Ahmadov, Ilhom Ali o’g’li Local boundary value problem for a parabolic-hyperbolic type equation with Gerasimov-Caputo differential operator fractional order. (English) Zbl 07549289 Uzb. Mat. Zh. 66, No. 1, 41-50 (2022). MSC: 35A02 35M10 35S05 PDF BibTeX XML Cite \textit{I. A. o. Ahmadov}, Uzb. Mat. Zh. 66, No. 1, 41--50 (2022; Zbl 07549289) Full Text: DOI OpenURL
Fang, Weifu Simultaneous recovery of Robin boundary and coefficient for the Laplace equation by shape derivative. (English) Zbl 07542693 J. Comput. Appl. Math. 413, Article ID 114376, 13 p. (2022). MSC: 35R30 35J25 65N21 PDF BibTeX XML Cite \textit{W. Fang}, J. Comput. Appl. Math. 413, Article ID 114376, 13 p. (2022; Zbl 07542693) Full Text: DOI OpenURL
Dondl, Patrick; Poh, Patrina S. P.; Zeinhofer, Marius An efficient model for scaffold mediated bone regeneration. (English) Zbl 07541132 SIAM J. Appl. Math. 82, No. 3, 924-949 (2022). MSC: 92-10 35G46 PDF BibTeX XML Cite \textit{P. Dondl} et al., SIAM J. Appl. Math. 82, No. 3, 924--949 (2022; Zbl 07541132) Full Text: DOI OpenURL
Liu, Yu-Xiang Uniform stabilization of a variable coefficient wave equation with nonlinear damping and acoustic boundary. (English) Zbl 07540655 Appl. Anal. 101, No. 9, 3347-3364 (2022). MSC: 35B40 35L20 35L71 PDF BibTeX XML Cite \textit{Y.-X. Liu}, Appl. Anal. 101, No. 9, 3347--3364 (2022; Zbl 07540655) Full Text: DOI OpenURL
Burman, Erik; Puppi, Riccardo Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow. (English) Zbl 07540596 J. Numer. Math. 30, No. 2, 141-162 (2022). MSC: 65N30 65N12 65N15 35B45 76S05 35Q35 PDF BibTeX XML Cite \textit{E. Burman} and \textit{R. Puppi}, J. Numer. Math. 30, No. 2, 141--162 (2022; Zbl 07540596) Full Text: DOI OpenURL
Chkadua, George Asymptotic analysis and regularity results for a mixed type interaction problem of acoustic waves and electro-magneto-elastic structures. (English) Zbl 07527262 Mem. Differ. Equ. Math. Phys. 85, 53-74 (2022). MSC: 35J47 35J05 74F15 35B40 35C20 PDF BibTeX XML Cite \textit{G. Chkadua}, Mem. Differ. Equ. Math. Phys. 85, 53--74 (2022; Zbl 07527262) Full Text: Link OpenURL
Beneš, Michal On coupled flows of micropolar heat conducting fluids with mixed boundary conditions. (English) Zbl 1485.35316 Appl. Math. Lett. 130, Article ID 108000, 8 p. (2022). MSC: 35Q30 35Q35 35Q79 35A01 76D03 PDF BibTeX XML Cite \textit{M. Beneš}, Appl. Math. Lett. 130, Article ID 108000, 8 p. (2022; Zbl 1485.35316) Full Text: DOI OpenURL
Ren, Yiming; Feng, Hongsong; Zhao, Shan A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. (English) Zbl 07516834 J. Comput. Phys. 448, Article ID 110762, 24 p. (2022). MSC: 65Nxx 35Jxx 65Mxx PDF BibTeX XML Cite \textit{Y. Ren} et al., J. Comput. Phys. 448, Article ID 110762, 24 p. (2022; Zbl 07516834) Full Text: DOI OpenURL
Felli, Veronica; Noris, Benedetta; Ognibene, Roberto Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Neumann region. (English) Zbl 07496398 J. Differ. Equations 320, 247-315 (2022). MSC: 35J05 35J25 35P15 PDF BibTeX XML Cite \textit{V. Felli} et al., J. Differ. Equations 320, 247--315 (2022; Zbl 07496398) Full Text: DOI OpenURL
