Li, Xiuwen; Liu, Zhenhai; Luo, Ricai Decay mild solutions of fractional differential hemivariational inequalities. (English) Zbl 07522887 Topol. Methods Nonlinear Anal. 59, No. 1, 131-151 (2022). MSC: 47J20 47H04 PDF BibTeX XML Cite \textit{X. Li} et al., Topol. Methods Nonlinear Anal. 59, No. 1, 131--151 (2022; Zbl 07522887) Full Text: DOI OpenURL
Singh, Vikram; Chaudhary, Renu; Som, Lalit Kumar Approximate controllability of stochastic differential system with non-Lipschitz conditions. (English) Zbl 07517489 Stochastic Anal. Appl. 40, No. 3, 505-519 (2022). MSC: 34-XX 26A33 34A08 47H10 34G20 34A12 65C30 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 40, No. 3, 505--519 (2022; Zbl 07517489) Full Text: DOI OpenURL
Xu, Shuli; Feng, Yuqiang; Jiang, Jun; Nie, Na A variation of constant formula for Caputo fractional stochastic differential equations with jump-diffusion. (English) Zbl 07512049 Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022). MSC: 60H05 34K05 34A12 26A33 PDF BibTeX XML Cite \textit{S. Xu} et al., Stat. Probab. Lett. 185, Article ID 109406, 11 p. (2022; Zbl 07512049) Full Text: DOI OpenURL
Vanterler da Costa Sousa, J.; Kucche, Kishor D.; de Oliveira, E. Capelas Stability of mild solutions of the fractional nonlinear abstract Cauchy problem. (English) Zbl 07510582 Electron Res. Arch. 30, No. 1, 272-288 (2022). MSC: 34G20 34A08 34A12 34D10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Electron Res. Arch. 30, No. 1, 272--288 (2022; Zbl 07510582) Full Text: DOI OpenURL
Ciotir, Ioana; Fayad, Rim Nonlinear Fokker-Planck equation with reflecting boundary conditions. (English) Zbl 07500532 J. Differ. Equations 321, 296-317 (2022). MSC: 60H30 60H10 60G46 35Q84 35D99 PDF BibTeX XML Cite \textit{I. Ciotir} and \textit{R. Fayad}, J. Differ. Equations 321, 296--317 (2022; Zbl 07500532) Full Text: DOI OpenURL
Lan, Do Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. (English) Zbl 07500378 Evol. Equ. Control Theory 11, No. 1, 259-282 (2022). MSC: 35B40 35R11 35C15 45D05 45K05 PDF BibTeX XML Cite \textit{D. Lan}, Evol. Equ. Control Theory 11, No. 1, 259--282 (2022; Zbl 07500378) Full Text: DOI OpenURL
Barrasso, Adrien; Russo, Francesco Gâteaux type path-dependent PDEs and BSDEs with Gaussian forward processes. (English) Zbl 07492882 Stoch. Dyn. 22, No. 1, Article ID 2250007, 27 p. (2022). MSC: 60G15 60H30 35S05 60J35 45D05 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Stoch. Dyn. 22, No. 1, Article ID 2250007, 27 p. (2022; Zbl 07492882) Full Text: DOI arXiv OpenURL
Singh, Vikram; Pandey, Dwijendra N. Multi-term time-fractional stochastic differential equations with non-Lipschitz coefficients. (English) Zbl 07491028 Differ. Equ. Dyn. Syst. 30, No. 1, 197-209 (2022). MSC: 34A08 34F05 34G20 26A33 34A12 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 30, No. 1, 197--209 (2022; Zbl 07491028) Full Text: DOI OpenURL
Addona, Davide; Lorenzi, Luca; Tessitore, Gianmario Regularity results for nonlinear Young equations and applications. (English) Zbl 07490265 J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022). MSC: 35R60 35C15 35B65 60H05 60H15 47D06 PDF BibTeX XML Cite \textit{D. Addona} et al., J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022; Zbl 07490265) Full Text: DOI arXiv OpenURL
Yahagi, Yumi Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. (English) Zbl 07485783 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497-1510 (2022). MSC: 35A01 35A02 35B30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Yahagi}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1497--1510 (2022; Zbl 07485783) Full Text: DOI OpenURL
Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection. (English) Zbl 07481873 Commun. Partial Differ. Equations 47, No. 2, 279-306 (2022). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{A. L. Mazzucato}, Commun. Partial Differ. Equations 47, No. 2, 279--306 (2022; Zbl 07481873) Full Text: DOI arXiv OpenURL
Liu, Feng; Xi, Shuai; Zeng, Zirong; Zhu, Shengguo Global mild solutions to three-dimensional magnetohydrodynamic equations in Morrey spaces. (English) Zbl 07471765 J. Differ. Equations 314, 752-807 (2022). MSC: 35Qxx 35B40 35L60 35Q35 PDF BibTeX XML Cite \textit{F. Liu} et al., J. Differ. Equations 314, 752--807 (2022; Zbl 07471765) Full Text: DOI OpenURL
Wang, Pengfei; Zhang, Mengyi; Su, Huan Input-to-state stability of infinite-dimensional stochastic nonlinear systems. (English) Zbl 07461158 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 821-836 (2022). MSC: 37H30 60H15 93E15 PDF BibTeX XML Cite \textit{P. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 821--836 (2022; Zbl 07461158) Full Text: DOI OpenURL
