Du Chengxin,; Liu, Changchun; Mei, Ming Time-periodic solution to a three-phase model of viscoelastic fluid flow. (English) Zbl 07688147 Discrete Contin. Dyn. Syst. 43, No. 1, 276-308 (2023). MSC: 35Q35 35B10 76A10 35K52 PDF BibTeX XML Cite \textit{Du Chengxin} et al., Discrete Contin. Dyn. Syst. 43, No. 1, 276--308 (2023; Zbl 07688147) Full Text: DOI OpenURL
Moulay Hachemi, Rahma Yasmina; Øksendal, Bernt The fractional stochastic heat equation driven by time-space white noise. (English) Zbl 07685924 Fract. Calc. Appl. Anal. 26, No. 2, 513-532 (2023). MSC: 30B50 34A08 35D30 35D35 35K05 35R11 60H15 60H40 PDF BibTeX XML Cite \textit{R. Y. Moulay Hachemi} and \textit{B. Øksendal}, Fract. Calc. Appl. Anal. 26, No. 2, 513--532 (2023; Zbl 07685924) Full Text: DOI OpenURL
Sahijwani, Lavina; Sukavanam, N. New notion of mild solutions for higher-order Riemann-Liouville fractional systems involving non-instantaneous impulses. (English) Zbl 07683120 Bull. Malays. Math. Sci. Soc. (2) 46, No. 3, Paper No. 108, 16 p. (2023). MSC: 26A33 34A08 34G20 34K30 PDF BibTeX XML Cite \textit{L. Sahijwani} and \textit{N. Sukavanam}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 3, Paper No. 108, 16 p. (2023; Zbl 07683120) Full Text: DOI arXiv OpenURL
Lenz, Daniel; Schmidt, Marcel; Zimmermann, Ian Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source. (English) Zbl 07681877 Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 140, 19 p. (2023). MSC: 35B44 35K08 35K58 35K90 47D07 PDF BibTeX XML Cite \textit{D. Lenz} et al., Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 140, 19 p. (2023; Zbl 07681877) Full Text: DOI arXiv OpenURL
Larrouy, James; N’Guérékata, Gaston M. \((\omega, c)\)-periodic and asymptotically \((\omega, c)\)-periodic mild solutions to fractional Cauchy problems. (English) Zbl 07681650 Appl. Anal. 102, No. 3, 958-976 (2023). MSC: 34-XX 26A33 34C25 34C27 34K14 35B15 47D06 PDF BibTeX XML Cite \textit{J. Larrouy} and \textit{G. M. N'Guérékata}, Appl. Anal. 102, No. 3, 958--976 (2023; Zbl 07681650) Full Text: DOI OpenURL
Kumar, Surendra; Sharma, Paras On the Faedo-Galerkin method for non-autonomous nonlinear differential systems. (English) Zbl 07673404 Result. Math. 78, No. 3, Paper No. 107, 16 p. (2023). MSC: 34G20 34A12 34A45 47N20 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{P. Sharma}, Result. Math. 78, No. 3, Paper No. 107, 16 p. (2023; Zbl 07673404) Full Text: DOI OpenURL
Deng, Dingqun; Duan, Renjun Low regularity solutions for the Vlasov-Poisson-Landau/Boltzmann system. (English) Zbl 07672501 Nonlinearity 36, No. 5, 2193-2248 (2023). MSC: 35Q20 35Q83 35J05 76X05 82C22 82C40 35B65 35A01 PDF BibTeX XML Cite \textit{D. Deng} and \textit{R. Duan}, Nonlinearity 36, No. 5, 2193--2248 (2023; Zbl 07672501) Full Text: DOI arXiv OpenURL
Sivasankar, S.; Udhayakumar, R. Discussion on existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via almost sectorial operators with delay. (English) Zbl 07671636 Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 67, 22 p. (2023). MSC: 34K30 34K37 34K40 47N20 PDF BibTeX XML Cite \textit{S. Sivasankar} and \textit{R. Udhayakumar}, Qual. Theory Dyn. Syst. 22, No. 2, Paper No. 67, 22 p. (2023; Zbl 07671636) Full Text: DOI OpenURL
Suguro, Takeshi Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces. (English) Zbl 1505.35339 J. Math. Anal. Appl. 520, No. 1, Article ID 126843, 17 p. (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35D99 PDF BibTeX XML Cite \textit{T. Suguro}, J. Math. Anal. Appl. 520, No. 1, Article ID 126843, 17 p. (2023; Zbl 1505.35339) Full Text: DOI OpenURL
Bouacida, Ichrak; Kerboua, Mourad; Segni, Sami Controllability results for Sobolev type \(\psi\)-Hilfer fractional backward perturbed integro-differential equations in Hilbert space. (English) Zbl 07629949 Evol. Equ. Control Theory 12, No. 1, 213-229 (2023). Reviewer: Dimplekumar Chalishajar (Lexington) MSC: 93B05 26A33 46E39 34A12 47H10 93C25 PDF BibTeX XML Cite \textit{I. Bouacida} et al., Evol. Equ. Control Theory 12, No. 1, 213--229 (2023; Zbl 07629949) Full Text: DOI OpenURL
Aniţa, Ștefana-Lucia Optimal control for stochastic differential equations and related Kolmogorov equations. (English) Zbl 1505.93279 Evol. Equ. Control Theory 12, No. 1, 118-137 (2023). MSC: 93E20 60H10 93B52 49J20 35D30 PDF BibTeX XML Cite \textit{Ș.-L. Aniţa}, Evol. Equ. Control Theory 12, No. 1, 118--137 (2023; Zbl 1505.93279) Full Text: DOI OpenURL
Baaske, Franka; Schmeisser, Hans-Jürgen On the Cauchy problem for hyperdissipative Navier-Stokes equations in super-critical Besov and Triebel-Lizorkin spaces. (English) Zbl 1504.35282 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 226, Article ID 113140, 19 p. (2023). Reviewer: Thomas Eiter (Berlin) MSC: 35Q35 76D05 46E35 35K25 35K55 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{F. Baaske} and \textit{H.-J. Schmeisser}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 226, Article ID 113140, 19 p. (2023; Zbl 1504.35282) Full Text: DOI OpenURL