Zhao, Yuanyuan; Huang, Mei; Ouyang, Xiaoping; Luo, Jun; Shen, Yongqing; Bao, Fang A half boundary method for two dimensional unsteady convection-diffusion equations. (English) Zbl 07496073 Eng. Anal. Bound. Elem. 135, 322-336 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Y. Zhao} et al., Eng. Anal. Bound. Elem. 135, 322--336 (2022; Zbl 07496073) Full Text: DOI OpenURL
Sili, Ali On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems. (English. French summary) Zbl 1484.35305 C. R., Math., Acad. Sci. Paris 360, 1-23 (2022). MSC: 35P20 35B25 35B27 35B40 35B45 35J25 35J57 35J70 PDF BibTeX XML Cite \textit{A. Sili}, C. R., Math., Acad. Sci. Paris 360, 1--23 (2022; Zbl 1484.35305) Full Text: DOI OpenURL
Jensen, Max; Målqvist, Axel; Persson, Anna Finite element convergence for the time-dependent Joule heating problem with mixed boundary conditions. (English) Zbl 07465496 IMA J. Numer. Anal. 42, No. 1, 199-228 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{M. Jensen} et al., IMA J. Numer. Anal. 42, No. 1, 199--228 (2022; Zbl 07465496) Full Text: DOI arXiv OpenURL
Laurençot, Philippe; Nik, Katerina; Walker, Christoph Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties. (English) Zbl 1481.35137 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 16, 51 p. (2022). MSC: 35J05 35J25 35Q74 35A01 35A02 35J20 49Q10 49J40 PDF BibTeX XML Cite \textit{P. Laurençot} et al., Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 16, 51 p. (2022; Zbl 1481.35137) Full Text: DOI arXiv OpenURL
Beneš, Michal; Pažanin, Igor; Radulović, Marko On viscous incompressible flows of nonsymmetric fluids with mixed boundary conditions. (English) Zbl 1482.76012 Nonlinear Anal., Real World Appl. 64, Article ID 103424, 21 p. (2022). Reviewer: Piotr Biler (Wrocław) MSC: 76A99 76D03 35Q35 PDF BibTeX XML Cite \textit{M. Beneš} et al., Nonlinear Anal., Real World Appl. 64, Article ID 103424, 21 p. (2022; Zbl 1482.76012) Full Text: DOI OpenURL
Jiang, Peng Global classical solution to the Navier-Stokes-Vlasov equations with large initial data and reflection boundary conditions. (English) Zbl 07425736 J. Math. Fluid Mech. 24, No. 1, Paper No. 2, 21 p. (2022). MSC: 35Qxx 35A01 35Q30 35Q83 35M31 35R09 PDF BibTeX XML Cite \textit{P. Jiang}, J. Math. Fluid Mech. 24, No. 1, Paper No. 2, 21 p. (2022; Zbl 07425736) Full Text: DOI OpenURL
Li, Hao; Ning, Zhen-Hu; Yang, Fengyan Stabilization of the critical semilinear wave equation with Dirichlet-Neumann boundary condition on bounded domain. (English) Zbl 1475.35053 J. Math. Anal. Appl. 506, No. 1, Article ID 125610, 15 p. (2022). MSC: 35B40 35B33 35L20 35L71 PDF BibTeX XML Cite \textit{H. Li} et al., J. Math. Anal. Appl. 506, No. 1, Article ID 125610, 15 p. (2022; Zbl 1475.35053) Full Text: DOI OpenURL
Hussain, Saqib; Wang, Xiaoshen; Al-Taweel, Ahmed A study of mixed problem for second order elliptic problems using modified weak Galerkin finite element method. (English) Zbl 07403088 J. Comput. Appl. Math. 401, Article ID 113770, 10 p. (2022). MSC: 65N15 65N30 35J50 PDF BibTeX XML Cite \textit{S. Hussain} et al., J. Comput. Appl. Math. 401, Article ID 113770, 10 p. (2022; Zbl 07403088) Full Text: DOI OpenURL