Guswanto, Bambang Hendriya Nonlocal reaction-diffusion model with subdiffusive kinetics. (English) Zbl 07459024 J. Fract. Calc. Appl. 13, No. 1, 198-211 (2022). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{B. H. Guswanto}, J. Fract. Calc. Appl. 13, No. 1, 198--211 (2022; Zbl 07459024) Full Text: Link OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston Periodic mild solutions of infinite delay not instantaneous impulsive evolution inclusions. (English) Zbl 07438398 Vietnam J. Math. 50, No. 1, 287-299 (2022). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34G20 34K09 34K13 34K45 PDF BibTeX XML Cite \textit{S. Abbas} et al., Vietnam J. Math. 50, No. 1, 287--299 (2022; Zbl 07438398) Full Text: DOI OpenURL
Vanterler da Costa Sousa, José; Tavares, L. S.; de Oliveira, Edmundo Capelas Existence and uniqueness of mild and strong solutions for fractional evolution equation. (English) Zbl 07532328 Palest. J. Math. 10, No. 2, 592-600 (2021). MSC: 26A33 33F05 34A08 34A12 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Palest. J. Math. 10, No. 2, 592--600 (2021; Zbl 07532328) Full Text: Link OpenURL
Liu, Jinghuai; Zhang, Litao Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations. (English) Zbl 07516015 AIMS Math. 6, No. 5, 5040-5052 (2021). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 60H25 34C27 PDF BibTeX XML Cite \textit{J. Liu} and \textit{L. Zhang}, AIMS Math. 6, No. 5, 5040--5052 (2021; Zbl 07516015) Full Text: DOI OpenURL
Ahmadova, Arzu; Mahmudov, Nazim I. Asymptotic stability analysis of Riemann-Liouville fractional stochastic neutral differential equations. (English) Zbl 07493425 Miskolc Math. Notes 22, No. 2, 503-520 (2021). MSC: 35J61 35B09 35B33 35B40 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Miskolc Math. Notes 22, No. 2, 503--520 (2021; Zbl 07493425) Full Text: DOI arXiv OpenURL
Meghnafi, Mustapha; Hammami, Mohamed Ali; Blouhi, Tayeb Existence results on impulsive stochastic semilinear differential inclusions. (English) Zbl 1482.34150 Int. J. Dyn. Syst. Differ. Equ. 11, No. 2, 131-159 (2021). MSC: 34K09 34A60 34K50 60H10 47N20 PDF BibTeX XML Cite \textit{M. Meghnafi} et al., Int. J. Dyn. Syst. Differ. Equ. 11, No. 2, 131--159 (2021; Zbl 1482.34150) Full Text: DOI OpenURL
Suechoei, Apassara; Ngiamsunthorn, Parinya Sa Local well-posedness of nonlinear time-fractional diffusion equation. (English) Zbl 07475070 Thai J. Math. 19, No. 3, 865-884 (2021). MSC: 35R11 26A33 35A01 35B30 35K15 35K58 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. S. Ngiamsunthorn}, Thai J. Math. 19, No. 3, 865--884 (2021; Zbl 07475070) Full Text: Link OpenURL
Li, Qiang; Liu, Lishan; Wei, Mei Existence of positive \(S\)-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces. (English) Zbl 07473962 Nonlinear Anal., Model. Control 26, No. 5, 928-946 (2021). MSC: 34C25 34G20 34A08 PDF BibTeX XML Cite \textit{Q. Li} et al., Nonlinear Anal., Model. Control 26, No. 5, 928--946 (2021; Zbl 07473962) Full Text: DOI OpenURL
Alsarori, Nawal; Ghadle, Kirtiwant P. Some new result for functional fractional differential inclusion with impulse effect. (English) Zbl 1478.34021 J. Math. Ext. 15, No. 3, Paper No. 13, 18 p. (2021). MSC: 34A60 34B37 34G10 PDF BibTeX XML Cite \textit{N. Alsarori} and \textit{K. P. Ghadle}, J. Math. Ext. 15, No. 3, Paper No. 13, 18 p. (2021; Zbl 1478.34021) Full Text: DOI Link OpenURL
Bedi, Pallavi; Kumar, Anoop; Abdeljawad, Thabet; Khan, Aziz; Gómez-Aguilar, J. F. Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives. (English) Zbl 07467695 Fractals 29, No. 6, Article ID 2150158, 10 p. (2021). MSC: 34A08 34A38 26A33 34A12 47N20 PDF BibTeX XML Cite \textit{P. Bedi} et al., Fractals 29, No. 6, Article ID 2150158, 10 p. (2021; Zbl 07467695) Full Text: DOI OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Fractional McKean-Vlasov and Hamilton-Jacobi-Bellman-Isaacs equations. (English. Russian original) Zbl 07466410 Proc. Steklov Inst. Math. 315, Suppl. 1, S165-S177 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 3, 87-100 (2021). MSC: 60-XX 93-XX PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Proc. Steklov Inst. Math. 315, S165--S177 (2021; Zbl 07466410); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 3, 87--100 (2021) Full Text: DOI OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Abstract McKean-Vlasov and Hamilton-Jacobi-Bellman equations, their fractional versions and related forward-backward systems on Riemannian manifolds. (English. Russian original) Zbl 07465817 Proc. Steklov Inst. Math. 315, No. 1, 118-139 (2021); translation from Tr. Mat. Inst. Steklova 315, 128-150 (2021). MSC: 35R11 35F21 35R01 47D06 49L12 49N80 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Proc. Steklov Inst. Math. 315, No. 1, 118--139 (2021; Zbl 07465817); translation from Tr. Mat. Inst. Steklova 315, 128--150 (2021) Full Text: DOI arXiv OpenURL
