, No. 1, 25--56 (2021; Zbl 1475.35388) Full Text: DOI OpenURL
Liu, Jiankang; Xu, Wei; Guo, Qin Averaging principle for impulsive stochastic partial differential equations. (English) Zbl 1475.60122 Stoch. Dyn. 21, No. 4, Article ID 2150014, 19 p. (2021). MSC: 60H15 37L55 34A37 37A50 74H10 PDF BibTeX XML Cite \textit{J. Liu} et al., Stoch. Dyn. 21, No. 4, Article ID 2150014, 19 p. (2021; Zbl 1475.60122) Full Text: DOI OpenURL
Pinto, Manuel; Poblete, Felipe; Sepúlveda, Daniel Approximation of mild solutions of delay differential equations on Banach spaces. (English) Zbl 07408053 J. Differ. Equations 303, 156-182 (2021). Reviewer: Vasile Lupulescu (Târgu Jiu) MSC: 34K30 41A35 PDF BibTeX XML Cite \textit{M. Pinto} et al., J. Differ. Equations 303, 156--182 (2021; Zbl 07408053) Full Text: DOI OpenURL
Kang, Xiaodong; Shao, Yong; Fan, Hongxia Approximate controllability of elastic systems with structural damping. (Chinese. English summary) Zbl 07404290 J. Wuhan Univ., Nat. Sci. Ed. 67, No. 2, 151-157 (2021). MSC: 93B05 93C25 74D99 PDF BibTeX XML Cite \textit{X. Kang} et al., J. Wuhan Univ., Nat. Sci. Ed. 67, No. 2, 151--157 (2021; Zbl 07404290) Full Text: DOI OpenURL
Yuan, Tianjiao; Li, Qiang Existence of IS-asymptotically periodic mild solutions for a class of impulsive evolution equations. (Chinese. English summary) Zbl 07404154 J. Shandong Univ., Nat. Sci. 56, No. 6, 10-21 (2021). MSC: 34C25 34A37 47J35 47J25 34G25 34A45 PDF BibTeX XML Cite \textit{T. Yuan} and \textit{Q. Li}, J. Shandong Univ., Nat. Sci. 56, No. 6, 10--21 (2021; Zbl 07404154) OpenURL
Tappe, S. Mild solutions to semilinear stochastic partial differential equations with locally monotone coefficients. (English) Zbl 1473.60100 Theory Probab. Math. Stat. 104, 113-122 (2021). MSC: 60H15 60H10 PDF BibTeX XML Cite \textit{S. Tappe}, Theory Probab. Math. Stat. 104, 113--122 (2021; Zbl 1473.60100) Full Text: DOI arXiv OpenURL
Manikin, B. I.; Radchenko, V. M. Approximation of solution of the cable equation driven by a stochastic measure. (English) Zbl 07402597 Theory Probab. Math. Stat. 104, 103-112 (2021). Reviewer: Anhui Gu (Chongqing) MSC: 60H15 60G57 60H05 PDF BibTeX XML Cite \textit{B. I. Manikin} and \textit{V. M. Radchenko}, Theory Probab. Math. Stat. 104, 103--112 (2021; Zbl 07402597) Full Text: DOI OpenURL
Avelin, B.; Viitasaari, L. On existence and uniqueness of the solution for stochastic partial differential equations. (English) Zbl 1473.60092 Theory Probab. Math. Stat. 104, 49-60 (2021). MSC: 60H15 60G15 35C15 35K58 35S10 PDF BibTeX XML Cite \textit{B. Avelin} and \textit{L. Viitasaari}, Theory Probab. Math. Stat. 104, 49--60 (2021; Zbl 1473.60092) Full Text: DOI arXiv OpenURL
Kumar, Surendra; Upadhyay, Anjali Optimal control problem for fractional stochastic delayed systems with noninstantaneous impulses. (English) Zbl 1478.93733 IMA J. Math. Control Inf. 38, No. 3, 855-880 (2021). Reviewer: Heinrich Hering (Rockenberg) MSC: 93E20 93C43 93C27 93C23 34K45 26A33 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{A. Upadhyay}, IMA J. Math. Control Inf. 38, No. 3, 855--880 (2021; Zbl 1478.93733) Full Text: DOI OpenURL
Ranjini, M. C. Existence results of mild solutions for impulsive fractional differential equations with almost sectorial operators. (English) Zbl 07389008 Giri, Debasis (ed.) et al., Proceedings of the sixth international conference on mathematics and computing, ICMC 2020, Gangtok, Sikkim, India, March 18–20, 2020. Singapore: Springer. Adv. Intell. Syst. Comput. 1262, 501-513 (2021). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34G20 34A37 34A08 PDF BibTeX XML Cite \textit{M. C. Ranjini}, Adv. Intell. Syst. Comput. 1262, 501--513 (2021; Zbl 07389008) Full Text: DOI OpenURL
Chen, Wenhui; Fino, Ahmad Z. Blow-up of solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain. (English) Zbl 1471.35059 Math. Methods Appl. Sci. 44, No. 8, 6787-6807 (2021). MSC: 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{W. Chen} and \textit{A. Z. Fino}, Math. Methods Appl. Sci. 44, No. 8, 6787--6807 (2021; Zbl 1471.35059) Full Text: DOI arXiv OpenURL