Anjam, Yasir Nadeem The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. (English) Zbl 1484.35310 AIMS Math. 6, No. 6, 5647-5674 (2021). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{Y. N. Anjam}, AIMS Math. 6, No. 6, 5647--5674 (2021; Zbl 1484.35310) Full Text: DOI OpenURL
Alekseev, Gennady V.; Brizitskii, Roman V. Analysis of the boundary value and control problems for nonlinear reaction-diffusion-convection equation. (English) Zbl 07510968 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 452-462 (2021). MSC: 35Rxx 49Kxx 35Kxx PDF BibTeX XML Cite \textit{G. V. Alekseev} and \textit{R. V. Brizitskii}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 452--462 (2021; Zbl 07510968) Full Text: DOI MNR OpenURL
Bollo, Carolina M.; Gariboldi, Claudia M.; Tarzia, Domingo A. Neumann boundary optimal control problems governed by parabolic variational equalities. (English) Zbl 07504931 Control Cybern. 50, No. 2, 227-252 (2021). MSC: 49J45 49J40 PDF BibTeX XML Cite \textit{C. M. Bollo} et al., Control Cybern. 50, No. 2, 227--252 (2021; Zbl 07504931) OpenURL
Kozhanov, Aleksandr Ivanovich; Dyuzheva, Aleksandra Vladimirovna The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations. (Russian. English summary) Zbl 07499952 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 3, 423-434 (2021). MSC: 35M13 PDF BibTeX XML Cite \textit{A. I. Kozhanov} and \textit{A. V. Dyuzheva}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 3, 423--434 (2021; Zbl 07499952) Full Text: DOI MNR OpenURL
Li, Chan Asymptotics for wave equations with damping only on the dynamical boundary. (English) Zbl 07498428 Appl. Math. Optim. 84, Suppl. 2, 2011-2026 (2021). MSC: 35B40 35L05 35L20 47D06 PDF BibTeX XML Cite \textit{C. Li}, Appl. Math. Optim. 84, 2011--2026 (2021; Zbl 07498428) Full Text: DOI OpenURL
Boudrahem, Nassim; Berboucha, Ahmed Theoretical justification of Ventcel’s boundary conditions for a thin layer three-dimensional thermoelasticity problem. (English) Zbl 07493430 Miskolc Math. Notes 22, No. 2, 581-598 (2021). MSC: 35M10 35G15 35A15 PDF BibTeX XML Cite \textit{N. Boudrahem} and \textit{A. Berboucha}, Miskolc Math. Notes 22, No. 2, 581--598 (2021; Zbl 07493430) Full Text: DOI OpenURL
Algazin, S. D. Numerical study of the Zaremba problem. (English. Russian original) Zbl 1485.35125 Dokl. Math. 104, No. 2, 225-228 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 500, 5-9 (2021). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{S. D. Algazin}, Dokl. Math. 104, No. 2, 225--228 (2021; Zbl 1485.35125); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 500, 5--9 (2021) Full Text: DOI OpenURL
Zhou, Bibo; Zhang, Lingling Local existence-uniqueness and monotone iterative approximation of positive solutions for \(p\)-Laplacian differential equations involving tempered fractional derivatives. (English) Zbl 07465137 J. Inequal. Appl. 2021, Paper No. 159, 16 p. (2021). MSC: 34B18 34A08 35J05 PDF BibTeX XML Cite \textit{B. Zhou} and \textit{L. Zhang}, J. Inequal. Appl. 2021, Paper No. 159, 16 p. (2021; Zbl 07465137) Full Text: DOI OpenURL