Bedi, Pallavi; Kumar, Anoop; Abdeljawad, Thabet; Khan, Aziz S-asymptotically \(\omega\)-periodic mild solutions and stability analysis of hilfer fractional evolution equations. (English) Zbl 07460239 Evol. Equ. Control Theory 10, No. 4, 733-748 (2021). MSC: 34A08 34G20 34C25 34D10 47N20 PDF BibTeX XML Cite \textit{P. Bedi} et al., Evol. Equ. Control Theory 10, No. 4, 733--748 (2021; Zbl 07460239) Full Text: DOI OpenURL
Hannabou, Mohamed; Hilal, Khalid Existence of mild solution for nonlinear hybrid fractional integro-differential equations with Caputo derivative. (English) Zbl 07458952 J. Fract. Calc. Appl. 12, No. 1, 35-45 (2021). MSC: 34A12 34A30 34D20 PDF BibTeX XML Cite \textit{M. Hannabou} and \textit{K. Hilal}, J. Fract. Calc. Appl. 12, No. 1, 35--45 (2021; Zbl 07458952) Full Text: Link OpenURL
Govindan, T. E. Trotter-Kato approximations of stochastic neutral partial functional differential equations. (English) Zbl 07453745 Indian J. Pure Appl. Math. 52, No. 3, 822-836 (2021). MSC: 60H20 PDF BibTeX XML Cite \textit{T. E. Govindan}, Indian J. Pure Appl. Math. 52, No. 3, 822--836 (2021; Zbl 07453745) Full Text: DOI OpenURL
Coti Zelati, Michele; Dolce, Michele; Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with a shear flow. (English) Zbl 1481.35250 J. Evol. Equ. 21, No. 4, 5079-5099 (2021). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{M. Coti Zelati} et al., J. Evol. Equ. 21, No. 4, 5079--5099 (2021; Zbl 1481.35250) Full Text: DOI arXiv OpenURL
Suguro, Takeshi Well-posedness and unconditional uniqueness of mild solutions to the Keller-Segel system in uniformly local spaces. (English) Zbl 1483.35290 J. Evol. Equ. 21, No. 4, 4599-4618 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K55 35B40 PDF BibTeX XML Cite \textit{T. Suguro}, J. Evol. Equ. 21, No. 4, 4599--4618 (2021; Zbl 1483.35290) Full Text: DOI OpenURL
Barbu, Viorel; Röckner, Michael Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs. (English) Zbl 07450815 Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702-713 (2021). MSC: 60H30 60H10 60G46 35C99 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 702--713 (2021; Zbl 07450815) Full Text: DOI arXiv OpenURL
Buică, Adriana Ulam-Hyers stability and exponentially stable evolution equations in Banach spaces. (English) Zbl 07445730 Carpathian J. Math. 37, No. 2, 339-344 (2021). MSC: 34G10 34D10 37C60 34D20 PDF BibTeX XML Cite \textit{A. Buică}, Carpathian J. Math. 37, No. 2, 339--344 (2021; Zbl 07445730) Full Text: DOI OpenURL
Henríquez, Hernán R.; Poblete, Verónica; Pozo, Juan C. Existence of solutions for the semilinear abstract Cauchy problem of fractional order. (English) Zbl 07443853 Fract. Calc. Appl. Anal. 24, No. 5, 1409-1444 (2021). MSC: 34G20 35G25 47D09 PDF BibTeX XML Cite \textit{H. R. Henríquez} et al., Fract. Calc. Appl. Anal. 24, No. 5, 1409--1444 (2021; Zbl 07443853) Full Text: DOI OpenURL
Xue, Guangming; Lin, Funing; Qin, Bin Solvability and optimal control of fractional differential hemivariational inequalities. (English) Zbl 07442335 Optimization 70, No. 11, 2479-2510 (2021). MSC: 47J20 49J40 PDF BibTeX XML Cite \textit{G. Xue} et al., Optimization 70, No. 11, 2479--2510 (2021; Zbl 07442335) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Hammouch, Zakia; Karapinar, Erdal; Tuan, Nguyen Huy On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation. (English) Zbl 07441990 Math. Methods Appl. Sci. 44, No. 18, 14791-14806 (2021). MSC: 35R11 26A33 35B65 35K58 35K70 PDF BibTeX XML Cite \textit{A. T. Nguyen} et al., Math. Methods Appl. Sci. 44, No. 18, 14791--14806 (2021; Zbl 07441990) Full Text: DOI OpenURL
Zhao, Daliang; Liu, Yansheng Controllability of nonlinear fractional evolution systems in Banach spaces: a survey. (English) Zbl 1478.93070 Electron Res. Arch. 29, No. 5, 3551-3580 (2021). Reviewer: Yong-Kui Chang (Xi’an) MSC: 93B05 93C25 34K30 35R11 37L05 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{Y. Liu}, Electron Res. Arch. 29, No. 5, 3551--3580 (2021; Zbl 1478.93070) Full Text: DOI OpenURL
Dhariwal, Gaurav; Huber, Florian; Neamţu, Alexandra On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs. (English) Zbl 07429247 Stochastic Anal. Appl. 39, No. 5, 898-925 (2021). MSC: 60H15 35R60 35Q35 35Q92 35D30 PDF BibTeX XML Cite \textit{G. Dhariwal} et al., Stochastic Anal. Appl. 39, No. 5, 898--925 (2021; Zbl 07429247) Full Text: DOI arXiv OpenURL
Kumar, Surendra; Yadav, Shobha Infinite-delayed stochastic impulsive differential systems with Poisson jumps. (English) Zbl 1473.34009 Indian J. Pure Appl. Math. 52, No. 2, 344-362 (2021). MSC: 34A12 34A37 34K35 60H15 93E20 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Yadav}, Indian J. Pure Appl. Math. 52, No. 2, 344--362 (2021; Zbl 1473.34009) Full Text: DOI OpenURL