Xuan, Pham Truong; Van, Nguyen Thi; Quoc, Bui Asymptotically almost periodic solutions to parabolic equations on the real hyperbolic manifold. (English) Zbl 1504.35242 J. Math. Anal. Appl. 517, No. 1, Article ID 126578, 19 p. (2023). MSC: 35Q30 35Q79 76D05 35K05 35B10 35B40 35A01 35A02 35R01 PDF BibTeX XML Cite \textit{P. T. Xuan} et al., J. Math. Anal. Appl. 517, No. 1, Article ID 126578, 19 p. (2023; Zbl 1504.35242) Full Text: DOI arXiv OpenURL
Gao, Peng; Chen, Pengyu Blowup and MLUH stability of time-space fractional reaction-diffusion equations. (English) Zbl 07676883 Electron Res. Arch. 30, No. 9, 3351-3361 (2022). MSC: 35R11 35B44 35K57 PDF BibTeX XML Cite \textit{P. Gao} and \textit{P. Chen}, Electron Res. Arch. 30, No. 9, 3351--3361 (2022; Zbl 07676883) Full Text: DOI OpenURL
Van Anh, Nguyen Thi; Yen, Bui Thi Hai On the time-delayed anomalous diffusion equations with nonlocal initial conditions. (English) Zbl 07669016 Commun. Pure Appl. Anal. 21, No. 11, 3701-3719 (2022). MSC: 45K05 45M20 47N20 47H08 PDF BibTeX XML Cite \textit{N. T. Van Anh} and \textit{B. T. H. Yen}, Commun. Pure Appl. Anal. 21, No. 11, 3701--3719 (2022; Zbl 07669016) Full Text: DOI OpenURL
Fall, M.; Didiya, M. D.; Gnonlonfoun, A. W.; Diop, M. A. On impulsive integrodifferential equations with state-dependent delay. (English) Zbl 07663598 J. Numer. Math. Stoch. 13, No. 1, 31-56 (2022). MSC: 34K05 26A33 34A12 35R12 45J05 PDF BibTeX XML Cite \textit{M. Fall} et al., J. Numer. Math. Stoch. 13, No. 1, 31--56 (2022; Zbl 07663598) Full Text: Link OpenURL
Li, Qiang; Qiao, Hong Monotone iterative technique for \(S\)-asymptotically periodic problem of evolution equation with delay. (English) Zbl 07663589 J. Math. Study 55, No. 4, 381-397 (2022). MSC: 47J35 34K30 34K13 PDF BibTeX XML Cite \textit{Q. Li} and \textit{H. Qiao}, J. Math. Study 55, No. 4, 381--397 (2022; Zbl 07663589) Full Text: DOI OpenURL
Fu, Yongqiang; Zhang, Xiaoju Global existence, local existence and blow-up of mild solutions for abstract time-space fractional diffusion equations. (English) Zbl 07658836 Topol. Methods Nonlinear Anal. 60, No. 2, 415-440 (2022). MSC: 26A33 35K15 35B44 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{X. Zhang}, Topol. Methods Nonlinear Anal. 60, No. 2, 415--440 (2022; Zbl 07658836) Full Text: DOI Link OpenURL
Hachemi, Rahma Yasmina Moulay; Guendouzi, Toufik Impulsive stochastic differential equations involving Hilfer fractional derivatives. (English) Zbl 07649223 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 417-438 (2022). MSC: 60H10 34F05 60H15 35R60 60H20 60H30 60H05 PDF BibTeX XML Cite \textit{R. Y. M. Hachemi} and \textit{T. Guendouzi}, Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 4, 417--438 (2022; Zbl 07649223) Full Text: DOI OpenURL
Es-saiydy, M.; Oumadane, I.; Zitane, M. Massera problem for some nonautonomous functional differential equations of neutral type with finite delay. (English. Russian original) Zbl 07644548 Russ. Math. 66, No. 5, 49-59 (2022); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 61-73 (2022). MSC: 34K30 34K13 34K12 37C60 PDF BibTeX XML Cite \textit{M. Es-saiydy} et al., Russ. Math. 66, No. 5, 49--59 (2022; Zbl 07644548); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2022, No. 5, 61--73 (2022) Full Text: DOI OpenURL
Herzallah, Mohamed A. E. Existence and uniqueness of solution to a fractional Euler-Lagrange equation with both Riemann-Liouville and Caputo derivatives. (English) Zbl 07641769 J. Fract. Calc. Appl. 13, No. 2, 259-265 (2022). MSC: 34-XX 26A33 30E25 34C25 PDF BibTeX XML Cite \textit{M. A. E. Herzallah}, J. Fract. Calc. Appl. 13, No. 2, 259--265 (2022; Zbl 07641769) Full Text: Link OpenURL
Xu, Jiaohui; Caraballo, Tomás Well-posedness of stochastic time fractional 2D-Stokes models with finite and infinite delay. (English) Zbl 1505.35291 Electron. J. Differ. Equ. 2022, Paper No. 86, 29 p. (2022). MSC: 35Q30 35B65 35A01 35A02 33E12 60J65 60G22 60H15 65F08 65F10 26A33 35R11 35R07 35R60 PDF BibTeX XML Cite \textit{J. Xu} and \textit{T. Caraballo}, Electron. J. Differ. Equ. 2022, Paper No. 86, 29 p. (2022; Zbl 1505.35291) Full Text: Link OpenURL
Gou, Haide; Li, Yongxiang A study on approximate controllability of non-autonomous evolution system with nonlocal conditions using sequence method. (English) Zbl 07638932 Optimization 71, No. 16, 4763-4783 (2022). MSC: 34G20 37C60 34B10 34H05 93B05 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Optimization 71, No. 16, 4763--4783 (2022; Zbl 07638932) Full Text: DOI OpenURL
Diop, Mamadou Abdoul; Ezzinbi, Khalil; Kyelem, Bila Adolphe Local existence and blowing up phenomena for a class of non-autonomous partial functional differential equations with infinite delay. (English) Zbl 07638339 Nonauton. Dyn. Syst. 9, 237-255 (2022). Reviewer: Xuping Zhang (Lanzhou) MSC: 34K30 34K12 37C60 47N20 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Nonauton. Dyn. Syst. 9, 237--255 (2022; Zbl 07638339) Full Text: DOI OpenURL