Hoppe, Fabian; Neitzel, Ira Convergence of the SQP method for quasilinear parabolic optimal control problems. (English) Zbl 1481.35259 Optim. Eng. 22, No. 4, 2039-2085 (2021). MSC: 35K59 35K20 49K20 90C48 49N60 65K10 90C55 49M15 49M37 PDF BibTeX XML Cite \textit{F. Hoppe} and \textit{I. Neitzel}, Optim. Eng. 22, No. 4, 2039--2085 (2021; Zbl 1481.35259) Full Text: DOI OpenURL
Chill, Ralph; Meinlschmidt, Hannes; Rehberg, Joachim On the numerical range of second-order elliptic operators with mixed boundary conditions in \(L^p\). (English) Zbl 07451405 J. Evol. Equ. 21, No. 3, 3267-3288 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35J15 35B65 47A12 PDF BibTeX XML Cite \textit{R. Chill} et al., J. Evol. Equ. 21, No. 3, 3267--3288 (2021; Zbl 07451405) Full Text: DOI arXiv OpenURL
Alnashri, Yahya; Alzubaidi, Hasan A gradient discretisation method for anisotropic reaction-diffusion models with applications to the dynamics of brain tumors. (English) Zbl 07446781 Comput. Methods Appl. Math. 21, No. 4, 753-775 (2021). MSC: 65-XX 35K57 65N12 65M08 PDF BibTeX XML Cite \textit{Y. Alnashri} and \textit{H. Alzubaidi}, Comput. Methods Appl. Math. 21, No. 4, 753--775 (2021; Zbl 07446781) Full Text: DOI arXiv OpenURL
Beneš, Michal; Kučera, Petr; Vacková, Petra Local in time existence of solution of the Navier-Stokes equations with various types of boundary conditions. (English) Zbl 1479.35601 J. Elliptic Parabol. Equ. 7, No. 2, 297-310 (2021). MSC: 35Q30 35B35 35A01 35A02 76D05 76E09 PDF BibTeX XML Cite \textit{M. Beneš} et al., J. Elliptic Parabol. Equ. 7, No. 2, 297--310 (2021; Zbl 1479.35601) Full Text: DOI OpenURL
Verma, N.; Kumar, S. Lowest order virtual element approximations for transient Stokes problem on polygonal meshes. (English) Zbl 1479.65011 Calcolo 58, No. 4, Paper No. 48, 35 p. (2021). MSC: 65M60 65M06 65N30 76D07 65N15 65N12 35Q35 PDF BibTeX XML Cite \textit{N. Verma} and \textit{S. Kumar}, Calcolo 58, No. 4, Paper No. 48, 35 p. (2021; Zbl 1479.65011) Full Text: DOI OpenURL
López-Soriano, Rafael; Ortega, Alejandro A strong maximum principle for the fractional Laplace equation with mixed boundary condition. (English) Zbl 07443868 Fract. Calc. Appl. Anal. 24, No. 6, 1699-1715 (2021). MSC: 26A33 35B50 35R11 35S15 PDF BibTeX XML Cite \textit{R. López-Soriano} and \textit{A. Ortega}, Fract. Calc. Appl. Anal. 24, No. 6, 1699--1715 (2021; Zbl 07443868) Full Text: DOI arXiv OpenURL
Bousbiat, Chaima; Daikh, Yasmina; Maarouf, Sarra Spectral discretization of the time-dependent Stokes problem with mixed boundary conditions. (English) Zbl 1479.65005 Math. Methods Appl. Sci. 44, No. 18, 14517-14544 (2021). MSC: 65M38 65M06 65N38 76D07 76M15 PDF BibTeX XML Cite \textit{C. Bousbiat} et al., Math. Methods Appl. Sci. 44, No. 18, 14517--14544 (2021; Zbl 1479.65005) Full Text: DOI OpenURL
Tian, Jian; Wei, Yuan Hong Superlinear elliptic equation with mixed boundary value in annular domain. (English) Zbl 1479.35435 Acta Math. Sin., Engl. Ser. 37, No. 10, 1549-1559 (2021). MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{J. Tian} and \textit{Y. H. Wei}, Acta Math. Sin., Engl. Ser. 37, No. 10, 1549--1559 (2021; Zbl 1479.35435) Full Text: DOI OpenURL