Bora, Swaroop Nandan; Roy, Bandita Approximate controllability of a class of semilinear Hilfer fractional differential equations. (English) Zbl 07423114 Result. Math. 76, No. 4, Paper No. 197, 20 p. (2021). MSC: 34A08 34G20 34H05 47D06 47N20 93B05 PDF BibTeX XML Cite \textit{S. N. Bora} and \textit{B. Roy}, Result. Math. 76, No. 4, Paper No. 197, 20 p. (2021; Zbl 07423114) Full Text: DOI OpenURL
Mohan, Manil T. \(\mathbb{L}^p\)-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations. (English) Zbl 07422093 Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021). MSC: 76D06 35Q30 76D03 47D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Anal. Math. Phys. 11, No. 4, Paper No. 164, 33 p. (2021; Zbl 07422093) Full Text: DOI arXiv OpenURL
Andrade, Filipe; Cuevas, Claudio; Henríquez, Hernán R. Existence of asymptotically periodic solutions of partial functional differential equations with state-dependent delay. (English) Zbl 07420054 Appl. Anal. 100, No. 14, 2965-2988 (2021). Reviewer: Miklavž Mastinšek (Maribor) MSC: 34K30 34K13 34K43 PDF BibTeX XML Cite \textit{F. Andrade} et al., Appl. Anal. 100, No. 14, 2965--2988 (2021; Zbl 07420054) Full Text: DOI OpenURL
Damak, Hanen On uniform \(h\)-stability of non-autonomous evolution equations in Banach spaces. (English) Zbl 1476.35031 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4367-4381 (2021). MSC: 35B35 35B20 35B40 35K90 47D06 93D20 PDF BibTeX XML Cite \textit{H. Damak}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4367--4381 (2021; Zbl 1476.35031) Full Text: DOI OpenURL
Jiang, Kerui; Ling, Zhi; Liu, Zuhan; Zhou, Ling Existence, uniqueness and decay estimates on mild solutions to fractional chemotaxis-fluid systems. (English) Zbl 1475.35388 Topol. Methods Nonlinear Anal. 57, No. 1, 25-56 (2021). MSC: 35R11 35B40 35K45 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{K. Jiang} et al., Topol. Methods Nonlinear Anal. 57, No. 1, 25--56 (2021; Zbl 1475.35388) Full Text: DOI OpenURL
Su, Guangwang; Xue, Guangming Second order nonlinear evolutionary systems driven by generalized mixed variational inequalities. (English) Zbl 07412537 J. Math. Inequal. 15, No. 3, 1031-1045 (2021). MSC: 47H10 49J40 PDF BibTeX XML Cite \textit{G. Su} and \textit{G. Xue}, J. Math. Inequal. 15, No. 3, 1031--1045 (2021; Zbl 07412537) Full Text: DOI OpenURL
Chang, Yong-Kui; Ponce, Rodrigo; Yang, Xu-Sheng Solvability of fractional differential inclusions with nonlocal initial conditions via resolvent family of operators. (English) Zbl 07412219 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 33-44 (2021). MSC: 34A08 34A60 34K30 PDF BibTeX XML Cite \textit{Y.-K. Chang} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 1, 33--44 (2021; Zbl 07412219) Full Text: DOI OpenURL
Liu, Jiankang; Xu, Wei; Guo, Qin Averaging principle for impulsive stochastic partial differential equations. (English) Zbl 1475.60122 Stoch. Dyn. 21, No. 4, Article ID 2150014, 19 p. (2021). MSC: 60H15 37L55 34A37 37A50 74H10 PDF BibTeX XML Cite \textit{J. Liu} et al., Stoch. Dyn. 21, No. 4, Article ID 2150014, 19 p. (2021; Zbl 1475.60122) Full Text: DOI OpenURL
Yuan, Tianjiao; Li, Qiang Existence of IS-asymptotically periodic mild solutions for a class of impulsive evolution equations. (Chinese. English summary) Zbl 07404154 J. Shandong Univ., Nat. Sci. 56, No. 6, 10-21 (2021). MSC: 34C25 34A37 47J35 47J25 34G25 34A45 PDF BibTeX XML Cite \textit{T. Yuan} and \textit{Q. Li}, J. Shandong Univ., Nat. Sci. 56, No. 6, 10--21 (2021; Zbl 07404154) Full Text: DOI OpenURL
Avelin, B.; Viitasaari, L. On existence and uniqueness of the solution for stochastic partial differential equations. (English) Zbl 1473.60092 Theory Probab. Math. Stat. 104, 49-60 (2021). MSC: 60H15 60G15 35C15 35K58 35S10 PDF BibTeX XML Cite \textit{B. Avelin} and \textit{L. Viitasaari}, Theory Probab. Math. Stat. 104, 49--60 (2021; Zbl 1473.60092) Full Text: DOI arXiv OpenURL
Zhou, Yong; He, Jia Wei New results on controllability of fractional evolution systems with order \(\alpha\in (1,2)\). (English) Zbl 1481.34081 Evol. Equ. Control Theory 10, No. 3, 491-509 (2021). MSC: 34G20 34A08 26A33 93B05 34H05 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Evol. Equ. Control Theory 10, No. 3, 491--509 (2021; Zbl 1481.34081) Full Text: DOI OpenURL
Van Loi, Do; Luong, Vu Trong; Tung, Nguyen Thanh Decay estimates for two-term time fractional differential equations with infinite delays. (English) Zbl 1479.34124 Fixed Point Theory 22, No. 2, 739-760 (2021). MSC: 34K30 34K37 34K25 47N20 PDF BibTeX XML Cite \textit{D. Van Loi} et al., Fixed Point Theory 22, No. 2, 739--760 (2021; Zbl 1479.34124) Full Text: Link OpenURL
Luc, Nguyen Hoang; Kumar, Devendra; Long, Le Dinh; Van, Ho Thi Kim Final value problem for parabolic equation with fractional Laplacian and Kirchhoff’s term. (English) Zbl 1472.35437 J. Funct. Spaces 2021, Article ID 7238678, 12 p. (2021). MSC: 35R11 35B65 35K59 PDF BibTeX XML Cite \textit{N. H. Luc} et al., J. Funct. Spaces 2021, Article ID 7238678, 12 p. (2021; Zbl 1472.35437) Full Text: DOI OpenURL