Tchtjengtje, Emmanuel Kamdem; Takou, Etienne Global existence theorem of mild solutions of the Boltzmann equation for short range interactions. (English) Zbl 07633034 Rep. Math. Phys. 90, No. 3, 325-345 (2022). MSC: 35Q20 PDF BibTeX XML Cite \textit{E. K. Tchtjengtje} and \textit{E. Takou}, Rep. Math. Phys. 90, No. 3, 325--345 (2022; Zbl 07633034) Full Text: DOI OpenURL
Ceng, L. C.; Cho, S. Y. On approximate controllability for systems of fractional evolution hemivariational inequalities with Riemann-Liouville fractional derivatives. (English) Zbl 07623338 J. Nonlinear Var. Anal. 6, No. 4, 421-438 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{L. C. Ceng} and \textit{S. Y. Cho}, J. Nonlinear Var. Anal. 6, No. 4, 421--438 (2022; Zbl 07623338) Full Text: DOI OpenURL
Raja, M. Mohan; Shukla, Anurag; Nieto, Juan J.; Vijayakumar, V.; Sooppy Nisar, Kottakkaran A note on the existence and controllability results for fractional integrodifferential inclusions of order \(r\in(1, 2]\) with impulses. (English) Zbl 07622852 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 150, 41 p. (2022). MSC: 34K37 34K30 34K45 34K35 93B05 47D09 47H10 34K09 PDF BibTeX XML Cite \textit{M. M. Raja} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 150, 41 p. (2022; Zbl 07622852) Full Text: DOI OpenURL
Kavitha, K.; Vijayakumar, V. A discussion concerning to partial-approximate controllability of Hilfer fractional system with nonlocal conditions via approximating method. (English) Zbl 1498.34170 Chaos Solitons Fractals 157, Article ID 111924, 9 p. (2022). MSC: 34H05 93B05 34K37 34A08 26A33 PDF BibTeX XML Cite \textit{K. Kavitha} and \textit{V. Vijayakumar}, Chaos Solitons Fractals 157, Article ID 111924, 9 p. (2022; Zbl 1498.34170) Full Text: DOI OpenURL
Nguyen, Hoang Luc Remarks on the initial and terminal value problem for time and space fractional diffusion equation. (English) Zbl 1500.35302 J. Funct. Spaces 2022, Article ID 1938290, 8 p. (2022). MSC: 35R11 35B30 35K20 PDF BibTeX XML Cite \textit{H. L. Nguyen}, J. Funct. Spaces 2022, Article ID 1938290, 8 p. (2022; Zbl 1500.35302) Full Text: DOI OpenURL
Gao, Yaodong; Wong, M. W. Initial value problems for heat equations generated by strongly elliptic \((\rho,\Lambda)\)-pseudo-differential operators on \(\mathbb{R}^n\). (English) Zbl 07599844 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 55, 18 p. (2022). MSC: 47D06 47G30 47N20 35K05 35K15 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{M. W. Wong}, J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 55, 18 p. (2022; Zbl 07599844) Full Text: DOI OpenURL
Diop, Mamadou Abdul; Ezzinbi, Khalil; Ly, Mamadou Pathe Nonlocal problems for integrodifferential equations via resolvent operators and optimal controls. (English) Zbl 07599586 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5-25 (2022). MSC: 49J30 47G20 47J35 93B05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5--25 (2022; Zbl 07599586) Full Text: DOI OpenURL
Wei, Mei; Li, Yongxiang; Li, Qiang Positive mild solutions for damped elastic systems with delay and nonlocal conditions in ordered Banach space. (English) Zbl 1507.34085 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022). MSC: 34K30 34A45 47N20 PDF BibTeX XML Cite \textit{M. Wei} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 128, 22 p. (2022; Zbl 1507.34085) Full Text: DOI OpenURL
Guedda, L.; Ouardani, A. On the averaging principle for semilinear functional differential equations with infinite delay in a Banach space. (English) Zbl 07596704 J. Math. Sci., New York 265, No. 4, 629-650 (2022) Neliniĭni Kolyvannya 24, No. 1, 62-82 (2021). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K33 34K30 47N20 PDF BibTeX XML Cite \textit{L. Guedda} and \textit{A. Ouardani}, J. Math. Sci., New York 265, No. 4, 629--650 (2022; Zbl 07596704) Full Text: DOI OpenURL
Balasubramaniam, P.; Sathiyaraj, T.; Ratnavelu, K. Optimality of non-instantaneous impulsive fractional stochastic differential inclusion with fBm. (English) Zbl 1507.34069 Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2787-2819 (2022). MSC: 34G25 34A08 34A37 34A12 34F05 60G22 47N20 49J15 26A33 PDF BibTeX XML Cite \textit{P. Balasubramaniam} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 5, 2787--2819 (2022; Zbl 1507.34069) Full Text: DOI OpenURL
Criens, David; Ritter, Moritz On a theorem by A.S. Cherny for semilinear stochastic partial differential equations. (English) Zbl 1498.35637 J. Theor. Probab. 35, No. 3, 2052-2067 (2022). MSC: 35R60 35A02 35D30 60G44 60H05 PDF BibTeX XML Cite \textit{D. Criens} and \textit{M. Ritter}, J. Theor. Probab. 35, No. 3, 2052--2067 (2022; Zbl 1498.35637) Full Text: DOI arXiv OpenURL
Li, Changpin; Li, Zhiqiang The finite-time blow-up for semilinear fractional diffusion equations with time \(\psi\)-Caputo derivative. (English) Zbl 1498.35109 J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022). MSC: 35B44 35R11 35D30 35K45 35K58 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022; Zbl 1498.35109) Full Text: DOI OpenURL