Kuehn, Christian; Neamţu, Alexandra; Sonner, Stefanie Random attractors via pathwise mild solutions for stochastic parabolic evolution equations. (English) Zbl 1470.60185 J. Evol. Equ. 21, No. 2, 2631-2663 (2021). MSC: 60H15 37H05 37L55 PDF BibTeX XML Cite \textit{C. Kuehn} et al., J. Evol. Equ. 21, No. 2, 2631--2663 (2021; Zbl 1470.60185) Full Text: DOI arXiv OpenURL
Ye, Hailong; Liu, Qiang; Chen, Zhi-Min Global existence of solutions of the time fractional Cahn-Hilliard equation in \(\mathbb{R}^3\). (English) Zbl 1470.35420 J. Evol. Equ. 21, No. 2, 2377-2411 (2021). MSC: 35R11 35K30 35K58 35K90 PDF BibTeX XML Cite \textit{H. Ye} et al., J. Evol. Equ. 21, No. 2, 2377--2411 (2021; Zbl 1470.35420) Full Text: DOI OpenURL
Haq, Abdul; Sukavanam, N. Mild solution and approximate controllability of retarded semilinear systems with control delays and nonlocal conditions. (English) Zbl 1471.93036 Numer. Funct. Anal. Optim. 42, No. 6, 721-737 (2021). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 93B05 93C15 93C23 34A34 34H05 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Numer. Funct. Anal. Optim. 42, No. 6, 721--737 (2021; Zbl 1471.93036) Full Text: DOI OpenURL
Norouzi, Fatemeh; N’guérékata, Gaston M. Existence results to a \(\psi\)-Hilfer neutral fractional evolution equation with infinite delay. (English) Zbl 1476.34163 Nonauton. Dyn. Syst. 8, 101-124 (2021). MSC: 34K37 34K30 47N20 34K40 PDF BibTeX XML Cite \textit{F. Norouzi} and \textit{G. M. N'guérékata}, Nonauton. Dyn. Syst. 8, 101--124 (2021; Zbl 1476.34163) Full Text: DOI OpenURL
Wang, Xiaolei; Wang, Bo; Zou, Guang-An Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation. (English) Zbl 07376707 Math. Methods Appl. Sci. 44, No. 4, 2825-2841 (2021). MSC: 65M60 65M22 65M12 65M15 33E12 35B35 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{X. Wang} et al., Math. Methods Appl. Sci. 44, No. 4, 2825--2841 (2021; Zbl 07376707) Full Text: DOI OpenURL
Zhou, Yong; Wang, Jing Na The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative. (English) Zbl 1475.35297 Math. Methods Appl. Sci. 44, No. 3, 2431-2438 (2021). MSC: 35Q35 76A05 35E15 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. N. Wang}, Math. Methods Appl. Sci. 44, No. 3, 2431--2438 (2021; Zbl 1475.35297) Full Text: DOI OpenURL
Xi, Xuan-Xuan; Hou, Mimi; Zhou, Xian-Feng Existence of global mild solutions for a class of fractional partial functional differential equations. (English) Zbl 1472.34138 Math. Methods Appl. Sci. 44, No. 3, 2343-2354 (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K37 34K30 34K10 47N20 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Math. Methods Appl. Sci. 44, No. 3, 2343--2354 (2021; Zbl 1472.34138) Full Text: DOI OpenURL
Barrasso, Adrien; Russo, Francesco Backward stochastic differential equations with no driving martingale, Markov processes and associated pseudo-partial differential equations. II: Decoupled mild solutions and examples. (English) Zbl 1484.60060 J. Theor. Probab. 34, No. 3, 1110-1148 (2021). MSC: 60H10 60H30 35S05 60J35 60J60 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, J. Theor. Probab. 34, No. 3, 1110--1148 (2021; Zbl 1484.60060) Full Text: DOI arXiv OpenURL
Diop, Amadou; Diop, Mamadou Abdul; Ezzinbi, K. Existence results for a class of random delay integrodifferential equations. (English) Zbl 1470.45019 Random Oper. Stoch. Equ. 29, No. 2, 79-86 (2021). MSC: 45R05 65H20 47A10 PDF BibTeX XML Cite \textit{A. Diop} et al., Random Oper. Stoch. Equ. 29, No. 2, 79--86 (2021; Zbl 1470.45019) Full Text: DOI OpenURL
Hörmann, Günther Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. (English) Zbl 1467.35002 Monatsh. Math. 195, No. 3, 421-449 (2021). MSC: 35-02 35L65 35B44 35C07 PDF BibTeX XML Cite \textit{G. Hörmann}, Monatsh. Math. 195, No. 3, 421--449 (2021; Zbl 1467.35002) Full Text: DOI arXiv OpenURL
Deuring, Paul Spatial asymptotics of mild solutions to the time-dependent Oseen system. (English) Zbl 1466.76018 Commun. Pure Appl. Anal. 20, No. 5, 1833-1849 (2021). MSC: 76D07 35Q35 PDF BibTeX XML Cite \textit{P. Deuring}, Commun. Pure Appl. Anal. 20, No. 5, 1833--1849 (2021; Zbl 1466.76018) Full Text: DOI OpenURL