Zeng, Zirong Local mild solutions to three-dimensional magnetohydrodynamic system in Morrey spaces. (English) Zbl 1473.35464 Math. Methods Appl. Sci. 44, No. 7, 5326-5339 (2021). MSC: 35Q35 35B40 35L60 PDF BibTeX XML Cite \textit{Z. Zeng}, Math. Methods Appl. Sci. 44, No. 7, 5326--5339 (2021; Zbl 1473.35464) Full Text: DOI OpenURL
Wang, Xue; Zhu, Bo Impulsive fractional semilinear integrodifferential equations with nonlocal conditions. (English) Zbl 1471.45007 J. Funct. Spaces 2021, Article ID 9449270, 8 p. (2021). MSC: 45J05 34K37 34B10 26A33 PDF BibTeX XML Cite \textit{X. Wang} and \textit{B. Zhu}, J. Funct. Spaces 2021, Article ID 9449270, 8 p. (2021; Zbl 1471.45007) Full Text: DOI OpenURL
Seong, Kihoon Well-posedness and ill-posedness for the fourth order cubic nonlinear Schrödinger equation in negative Sobolev spaces. (English) Zbl 1480.35361 J. Math. Anal. Appl. 504, No. 1, Article ID 125342, 41 p. (2021). MSC: 35Q55 35A01 35A02 35R25 35B65 37K10 PDF BibTeX XML Cite \textit{K. Seong}, J. Math. Anal. Appl. 504, No. 1, Article ID 125342, 41 p. (2021; Zbl 1480.35361) Full Text: DOI arXiv OpenURL
Haq, Abdul; Sukavanam, N. Partial approximate controllability of fractional systems with Riemann-Liouville derivatives and nonlocal conditions. (English) Zbl 1472.34119 Rend. Circ. Mat. Palermo (2) 70, No. 2, 1099-1114 (2021). MSC: 34H05 34A08 34G20 34B10 93B05 47N20 PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Rend. Circ. Mat. Palermo (2) 70, No. 2, 1099--1114 (2021; Zbl 1472.34119) Full Text: DOI OpenURL
Hussain, R. Jahir; Hussain, S. Satham Infinite delay fractional stochastic integro-differential equations with Poisson jumps of neutral type. (English) Zbl 1472.60101 J. Anal. 29, No. 3, 833-859 (2021). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 34A12 34K37 34K40 47D06 47H10 PDF BibTeX XML Cite \textit{R. J. Hussain} and \textit{S. S. Hussain}, J. Anal. 29, No. 3, 833--859 (2021; Zbl 1472.60101) Full Text: DOI OpenURL
Ye, Hailong; Liu, Qiang; Chen, Zhi-Min Global existence of solutions of the time fractional Cahn-Hilliard equation in \(\mathbb{R}^3\). (English) Zbl 1470.35420 J. Evol. Equ. 21, No. 2, 2377-2411 (2021). MSC: 35R11 35K30 35K58 35K90 PDF BibTeX XML Cite \textit{H. Ye} et al., J. Evol. Equ. 21, No. 2, 2377--2411 (2021; Zbl 1470.35420) Full Text: DOI OpenURL
Wang, Xiaolei; Wang, Bo; Zou, Guang-An Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation. (English) Zbl 07376707 Math. Methods Appl. Sci. 44, No. 4, 2825-2841 (2021). MSC: 65M60 65M22 65M12 65M15 33E12 35B35 35B65 26A33 35R11 PDF BibTeX XML Cite \textit{X. Wang} et al., Math. Methods Appl. Sci. 44, No. 4, 2825--2841 (2021; Zbl 07376707) Full Text: DOI OpenURL
Kumar, Rajiv; Choudhary, Kapil Kumar; Kumar, Rajesh Study of the solution of a semilinear evolution equation of a prion proliferation model in the presence of chaperone in a product space. (English) Zbl 1469.37053 Math. Methods Appl. Sci. 44, No. 2, 1942-1955 (2021). MSC: 37L05 45K05 47H07 PDF BibTeX XML Cite \textit{R. Kumar} et al., Math. Methods Appl. Sci. 44, No. 2, 1942--1955 (2021; Zbl 1469.37053) Full Text: DOI OpenURL
Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, Kottakkaran Sooppy Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. (English) Zbl 07376617 Math. Methods Appl. Sci. 44, No. 2, 1438-1455 (2021). MSC: 34K37 34K30 34K40 47H08 47H10 PDF BibTeX XML Cite \textit{K. Kavitha} et al., Math. Methods Appl. Sci. 44, No. 2, 1438--1455 (2021; Zbl 07376617) Full Text: DOI OpenURL
Waheed, Hira; Zada, Akbar; Xu, Jiafa Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations. (English) Zbl 1469.35237 Math. Methods Appl. Sci. 44, No. 1, 749-771 (2021). MSC: 35R12 26A33 34A08 34A12 34A37 34K40 35K90 35R11 PDF BibTeX XML Cite \textit{H. Waheed} et al., Math. Methods Appl. Sci. 44, No. 1, 749--771 (2021; Zbl 1469.35237) Full Text: DOI OpenURL
Li, Qiang; Wei, Mei Monotone iterative technique for \(S\)-asymptotically periodic problem of fractional evolution equation with finite delay in ordered Banach space. (English) Zbl 1471.34143 J. Math. Inequal. 15, No. 2, 521-546 (2021). Reviewer: Syed Abbas (Mandi) MSC: 34K30 34K37 34K07 34K13 47H07 47H08 PDF BibTeX XML Cite \textit{Q. Li} and \textit{M. Wei}, J. Math. Inequal. 15, No. 2, 521--546 (2021; Zbl 1471.34143) Full Text: DOI OpenURL
Ait Dads, El Hadi; Benyoub, Mohammed; Ziane, Mohamed Existence results for Riemann-Liouville fractional evolution inclusions in Banach spaces. (English) Zbl 07363585 Afr. Mat. 32, No. 1-2, 317-331 (2021). MSC: 34G25 47H04 47H08 47H10 34A08 PDF BibTeX XML Cite \textit{E. H. Ait Dads} et al., Afr. Mat. 32, No. 1--2, 317--331 (2021; Zbl 07363585) Full Text: DOI OpenURL