Vanterler da C. Sousa, J.; Abdeljawad, Thabet; Oliveira, D. S. Mild and classical solutions for fractional evolution differential equation. (English) Zbl 07587168 Palest. J. Math. 11, No. 2, 229-242 (2022). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K30 34K37 34K05 47N20 34K10 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Palest. J. Math. 11, No. 2, 229--242 (2022; Zbl 07587168) Full Text: arXiv Link OpenURL
Peng, Li; Zhou, Yong The existence of mild and classical solutions for time fractional Fokker-Planck equations. (English) Zbl 1500.35303 Monatsh. Math. 199, No. 2, 377-410 (2022). Reviewer: Xiaoming He (Beijing) MSC: 35R11 35A09 35A01 35Q84 PDF BibTeX XML Cite \textit{L. Peng} and \textit{Y. Zhou}, Monatsh. Math. 199, No. 2, 377--410 (2022; Zbl 1500.35303) Full Text: DOI OpenURL
Anh, Nguyen Thi Van; Yen, Bui Thi Hai Source identification problems for abstract semilinear nonlocal differential equations. (English) Zbl 1504.34146 Inverse Probl. Imaging 16, No. 5, 1389-1428 (2022). MSC: 34G20 47N20 93B30 93B53 PDF BibTeX XML Cite \textit{N. T. Van Anh} and \textit{B. T. H. Yen}, Inverse Probl. Imaging 16, No. 5, 1389--1428 (2022; Zbl 1504.34146) Full Text: DOI OpenURL
Kolokoltsov, Vassili N. Quantum mean-field games. (English) Zbl 1498.91098 Ann. Appl. Probab. 32, No. 3, 2254-2288 (2022). MSC: 91A81 91A16 35Q55 81Q93 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov}, Ann. Appl. Probab. 32, No. 3, 2254--2288 (2022; Zbl 1498.91098) Full Text: DOI arXiv OpenURL
Plecháč, Petr; Simpson, Gideon; Troy, Jerome R. Well-posedness of a random coefficient damage mechanics model. (English) Zbl 1501.35392 Appl. Anal. 101, No. 11, 3858-3885 (2022). Reviewer: Fabrizio Davì (Ancona) MSC: 35Q74 35K90 35R60 74E35 74D99 74R05 35A01 35A02 PDF BibTeX XML Cite \textit{P. Plecháč} et al., Appl. Anal. 101, No. 11, 3858--3885 (2022; Zbl 1501.35392) Full Text: DOI OpenURL
Mohan Raja, M.; Vijayakumar, V.; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Baskonus, Haci Mehmet On the approximate controllability results for fractional integrodifferential systems of order \(1 < r < 2\) with sectorial operators. (English) Zbl 1492.93024 J. Comput. Appl. Math. 415, Article ID 114492, 12 p. (2022). MSC: 93B05 34A08 47B12 47H10 93C25 PDF BibTeX XML Cite \textit{M. Mohan Raja} et al., J. Comput. Appl. Math. 415, Article ID 114492, 12 p. (2022; Zbl 1492.93024) Full Text: DOI OpenURL
Wei, Mei; Li, Qiang Existence and uniqueness of \(S\)-asymptotically periodic \(\alpha\)-mild solutions for neutral fractional delayed evolution equation. (English) Zbl 07566333 Appl. Math., Ser. B (Engl. Ed.) 37, No. 2, 228-245 (2022). MSC: 34K30 47D06 34K13 34K37 34K40 47N20 PDF BibTeX XML Cite \textit{M. Wei} and \textit{Q. Li}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 2, 228--245 (2022; Zbl 07566333) Full Text: DOI OpenURL
Wang, Jing Na; Alsaedi, Ahmed; Ahmad, Bashir; Zhou, Yong Well-posedness and blow-up results for a class of nonlinear fractional Rayleigh-Stokes problem. (English) Zbl 1503.35278 Adv. Nonlinear Anal. 11, 1579-1597 (2022). MSC: 35R11 26A33 35Q35 76D03 PDF BibTeX XML Cite \textit{J. N. Wang} et al., Adv. Nonlinear Anal. 11, 1579--1597 (2022; Zbl 1503.35278) Full Text: DOI OpenURL
Tiomela, R. G. Foko; N’guérékata, G. M. \((\omega, c)\)-asymptotically periodic solutions to some fractional integro-differential equations. (English) Zbl 07559308 J. Fract. Calc. Appl. 13, No. 2, 100-115 (2022). MSC: 35B10 46E15 47D06 47J35 93D22 PDF BibTeX XML Cite \textit{R. G. F. Tiomela} and \textit{G. M. N'guérékata}, J. Fract. Calc. Appl. 13, No. 2, 100--115 (2022; Zbl 07559308) Full Text: Link OpenURL
Suechoei, Apassara; Sa Ngiamsunthorn, Parinya Optimal feedback control for fractional evolution equations with nonlinear perturbation of the time-fractional derivative term. (English) Zbl 1502.34012 Bound. Value Probl. 2022, Paper No. 21, 26 p. (2022). MSC: 34A08 34G20 49J27 93B52 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. Sa Ngiamsunthorn}, Bound. Value Probl. 2022, Paper No. 21, 26 p. (2022; Zbl 1502.34012) Full Text: DOI OpenURL
Kolokoltsov, Vassili N. Dynamic quantum games. (English) Zbl 1494.91021 Dyn. Games Appl. 12, No. 2, 552-573 (2022). MSC: 91A25 91A81 81Q93 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov}, Dyn. Games Appl. 12, No. 2, 552--573 (2022; Zbl 1494.91021) Full Text: DOI arXiv OpenURL
Tan, Zhong; Zhou, Jianfeng The MHD equations in the Lorentz space with time dependent external forces. (English) Zbl 1491.35349 J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022). MSC: 35Q35 76W05 76D07 35B65 35B10 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{J. Zhou}, J. Math. Fluid Mech. 24, No. 3, Paper No. 68, 37 p. (2022; Zbl 1491.35349) Full Text: DOI OpenURL
Singh, Ajeet; Vijayakumar, Velusamy; Shukla, Anurag; Chauhan, Saurabh A note on asymptotic stability of semilinear thermoelastic system. (English) Zbl 1492.35051 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 75, 9 p. (2022). MSC: 35B40 35G61 74F05 PDF BibTeX XML Cite \textit{A. Singh} et al., Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 75, 9 p. (2022; Zbl 1492.35051) Full Text: DOI OpenURL