Tuan, Hoang The On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. (English) Zbl 1465.35400 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1749-1762 (2021). MSC: 35R11 35A01 35B20 35B40 60H15 35R60 PDF BibTeX XML Cite \textit{H. T. Tuan}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1749--1762 (2021; Zbl 1465.35400) Full Text: DOI arXiv OpenURL
Xi, Xuan-Xuan; Hou, Mimi; Zhou, Xian-Feng; Wen, Yanhua Approximate controllability for mild solution of time-fractional Navier-Stokes equations with delay. (English) Zbl 1465.35401 Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021). MSC: 35R11 35Q30 35B40 47H10 93B05 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021; Zbl 1465.35401) Full Text: DOI OpenURL
Vanterler da Costa Sousa, José; Fečkan, Michal; de Oliveira, Edmundo Capelas Faedo-Galerkin approximation of mild solutions of fractional functional differential equations. (English) Zbl 1483.34107 Nonauton. Dyn. Syst. 8, 1-17 (2021). MSC: 34K30 34K37 34K07 41A65 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Nonauton. Dyn. Syst. 8, 1--17 (2021; Zbl 1483.34107) Full Text: DOI OpenURL
Diop, M. A.; Guindo, P. D. A.; Fall, M.; Diakhaby, A. Optimal controls for stochastic functional integro-differential equations. (English) Zbl 1474.49015 Electron. J. Math. Anal. Appl. 9, No. 2, 241-260 (2021). MSC: 49J21 37L05 60H15 47H10 45K05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Electron. J. Math. Anal. Appl. 9, No. 2, 241--260 (2021; Zbl 1474.49015) Full Text: Link OpenURL
Barbu, Viorel The controllability of Fokker-Planck equations with reflecting boundary conditions and controllers in diffusion term. (English) Zbl 1460.93013 SIAM J. Control Optim. 59, No. 1, 709-726 (2021). MSC: 93B05 93C20 35Q84 60H15 93B52 PDF BibTeX XML Cite \textit{V. Barbu}, SIAM J. Control Optim. 59, No. 1, 709--726 (2021; Zbl 1460.93013) Full Text: DOI OpenURL
Gou, Haide Monotone iterative technique for Hilfer fractional evolution equations with nonlocal conditions. (English) Zbl 1464.34102 Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021). MSC: 34K37 34K30 34K45 34K07 47D06 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021; Zbl 1464.34102) Full Text: DOI OpenURL
Andersson, Adam; Jentzen, Arnulf; Kurniawan, Ryan Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. (English) Zbl 1473.35670 J. Math. Anal. Appl. 495, No. 1, Article ID 124558, 33 p. (2021). MSC: 35R60 47N20 60H15 PDF BibTeX XML Cite \textit{A. Andersson} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124558, 33 p. (2021; Zbl 1473.35670) Full Text: DOI arXiv OpenURL
Diagana, Toka; Hassan, Jamilu H.; Messaoudi, Salim A. Existence of asymptotically almost periodic solutions for some second-order hyperbolic integrodifferential equations. (English) Zbl 1466.45008 Semigroup Forum 102, No. 1, 104-119 (2021). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 45M05 45M15 45N05 PDF BibTeX XML Cite \textit{T. Diagana} et al., Semigroup Forum 102, No. 1, 104--119 (2021; Zbl 1466.45008) Full Text: DOI OpenURL
Majdoub, Mohamed; Mliki, Ezzedine Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. (English) Zbl 1456.60160 Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021). Reviewer: Manil T. Mohan (Roorkee) MSC: 60H15 60H30 35R60 35K05 60G22 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{E. Mliki}, Anal. Math. Phys. 11, No. 1, Paper No. 20, 12 p. (2021; Zbl 1456.60160) Full Text: DOI arXiv OpenURL
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 1461.35186 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 1461.35186) Full Text: DOI OpenURL
Ohyama, Hiroki Global well-posedness for the Navier-Stokes equations with the Coriolis force in function spaces characterized by semigroups. (English) Zbl 1455.76031 J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{H. Ohyama}, J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021; Zbl 1455.76031) Full Text: DOI OpenURL