Hörmann, Günther Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. (English) Zbl 1467.35002 Monatsh. Math. 195, No. 3, 421-449 (2021). MSC: 35-02 35L65 35B44 35C07 PDF BibTeX XML Cite \textit{G. Hörmann}, Monatsh. Math. 195, No. 3, 421--449 (2021; Zbl 1467.35002) Full Text: DOI arXiv OpenURL
Yao, Qi; Wang, Linshan; Wang, Yangfan Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. (English) Zbl 1466.35011 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4727-4743 (2021). MSC: 35B10 35K51 35K57 35R60 34K20 60H15 90B15 92B20 PDF BibTeX XML Cite \textit{Q. Yao} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4727--4743 (2021; Zbl 1466.35011) Full Text: DOI OpenURL
Tạ, Tôn Việt Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. (English) Zbl 1467.60051 Commun. Pure Appl. Anal. 20, No. 5, 1867-1891 (2021). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 35R60 47D06 PDF BibTeX XML Cite \textit{T. V. Tạ}, Commun. Pure Appl. Anal. 20, No. 5, 1867--1891 (2021; Zbl 1467.60051) Full Text: DOI OpenURL
Tuan, Hoang The On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. (English) Zbl 1465.35400 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1749-1762 (2021). MSC: 35R11 35A01 35B20 35B40 60H15 35R60 PDF BibTeX XML Cite \textit{H. T. Tuan}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1749--1762 (2021; Zbl 1465.35400) Full Text: DOI arXiv OpenURL
Olivera, Christian Probabilistic representation for mild solution of the Navier-Stokes equations. (English) Zbl 1472.35272 Math. Res. Lett. 28, No. 2, 563-573 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D06 60H30 35R60 PDF BibTeX XML Cite \textit{C. Olivera}, Math. Res. Lett. 28, No. 2, 563--573 (2021; Zbl 1472.35272) Full Text: DOI arXiv OpenURL
Xi, Xuan-Xuan; Hou, Mimi; Zhou, Xian-Feng; Wen, Yanhua Approximate controllability for mild solution of time-fractional Navier-Stokes equations with delay. (English) Zbl 1465.35401 Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021). MSC: 35R11 35Q30 35B40 47H10 93B05 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021; Zbl 1465.35401) Full Text: DOI OpenURL
Henríquez, Hernán R.; Mesquita, Jaqueline G.; Pozo, Juan C. Existence of solutions of the abstract Cauchy problem of fractional order. (English) Zbl 1469.34017 J. Funct. Anal. 281, No. 4, Article ID 109028, 39 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34G10 47D06 34A12 37C60 PDF BibTeX XML Cite \textit{H. R. Henríquez} et al., J. Funct. Anal. 281, No. 4, Article ID 109028, 39 p. (2021; Zbl 1469.34017) Full Text: DOI OpenURL
Wang, Xue; Zhu, Bo Existence results for fractional semilinear integrodifferential equations of mixed type with delay. (English) Zbl 1467.45016 J. Funct. Spaces 2021, Article ID 5519992, 7 p. (2021). MSC: 45J05 26A33 47A10 PDF BibTeX XML Cite \textit{X. Wang} and \textit{B. Zhu}, J. Funct. Spaces 2021, Article ID 5519992, 7 p. (2021; Zbl 1467.45016) Full Text: DOI OpenURL
Vanterler da Costa Sousa, José; Fečkan, Michal; de Oliveira, Edmundo Capelas Faedo-Galerkin approximation of mild solutions of fractional functional differential equations. (English) Zbl 1483.34107 Nonauton. Dyn. Syst. 8, 1-17 (2021). MSC: 34K30 34K37 34K07 41A65 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa} et al., Nonauton. Dyn. Syst. 8, 1--17 (2021; Zbl 1483.34107) Full Text: DOI OpenURL
Luong, Vu Trong; Van Loi, Do; Nam, Hoang Polynomial decay of mild solutions to semilinear fractional differential equations with nonlocal initial conditions. (English) Zbl 07336975 Differ. Equ. Dyn. Syst. 29, No. 2, 391-404 (2021). Reviewer: César Enrique Torres Ledesma (Santiago de Chile) MSC: 34A08 34G20 34B10 PDF BibTeX XML Cite \textit{V. T. Luong} et al., Differ. Equ. Dyn. Syst. 29, No. 2, 391--404 (2021; Zbl 07336975) Full Text: DOI OpenURL
Abada, Nadjet; Chahdane, Helima; Hammouche, Hadda Existence results for impulsive partial functional fractional differential equation with state dependent delay. (English) Zbl 1460.35384 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer. Lect. Notes Netw. Syst. 168, 1-22 (2021). MSC: 35R12 35K90 35R10 35R11 PDF BibTeX XML Cite \textit{N. Abada} et al., Lect. Notes Netw. Syst. 168, 1--22 (2021; Zbl 1460.35384) Full Text: DOI OpenURL
Gou, Haide Monotone iterative technique for Hilfer fractional evolution equations with nonlocal conditions. (English) Zbl 1464.34102 Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021). MSC: 34K37 34K30 34K45 34K07 47D06 PDF BibTeX XML Cite \textit{H. Gou}, Bull. Sci. Math. 167, Article ID 102946, 30 p. (2021; Zbl 1464.34102) Full Text: DOI OpenURL
Barrasso, Adrien; Russo, Francesco Martingale driven BSDEs, PDEs and other related deterministic problems. (English) Zbl 1469.60217 Stochastic Processes Appl. 133, 193-228 (2021). MSC: 60H30 60H10 35S05 60J35 60J60 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Stochastic Processes Appl. 133, 193--228 (2021; Zbl 1469.60217) Full Text: DOI arXiv HAL OpenURL