Li, Xiuwen; Liu, Zhenhai; Luo, Ricai Decay mild solutions of fractional differential hemivariational inequalities. (English) Zbl 07522887 Topol. Methods Nonlinear Anal. 59, No. 1, 131-151 (2022). MSC: 47J20 47H04 PDF BibTeX XML Cite \textit{X. Li} et al., Topol. Methods Nonlinear Anal. 59, No. 1, 131--151 (2022; Zbl 07522887) Full Text: DOI OpenURL
Xu, Shuli; Feng, Yuqiang; Jiang, Jun; Nie, Na A variation of constant formula for Caputo fractional stochastic differential equations with jump-diffusion. (English) Zbl 1494.60069 Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022). MSC: 60H10 34K05 34A12 PDF BibTeX XML Cite \textit{S. Xu} et al., Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022; Zbl 1494.60069) Full Text: DOI OpenURL
Vanterler da Costa Sousa, J.; Kucche, Kishor D.; de Oliveira, E. Capelas Stability of mild solutions of the fractional nonlinear abstract Cauchy problem. (English) Zbl 1500.34054 Electron Res. Arch. 30, No. 1, 272-288 (2022). Reviewer: Zhenbin Fan (Jiangsu) MSC: 34G20 34A08 34A12 34D10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Electron Res. Arch. 30, No. 1, 272--288 (2022; Zbl 1500.34054) Full Text: DOI arXiv OpenURL
Ciotir, Ioana; Fayad, Rim Nonlinear Fokker-Planck equation with reflecting boundary conditions. (English) Zbl 1498.60280 J. Differ. Equations 321, 296-317 (2022). MSC: 60H30 60H10 60G46 35Q84 35D99 PDF BibTeX XML Cite \textit{I. Ciotir} and \textit{R. Fayad}, J. Differ. Equations 321, 296--317 (2022; Zbl 1498.60280) Full Text: DOI OpenURL
Lan, Do Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. (English) Zbl 1486.35058 Evol. Equ. Control Theory 11, No. 1, 259-282 (2022). MSC: 35B40 35R11 35C15 45D05 45K05 PDF BibTeX XML Cite \textit{D. Lan}, Evol. Equ. Control Theory 11, No. 1, 259--282 (2022; Zbl 1486.35058) Full Text: DOI OpenURL
Barrasso, Adrien; Russo, Francesco Gâteaux type path-dependent PDEs and BSDEs with Gaussian forward processes. (English) Zbl 1495.60060 Stoch. Dyn. 22, No. 1, Article ID 2250007, 27 p. (2022). MSC: 60H30 60H15 35D40 60G15 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Stoch. Dyn. 22, No. 1, Article ID 2250007, 27 p. (2022; Zbl 1495.60060) Full Text: DOI arXiv OpenURL
Singh, Vikram; Pandey, Dwijendra N. Multi-term time-fractional stochastic differential equations with non-Lipschitz coefficients. (English) Zbl 1493.34030 Differ. Equ. Dyn. Syst. 30, No. 1, 197-209 (2022). MSC: 34A08 34F05 34G20 26A33 34A12 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 30, No. 1, 197--209 (2022; Zbl 1493.34030) Full Text: DOI OpenURL
Addona, Davide; Lorenzi, Luca; Tessitore, Gianmario Regularity results for nonlinear Young equations and applications. (English) Zbl 1485.35439 J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022). MSC: 35R60 35C15 35B65 60H05 60H15 47D06 PDF BibTeX XML Cite \textit{D. Addona} et al., J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022; Zbl 1485.35439) Full Text: DOI arXiv OpenURL
Yahagi, Yumi Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. (English) Zbl 1484.35006 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497-1510 (2022). MSC: 35A01 35A02 35B30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Yahagi}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497--1510 (2022; Zbl 1484.35006) Full Text: DOI OpenURL
Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection. (English) Zbl 1484.35255 Commun. Partial Differ. Equations 47, No. 2, 279-306 (2022). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{A. L. Mazzucato}, Commun. Partial Differ. Equations 47, No. 2, 279--306 (2022; Zbl 1484.35255) Full Text: DOI arXiv OpenURL
Liu, Feng; Xi, Shuai; Zeng, Zirong; Zhu, Shengguo Global mild solutions to three-dimensional magnetohydrodynamic equations in Morrey spaces. (English) Zbl 07471765 J. Differ. Equations 314, 752-807 (2022). MSC: 35Q35 76W05 35A01 35A02 35B40 35L60 PDF BibTeX XML Cite \textit{F. Liu} et al., J. Differ. Equations 314, 752--807 (2022; Zbl 07471765) Full Text: DOI arXiv OpenURL
Wang, Pengfei; Zhang, Mengyi; Su, Huan Input-to-state stability of infinite-dimensional stochastic nonlinear systems. (English) Zbl 07461158 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 821-836 (2022). MSC: 37H30 60H15 93E15 PDF BibTeX XML Cite \textit{P. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 821--836 (2022; Zbl 07461158) Full Text: DOI OpenURL
Kuan, Jeffrey; Čanić, Sunčica A stochastically perturbed fluid-structure interaction problem modeled by a stochastic viscous wave equation. (English) Zbl 1503.35168 J. Differ. Equations 310, 45-98 (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q74 76D07 74F10 74K15 74B10 60H40 35A01 35A02 35B20 35B65 35R60 PDF BibTeX XML Cite \textit{J. Kuan} and \textit{S. Čanić}, J. Differ. Equations 310, 45--98 (2022; Zbl 1503.35168) Full Text: DOI arXiv OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston Periodic mild solutions of infinite delay not instantaneous impulsive evolution inclusions. (English) Zbl 1489.34106 Vietnam J. Math. 50, No. 1, 287-299 (2022). Reviewer: Daniel C. Biles (Nashville) MSC: 34K30 34G25 34G20 34K09 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Vietnam J. Math. 50, No. 1, 287--299 (2022; Zbl 1489.34106) Full Text: DOI OpenURL