Kisiel, Konrad; Chełmiński, Krzysztof Quasistatic viscoplasticity without safe-load conditions. (English) Zbl 1477.35261 J. Differ. Equations 305, 368-400 (2021). MSC: 35Q74 74C05 74H20 35A01 PDF BibTeX XML Cite \textit{K. Kisiel} and \textit{K. Chełmiński}, J. Differ. Equations 305, 368--400 (2021; Zbl 1477.35261) Full Text: DOI OpenURL
Carmona, Jose; Colorado, Eduardo; Leonori, Tommaso; Ortega, Alejandro Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data. (English) Zbl 1476.35075 Adv. Calc. Var. 14, No. 4, 521-539 (2021). MSC: 35B65 35J25 35R11 PDF BibTeX XML Cite \textit{J. Carmona} et al., Adv. Calc. Var. 14, No. 4, 521--539 (2021; Zbl 1476.35075) Full Text: DOI arXiv OpenURL
Liao, Yulei; Ming, Pingbing Deep Nitsche method: deep Ritz method with essential boundary conditions. (English) Zbl 1473.65309 Commun. Comput. Phys. 29, No. 5, 1365-1384 (2021). MSC: 65N30 65M12 41A46 35J25 PDF BibTeX XML Cite \textit{Y. Liao} and \textit{P. Ming}, Commun. Comput. Phys. 29, No. 5, 1365--1384 (2021; Zbl 1473.65309) Full Text: DOI arXiv OpenURL
Laurençot, Philippe; Nik, Katerina; Walker, Christoph Reinforced limit of a MEMS model with heterogeneous dielectric properties. (English) Zbl 1483.35253 Appl. Math. Optim. 84, No. 2, 1373-1393 (2021). MSC: 35Q74 74K10 74B10 74F15 74G65 78A30 35J20 35J25 PDF BibTeX XML Cite \textit{P. Laurençot} et al., Appl. Math. Optim. 84, No. 2, 1373--1393 (2021; Zbl 1483.35253) Full Text: DOI arXiv OpenURL
Pacella, Filomena; Tralli, Giulio Isoperimetric cones and minimal solutions of partial overdetermined problems. (English) Zbl 1475.35213 Publ. Mat., Barc. 65, No. 1, 61-81 (2021). MSC: 35N25 35B05 35J25 49Q10 53A10 74G50 PDF BibTeX XML Cite \textit{F. Pacella} and \textit{G. Tralli}, Publ. Mat., Barc. 65, No. 1, 61--81 (2021; Zbl 1475.35213) Full Text: DOI arXiv OpenURL
Tanaka, Kazuaki A posteriori verification for the sign-change structure of solutions of elliptic partial differential equations. (English) Zbl 1475.35165 Japan J. Ind. Appl. Math. 38, No. 3, 731-756 (2021). MSC: 35J91 35J25 65N15 PDF BibTeX XML Cite \textit{K. Tanaka}, Japan J. Ind. Appl. Math. 38, No. 3, 731--756 (2021; Zbl 1475.35165) Full Text: DOI arXiv OpenURL
Alves, Carlos J. S.; Serrão, Rodrigo G.; Silvestre, Ana L. Fundamental solutions for the Stokes equations: numerical applications for 2D and 3D flows. (English) Zbl 07398293 Appl. Numer. Math. 170, 55-73 (2021). MSC: 65Nxx 76Dxx 76Mxx PDF BibTeX XML Cite \textit{C. J. S. Alves} et al., Appl. Numer. Math. 170, 55--73 (2021; Zbl 07398293) Full Text: DOI OpenURL
Liu, Dai-Quan; Yang, Chuan-Fu Inverse spectral problems for Dirac operators on a star graph with mixed boundary conditions. (English) Zbl 1478.34020 Math. Methods Appl. Sci. 44, No. 13, 10663-10672 (2021). MSC: 34A55 34B45 34L20 34L40 47E05 PDF BibTeX XML Cite \textit{D.-Q. Liu} and \textit{C.-F. Yang}, Math. Methods Appl. Sci. 44, No. 13, 10663--10672 (2021; Zbl 1478.34020) Full Text: DOI OpenURL