Diagana, Toka; Hassan, Jamilu H.; Messaoudi, Salim A. Existence of asymptotically almost periodic solutions for some second-order hyperbolic integrodifferential equations. (English) Zbl 1466.45008 Semigroup Forum 102, No. 1, 104-119 (2021). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 45M05 45M15 45N05 PDF BibTeX XML Cite \textit{T. Diagana} et al., Semigroup Forum 102, No. 1, 104--119 (2021; Zbl 1466.45008) Full Text: DOI OpenURL
Shao, Jie; Guo, Boling The Cauchy problem for Schrödinger-damped Boussinesq system. (English) Zbl 1458.35355 J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021). MSC: 35Q35 35Q55 35B44 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{J. Shao} and \textit{B. Guo}, J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021; Zbl 1458.35355) Full Text: DOI OpenURL
Chávez, Alan; Pinto, Manuel; Zavaleta, Ulices On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications. (English) Zbl 1469.45014 J. Math. Anal. Appl. 494, No. 1, Article ID 124395, 38 p. (2021). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45N05 43A60 PDF BibTeX XML Cite \textit{A. Chávez} et al., J. Math. Anal. Appl. 494, No. 1, Article ID 124395, 38 p. (2021; Zbl 1469.45014) Full Text: DOI arXiv OpenURL
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 1458.35464 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35R11 35L20 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 1458.35464) Full Text: DOI OpenURL
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 1461.35186 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 1461.35186) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston M.; Zhou, Yong Periodic mild solutions of infinite delay second order evolution equations with impulses. (English) Zbl 1463.34289 Electron. J. Math. Anal. Appl. 9, No. 1, 179-190 (2021). MSC: 34K30 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Electron. J. Math. Anal. Appl. 9, No. 1, 179--190 (2021; Zbl 1463.34289) Full Text: Link OpenURL
Ren, Lulu; Wang, JinRong; Fečkan, Michal Periodic mild solutions of impulsive fractional evolution equations. (English) Zbl 07515609 AIMS Math. 5, No. 1, 497-506 (2020). MSC: 34A08 34A37 34C25 34D20 PDF BibTeX XML Cite \textit{L. Ren} et al., AIMS Math. 5, No. 1, 497--506 (2020; Zbl 07515609) Full Text: DOI OpenURL
Raja, M. Mohan; Vijayakumar, V.; Udhayakumar, R. A new approach on approximate controllability of fractional evolution inclusions of order \(1<r<2\) with infinite delay. (English) Zbl 07511238 Chaos Solitons Fractals 141, Article ID 110343, 14 p. (2020). MSC: 26A33 34A08 34K35 35R11 PDF BibTeX XML Cite \textit{M. M. Raja} et al., Chaos Solitons Fractals 141, Article ID 110343, 14 p. (2020; Zbl 07511238) Full Text: DOI OpenURL
Raja, M. Mohan; Vijayakumar, V.; Udhayakumar, R.; Zhou, Yong A new approach on the approximate controllability of fractional differential evolution equations of order \(1<r<2\) in Hilbert spaces. (English) Zbl 07511212 Chaos Solitons Fractals 141, Article ID 110310, 11 p. (2020). MSC: 26A33 34A08 34K35 35R11 PDF BibTeX XML Cite \textit{M. M. Raja} et al., Chaos Solitons Fractals 141, Article ID 110310, 11 p. (2020; Zbl 07511212) Full Text: DOI OpenURL
Hu, Die; Chen, Peng; Ma, Deyi Existence and uniqueness of mild solutions to the chemotaxis-fluid system modeling coral fertilization. (English) Zbl 07509707 Bound. Value Probl. 2020, Paper No. 72, 17 p. (2020). MSC: 92C17 35Q35 35B35 35Q92 PDF BibTeX XML Cite \textit{D. Hu} et al., Bound. Value Probl. 2020, Paper No. 72, 17 p. (2020; Zbl 07509707) Full Text: DOI OpenURL
Raja, M. Mohan; Vijayakumar, V.; Udhayakumar, R. Results on the existence and controllability of fractional integro-differential system of order \(1<r<2\) via measure of noncompactness. (English) Zbl 07505142 Chaos Solitons Fractals 139, Article ID 110299, 11 p. (2020). MSC: 34K30 47D09 34A08 26A33 PDF BibTeX XML Cite \textit{M. M. Raja} et al., Chaos Solitons Fractals 139, Article ID 110299, 11 p. (2020; Zbl 07505142) Full Text: DOI OpenURL
Haq, Abdul; Sukavanam, N. Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping. (English) Zbl 07505066 Chaos Solitons Fractals 139, Article ID 110043, 10 p. (2020). MSC: 93-XX 34-XX PDF BibTeX XML Cite \textit{A. Haq} and \textit{N. Sukavanam}, Chaos Solitons Fractals 139, Article ID 110043, 10 p. (2020; Zbl 07505066) Full Text: DOI OpenURL
Liu, Lishan; Qin, Haiyong Existence and uniqueness of mild solutions for fractional impulsive integro-differential evolution equations of order \(1 < \beta \leq 2\) with nonlocal conditions. (Chinese. English summary) Zbl 07494856 Sci. Sin., Math. 50, No. 12, 1807-1828 (2020). MSC: 34A08 34A12 34A37 34G20 47J35 PDF BibTeX XML Cite \textit{L. Liu} and \textit{H. Qin}, Sci. Sin., Math. 50, No. 12, 1807--1828 (2020; Zbl 07494856) Full Text: DOI OpenURL