Marinelli, Carlo; Scarpa, Luca On the positivity of local mild solutions to stochastic evolution equations. (English) Zbl 1499.60228 Ugolini, Stefania (ed.) et al., Geometry and invariance in stochastic dynamics. Selected papers based on the presentations at the the conference on random transformations and invariance in stochastic dynamics, Verona, Italy, March 25–29, 2019. Cham: Springer. Springer Proc. Math. Stat. 378, 231-245 (2021). MSC: 60H15 60H30 PDF BibTeX XML Cite \textit{C. Marinelli} and \textit{L. Scarpa}, Springer Proc. Math. Stat. 378, 231--245 (2021; Zbl 1499.60228) Full Text: DOI arXiv OpenURL
Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Shukla, Anurag; Nisar, Kottakkaran Sooppy A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order \(r\in(1,2)\) with delay. (English) Zbl 1498.34210 Chaos Solitons Fractals 153, Part 1, Article ID 111565, 16 p. (2021). MSC: 34K37 26A33 34K09 34K30 47D09 47H10 93B05 PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Chaos Solitons Fractals 153, Part 1, Article ID 111565, 16 p. (2021; Zbl 1498.34210) Full Text: DOI OpenURL
Mohan Raja, M.; Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Rezapour, Shahram New discussion on nonlocal controllability for fractional evolution system of order \(1 < r < 2\). (English) Zbl 1494.34045 Adv. Difference Equ. 2021, Paper No. 481, 19 p. (2021). MSC: 34A08 26A33 93B05 47H08 47N20 PDF BibTeX XML Cite \textit{M. Mohan Raja} et al., Adv. Difference Equ. 2021, Paper No. 481, 19 p. (2021; Zbl 1494.34045) Full Text: DOI OpenURL
Niazi, Azmat Ullah Khan; Iqbal, Naveed; Mohammed, Wael W. Optimal control of nonlocal fractional evolution equations in the \(\alpha\)-norm of order \((1,2)\). (English) Zbl 1494.34177 Adv. Difference Equ. 2021, Paper No. 142, 22 p. (2021). MSC: 34K37 26A33 34A08 93B05 PDF BibTeX XML Cite \textit{A. U. K. Niazi} et al., Adv. Difference Equ. 2021, Paper No. 142, 22 p. (2021; Zbl 1494.34177) Full Text: DOI OpenURL
Trinh, Viet Duoc Time global mild solutions of Navier-Stokes-Oseen equations. (English) Zbl 07556823 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 2, 450-460 (2021). MSC: 35B35 35Q30 35Q35 76D07 PDF BibTeX XML Cite \textit{V. D. Trinh}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 2, 450--460 (2021; Zbl 07556823) Full Text: DOI OpenURL
Dhayal, Rajesh; Malik, Muslim; Abbas, Syed Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order \(q \in (1,2)\). (English) Zbl 1490.65009 Stochastics 93, No. 5, 780-802 (2021). MSC: 65C30 34K37 34K45 34K50 93E20 PDF BibTeX XML Cite \textit{R. Dhayal} et al., Stochastics 93, No. 5, 780--802 (2021; Zbl 1490.65009) Full Text: DOI OpenURL
Boudjerida, Assia; Seba, Djamila Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses. (English) Zbl 1498.93038 Chaos Solitons Fractals 150, Article ID 111125, 19 p. (2021). MSC: 93B05 34A08 34A37 34H05 PDF BibTeX XML Cite \textit{A. Boudjerida} and \textit{D. Seba}, Chaos Solitons Fractals 150, Article ID 111125, 19 p. (2021; Zbl 1498.93038) Full Text: DOI OpenURL
Hashem, H. H. G.; Alrashidi, Hessah O. Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. (English) Zbl 07543294 AIMS Math. 6, No. 4, 3703-3719 (2021). MSC: 26A33 34K37 35B35 PDF BibTeX XML Cite \textit{H. H. G. Hashem} and \textit{H. O. Alrashidi}, AIMS Math. 6, No. 4, 3703--3719 (2021; Zbl 07543294) Full Text: DOI OpenURL
Sousa, J. Vanterler da C.; Oliveira, D. S.; Capelas de Oliveira, E. A note on the mild solutions of Hilfer impulsive fractional differential equations. (English) Zbl 1486.34116 Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021). MSC: 34G20 34A08 34A37 34D10 34A12 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} et al., Chaos Solitons Fractals 147, Article ID 110944, 13 p. (2021; Zbl 1486.34116) Full Text: DOI arXiv OpenURL
Vanterler da Costa Sousa, José; Tavares, L. S.; de Oliveira, Edmundo Capelas Existence and uniqueness of mild and strong solutions for fractional evolution equation. (English) Zbl 1498.34047 Palest. J. Math. 10, No. 2, 592-600 (2021). MSC: 34A08 34G20 34A12 26D10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Palest. J. Math. 10, No. 2, 592--600 (2021; Zbl 1498.34047) Full Text: Link OpenURL
Liu, Jinghuai; Zhang, Litao Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations. (English) Zbl 1487.60125 AIMS Math. 6, No. 5, 5040-5052 (2021). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 60H25 34C27 PDF BibTeX XML Cite \textit{J. Liu} and \textit{L. Zhang}, AIMS Math. 6, No. 5, 5040--5052 (2021; Zbl 1487.60125) Full Text: DOI OpenURL
Ahmadova, Arzu; Mahmudov, Nazim I. Asymptotic stability analysis of Riemann-Liouville fractional stochastic neutral differential equations. (English) Zbl 1499.34380 Miskolc Math. Notes 22, No. 2, 503-520 (2021). MSC: 34K30 34K20 34K37 34K50 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Miskolc Math. Notes 22, No. 2, 503--520 (2021; Zbl 1499.34380) Full Text: DOI arXiv OpenURL
Meghnafi, Mustapha; Hammami, Mohamed Ali; Blouhi, Tayeb Existence results on impulsive stochastic semilinear differential inclusions. (English) Zbl 1482.34150 Int. J. Dyn. Syst. Differ. Equ. 11, No. 2, 131-159 (2021). MSC: 34K09 34A60 34K50 60H10 47N20 PDF BibTeX XML Cite \textit{M. Meghnafi} et al., Int. J. Dyn. Syst. Differ. Equ. 11, No. 2, 131--159 (2021; Zbl 1482.34150) Full Text: DOI OpenURL
Suechoei, Apassara; Ngiamsunthorn, Parinya Sa Local well-posedness of nonlinear time-fractional diffusion equation. (English) Zbl 1486.35448 Thai J. Math. 19, No. 3, 865-884 (2021). MSC: 35R11 26A33 35A01 35B30 35K15 35K58 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. S. Ngiamsunthorn}, Thai J. Math. 19, No. 3, 865--884 (2021; Zbl 1486.35448) Full Text: Link OpenURL
Li, Qiang; Liu, Lishan; Wei, Mei Existence of positive \(S\)-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces. (English) Zbl 1496.34078 Nonlinear Anal., Model. Control 26, No. 5, 928-946 (2021). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34C25 34G20 34A08 34B18 34A45 PDF BibTeX XML Cite \textit{Q. Li} et al., Nonlinear Anal., Model. Control 26, No. 5, 928--946 (2021; Zbl 1496.34078) Full Text: DOI OpenURL
Alsarori, Nawal; Ghadle, Kirtiwant P. Some new result for functional fractional differential inclusion with impulse effect. (English) Zbl 1478.34021 J. Math. Ext. 15, No. 3, Paper No. 13, 18 p. (2021). MSC: 34A60 34B37 34G10 PDF BibTeX XML Cite \textit{N. Alsarori} and \textit{K. P. Ghadle}, J. Math. Ext. 15, No. 3, Paper No. 13, 18 p. (2021; Zbl 1478.34021) Full Text: DOI Link OpenURL
Bedi, Pallavi; Kumar, Anoop; Abdeljawad, Thabet; Khan, Aziz; Gómez-Aguilar, J. F. Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives. (English) Zbl 07467695 Fractals 29, No. 6, Article ID 2150158, 10 p. (2021). MSC: 34A08 34A38 26A33 34A12 47N20 PDF BibTeX XML Cite \textit{P. Bedi} et al., Fractals 29, No. 6, Article ID 2150158, 10 p. (2021; Zbl 07467695) Full Text: DOI OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Fractional McKean-Vlasov and Hamilton-Jacobi-Bellman-Isaacs equations. (English. Russian original) Zbl 1491.35434 Proc. Steklov Inst. Math. 315, Suppl. 1, S165-S177 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 3, 87-100 (2021). MSC: 35R11 35F21 60H15 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Proc. Steklov Inst. Math. 315, S165--S177 (2021; Zbl 1491.35434); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 3, 87--100 (2021) Full Text: DOI OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Abstract McKean-Vlasov and Hamilton-Jacobi-Bellman equations, their fractional versions and related forward-backward systems on Riemannian manifolds. (English. Russian original) Zbl 1486.35436 Proc. Steklov Inst. Math. 315, 118-139 (2021); translation from Tr. Mat. Inst. Steklova 315, 128-150 (2021). MSC: 35R11 35F21 35R01 47D06 49L12 49N80 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Proc. Steklov Inst. Math. 315, 118--139 (2021; Zbl 1486.35436); translation from Tr. Mat. Inst. Steklova 315, 128--150 (2021) Full Text: DOI arXiv OpenURL
Bedi, Pallavi; Kumar, Anoop; Abdeljawad, Thabet; Khan, Aziz S-asymptotically \(\omega\)-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. (English) Zbl 1501.34006 Evol. Equ. Control Theory 10, No. 4, 733-748 (2021). Reviewer: J. Vasundhara Devi (Visakhapatnam) MSC: 34A08 34G20 34C25 34D10 47N20 PDF BibTeX XML Cite \textit{P. Bedi} et al., Evol. Equ. Control Theory 10, No. 4, 733--748 (2021; Zbl 1501.34006) Full Text: DOI OpenURL
Govindan, T. E. Trotter-Kato approximations of stochastic neutral partial functional differential equations. (English) Zbl 1490.60196 Indian J. Pure Appl. Math. 52, No. 3, 822-836 (2021). MSC: 60H20 PDF BibTeX XML Cite \textit{T. E. Govindan}, Indian J. Pure Appl. Math. 52, No. 3, 822--836 (2021; Zbl 1490.60196) Full Text: DOI OpenURL
Coti Zelati, Michele; Dolce, Michele; Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with a shear flow. (English) Zbl 1481.35250 J. Evol. Equ. 21, No. 4, 5079-5099 (2021). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{M. Coti Zelati} et al., J. Evol. Equ. 21, No. 4, 5079--5099 (2021; Zbl 1481.35250) Full Text: DOI arXiv OpenURL
Suguro, Takeshi Well-posedness and unconditional uniqueness of mild solutions to the Keller-Segel system in uniformly local spaces. (English) Zbl 1483.35290 J. Evol. Equ. 21, No. 4, 4599-4618 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K55 35B40 PDF BibTeX XML Cite \textit{T. Suguro}, J. Evol. Equ. 21, No. 4, 4599--4618 (2021; Zbl 1483.35290) Full Text: DOI OpenURL
Barbu, Viorel; Röckner, Michael Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs. (English) Zbl 1493.60107 Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702-713 (2021). MSC: 60H30 60H10 35C99 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702--713 (2021; Zbl 1493.60107) Full Text: DOI arXiv OpenURL