Pérez, Aroldo Blow up of nonautonomous fractional reaction-diffusion systems. (English) Zbl 07441101 Fract. Differ. Calc. 10, No. 1, 1-18 (2020). MSC: 35R11 35B44 35C15 35K45 35K57 35S10 PDF BibTeX XML Cite \textit{A. Pérez}, Fract. Differ. Calc. 10, No. 1, 1--18 (2020; Zbl 07441101) Full Text: DOI OpenURL
Issaka, Louk-Man; Diop, Mamadou Abdoul; Hmoyed, Hasna Results on nonlocal stochastic integro-differential equations driven by a fractional Brownian motion. (English) Zbl 1480.47116 Open Math. 18, 1097-1112 (2020). MSC: 47N30 60H20 60G22 35R12 PDF BibTeX XML Cite \textit{L.-M. Issaka} et al., Open Math. 18, 1097--1112 (2020; Zbl 1480.47116) Full Text: DOI OpenURL
Al-Shara, Safwan; Al-Omari, Ahmad Existence and continuous dependence of mild solutions for impulsive fractional integrodifferential equations in Banach spaces. (English) Zbl 1476.34013 Comput. Appl. Math. 39, No. 4, Paper No. 289, 17 p. (2020). MSC: 34A08 34N05 34A12 PDF BibTeX XML Cite \textit{S. Al-Shara} and \textit{A. Al-Omari}, Comput. Appl. Math. 39, No. 4, Paper No. 289, 17 p. (2020; Zbl 1476.34013) Full Text: DOI OpenURL
Lian, Tingting; Li, Gang The solvability for time optimal problems governed by fractional systems. (Chinese. English summary) Zbl 07339220 J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 2, 5-7, 35 (2020). MSC: 49J21 PDF BibTeX XML Cite \textit{T. Lian} and \textit{G. Li}, J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 2, 5--7, 35 (2020; Zbl 07339220) Full Text: DOI OpenURL
Liu, Liping; Yang, Hang; Ma, Xuan The Landau equation with inflow boundary condition in a finite channel. (Chinese. English summary) Zbl 1474.35594 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 904-917 (2020). MSC: 35Q56 35B65 PDF BibTeX XML Cite \textit{L. Liu} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 904--917 (2020; Zbl 1474.35594) OpenURL
Bilal, Shamas; Donchev, Tzanko; Kitanov, Nikolay; Javaid, Nasir Nonlocal Riemann-Liouville fractional evolution inclusions in Banach space. (English) Zbl 1477.34009 Asian-Eur. J. Math. 13, No. 8, Article ID 2050162, 13 p. (2020). Reviewer: J. Vasundhara Devi (Visakhapatnam) MSC: 34A08 34G25 26A33 47H08 45G05 PDF BibTeX XML Cite \textit{S. Bilal} et al., Asian-Eur. J. Math. 13, No. 8, Article ID 2050162, 13 p. (2020; Zbl 1477.34009) Full Text: DOI OpenURL
N’Guérékata, Gaston M.; Mophou, Gisèle On the existence of \(C^{(n)}\)-almost automorphic mild solutions of certain differential equations in Banach spaces. (English) Zbl 1462.34088 Ortega, Omayra (ed.) et al., The golden anniversary celebration of the National Association of Mathematicians. AMS special session on the mathematics of historically black colleges and universities, HBCUs in the Mid-Atlantic. MAA invited paper session on the past 50 years of African Americans in the mathematical sciences. Haynes-Granville-Browne session of presentations by recent doctoral recipients. 2019 Claytor-Wookdard lecture. NAM David Harold Blackwell lecture, Baltimore, MD, USA and Cincinnati, OH, USA, January 17, 18 and 19 and August 2, 2019. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 759, 63-69 (2020). MSC: 34G20 47D06 43A60 PDF BibTeX XML Cite \textit{G. M. N'Guérékata} and \textit{G. Mophou}, Contemp. Math. 759, 63--69 (2020; Zbl 1462.34088) Full Text: DOI OpenURL
Gou, Haide; Li, Yongxiang The method of lower and upper solutions for damped elastic systems in Banach spaces. (English) Zbl 1455.34063 J. Appl. Anal. Comput. 10, No. 2, 495-513 (2020). MSC: 34G20 34K30 35B10 47D06 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Appl. Anal. Comput. 10, No. 2, 495--513 (2020; Zbl 1455.34063) Full Text: DOI OpenURL
Mebrat, M.; N’Guérékata, G. M. A Cauchy problem for some fractional differential equation via deformable derivatives. (English) Zbl 1461.34081 J. Nonlinear Evol. Equ. Appl. 2020, 55-63 (2020). MSC: 34G20 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{M. Mebrat} and \textit{G. M. N'Guérékata}, J. Nonlinear Evol. Equ. Appl. 2020, 55--63 (2020; Zbl 1461.34081) Full Text: Link OpenURL
Ghnimi, Saifeddine Norm continuity and compactness properties for some partial functional integrodifferential equations in Banach spaces. (English) Zbl 1474.45067 Trans. A. Razmadze Math. Inst. 174, No. 1, 51-59 (2020). MSC: 45K05 45N05 PDF BibTeX XML Cite \textit{S. Ghnimi}, Trans. A. Razmadze Math. Inst. 174, No. 1, 51--59 (2020; Zbl 1474.45067) Full Text: Link OpenURL
Li, Xiaoyue; Wang, Qi Impulsive functional differential inclusions of mixed type with finite delay. (English) Zbl 1463.34265 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 323-333 (2020). MSC: 34K09 34K45 34K30 47N20 PDF BibTeX XML Cite \textit{X. Li} and \textit{Q. Wang}, J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 323--333 (2020; Zbl 1463.34265) Full Text: DOI OpenURL