Buică, Adriana Ulam-Hyers stability and exponentially stable evolution equations in Banach spaces. (English) Zbl 1488.34334 Carpathian J. Math. 37, No. 2, 339-344 (2021). MSC: 34G10 34D10 37C60 34D20 PDF BibTeX XML Cite \textit{A. Buică}, Carpathian J. Math. 37, No. 2, 339--344 (2021; Zbl 1488.34334) Full Text: DOI OpenURL
Henríquez, Hernán R.; Poblete, Verónica; Pozo, Juan C. Existence of solutions for the semilinear abstract Cauchy problem of fractional order. (English) Zbl 1498.34165 Fract. Calc. Appl. Anal. 24, No. 5, 1409-1444 (2021). MSC: 34G20 35G25 47D09 26A33 PDF BibTeX XML Cite \textit{H. R. Henríquez} et al., Fract. Calc. Appl. Anal. 24, No. 5, 1409--1444 (2021; Zbl 1498.34165) Full Text: DOI OpenURL
Ma, Luyi; Wang, Zhi-Cheng On the existence of cylindrically symmetric traveling fronts of fractional Allen-Cahn equation in \(\mathbb{R}^3\). (English) Zbl 07442504 Differ. Integral Equ. 34, No. 9-10, 467-490 (2021). MSC: 35C07 35K10 35K57 47G10 PDF BibTeX XML Cite \textit{L. Ma} and \textit{Z.-C. Wang}, Differ. Integral Equ. 34, No. 9--10, 467--490 (2021; Zbl 07442504) OpenURL
Xue, Guangming; Lin, Funing; Qin, Bin Solvability and optimal control of fractional differential hemivariational inequalities. (English) Zbl 07442335 Optimization 70, No. 11, 2479-2510 (2021). MSC: 47J20 49J40 PDF BibTeX XML Cite \textit{G. Xue} et al., Optimization 70, No. 11, 2479--2510 (2021; Zbl 07442335) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Hammouch, Zakia; Karapinar, Erdal; Tuan, Nguyen Huy On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation. (English) Zbl 1484.35388 Math. Methods Appl. Sci. 44, No. 18, 14791-14806 (2021). MSC: 35R11 26A33 35B65 35K58 35K70 PDF BibTeX XML Cite \textit{A. T. Nguyen} et al., Math. Methods Appl. Sci. 44, No. 18, 14791--14806 (2021; Zbl 1484.35388) Full Text: DOI OpenURL
Zhao, Daliang; Liu, Yansheng Controllability of nonlinear fractional evolution systems in Banach spaces: a survey. (English) Zbl 1478.93070 Electron Res. Arch. 29, No. 5, 3551-3580 (2021). Reviewer: Yong-Kui Chang (Xi’an) MSC: 93B05 93C25 34K30 35R11 37L05 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{Y. Liu}, Electron Res. Arch. 29, No. 5, 3551--3580 (2021; Zbl 1478.93070) Full Text: DOI OpenURL
Dhariwal, Gaurav; Huber, Florian; Neamţu, Alexandra On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs. (English) Zbl 07429247 Stochastic Anal. Appl. 39, No. 5, 898-925 (2021). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 35R60 35Q35 35Q92 35D30 PDF BibTeX XML Cite \textit{G. Dhariwal} et al., Stochastic Anal. Appl. 39, No. 5, 898--925 (2021; Zbl 07429247) Full Text: DOI arXiv OpenURL
Kumar, Surendra; Yadav, Shobha Infinite-delayed stochastic impulsive differential systems with Poisson jumps. (English) Zbl 1473.34009 Indian J. Pure Appl. Math. 52, No. 2, 344-362 (2021). MSC: 34A12 34A37 34K35 60H15 93E20 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Yadav}, Indian J. Pure Appl. Math. 52, No. 2, 344--362 (2021; Zbl 1473.34009) Full Text: DOI OpenURL
Bora, Swaroop Nandan; Roy, Bandita Approximate controllability of a class of semilinear Hilfer fractional differential equations. (English) Zbl 1486.34020 Result. Math. 76, No. 4, Paper No. 197, 20 p. (2021). MSC: 34A08 34G20 34H05 47D06 47N20 93B05 PDF BibTeX XML Cite \textit{S. N. Bora} and \textit{B. Roy}, Result. Math. 76, No. 4, Paper No. 197, 20 p. (2021; Zbl 1486.34020) Full Text: DOI OpenURL
Mohan, Manil T. \(\mathbb{L}^p\)-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations. (English) Zbl 1490.76079 Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021). MSC: 76D06 35Q30 76D03 47D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021; Zbl 1490.76079) Full Text: DOI arXiv OpenURL
Andrade, Filipe; Cuevas, Claudio; Henríquez, Hernán R. Existence of asymptotically periodic solutions of partial functional differential equations with state-dependent delay. (English) Zbl 1490.34083 Appl. Anal. 100, No. 14, 2965-2988 (2021). Reviewer: Miklavž Mastinšek (Maribor) MSC: 34K30 34K13 34K43 PDF BibTeX XML Cite \textit{F. Andrade} et al., Appl. Anal. 100, No. 14, 2965--2988 (2021; Zbl 1490.34083) Full Text: DOI OpenURL
Damak, Hanen On uniform \(h\)-stability of non-autonomous evolution equations in Banach spaces. (English) Zbl 1476.35031 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4367-4381 (2021). MSC: 35B35 35B20 35B40 35K90 47D06 93D20 PDF BibTeX XML Cite \textit{H. Damak}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4367--4381 (2021; Zbl 1476.35031) Full Text: DOI OpenURL
Jiang, Kerui; Ling, Zhi; Liu, Zuhan; Zhou, Ling Existence, uniqueness and decay estimates on mild solutions to fractional chemotaxis-fluid systems. (English) Zbl 1475.35388 Topol. Methods Nonlinear Anal. 57, No. 1, 25-56 (2021). MSC: 35R11 35B40 35K45 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{K. Jiang} et al., Topol. Methods Nonlinear Anal. 57, No. 1, 25--56 (2021; Zbl 1475.35388) Full Text: DOI OpenURL