Providas, E. Factorization and solution of linear and nonlinear second order differential equations with variable coefficients and mixed conditions. (English) Zbl 1477.34031 Rassias, Themistocles M. (ed.), Nonlinear analysis, differential equations, and applications. Cham: Springer. Springer Optim. Appl. 173, 397-414 (2021). MSC: 34A30 34A12 34B15 34A34 PDF BibTeX XML Cite \textit{E. Providas}, Springer Optim. Appl. 173, 397--414 (2021; Zbl 1477.34031) Full Text: DOI OpenURL
Chung, Soon-Yeong; Hwang, Jaeho New blow-up conditions to \(p\)-Laplace type nonlinear parabolic equations under nonlinear boundary conditions. (English) Zbl 1471.35061 Math. Methods Appl. Sci. 44, No. 7, 6086-6100 (2021). MSC: 35B44 35K51 35K61 35K92 PDF BibTeX XML Cite \textit{S.-Y. Chung} and \textit{J. Hwang}, Math. Methods Appl. Sci. 44, No. 7, 6086--6100 (2021; Zbl 1471.35061) Full Text: DOI OpenURL
Yao, Ruofei; Chen, Hongbin; Gui, Changfeng Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a super-spherical sector. (English) Zbl 1473.35247 Calc. Var. Partial Differ. Equ. 60, No. 4, Paper No. 130, 25 p. (2021). MSC: 35J61 35J25 35B06 35B09 PDF BibTeX XML Cite \textit{R. Yao} et al., Calc. Var. Partial Differ. Equ. 60, No. 4, Paper No. 130, 25 p. (2021; Zbl 1473.35247) Full Text: DOI OpenURL
Giang, N. B.; Tuan, N. Q.; Son, N. H. Second-order optimality conditions and regularity of Lagrange multipliers for mixed optimal control problems. (English) Zbl 1473.49029 Positivity 25, No. 3, 911-937 (2021). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 49K20 35J25 35B65 PDF BibTeX XML Cite \textit{N. B. Giang} et al., Positivity 25, No. 3, 911--937 (2021; Zbl 1473.49029) Full Text: DOI OpenURL
Guarguaglini, Francesca R.; Natalini, Roberto Vanishing viscosity approximation for linear transport equations on finite star-shaped networks. (English) Zbl 1476.35218 J. Evol. Equ. 21, No. 2, 2413-2447 (2021). MSC: 35Q49 35R02 35M33 35B40 92C70 35Q92 PDF BibTeX XML Cite \textit{F. R. Guarguaglini} and \textit{R. Natalini}, J. Evol. Equ. 21, No. 2, 2413--2447 (2021; Zbl 1476.35218) Full Text: DOI arXiv OpenURL
Anoop, T. V.; Ashok Kumar, K.; Kesavan, S. A shape variation result via the geometry of eigenfunctions. (English) Zbl 1470.35021 J. Differ. Equations 298, 430-462 (2021). MSC: 35B06 35B07 35B50 35B51 35J25 35Q93 49Q10 58J70 PDF BibTeX XML Cite \textit{T. V. Anoop} et al., J. Differ. Equations 298, 430--462 (2021; Zbl 1470.35021) Full Text: DOI arXiv OpenURL
Geng, Xi; Iyer, Gautam Long time asymptotics of heat kernels and Brownian winding numbers on manifolds with boundary. (English) Zbl 1470.35169 ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 2, 1297-1323 (2021). MSC: 35K08 35B40 60J65 PDF BibTeX XML Cite \textit{X. Geng} and \textit{G. Iyer}, ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 2, 1297--1323 (2021; Zbl 1470.35169) Full Text: arXiv Link OpenURL
Alvino, A.; Chiacchio, F.; Nitsch, C.; Trombetti, C. Sharp estimates for solutions to elliptic problems with mixed boundary conditions. (English. French summary) Zbl 1473.35114 J. Math. Pures Appl. (9) 152, 251-261 (2021). Reviewer: Peter Lindqvist (Trondheim) MSC: 35J05 35B06 PDF BibTeX XML Cite \textit{A. Alvino} et al., J. Math. Pures Appl. (9) 152, 251--261 (2021; Zbl 1473.35114) Full Text: DOI arXiv OpenURL
Gordon, Carolyn; Herbrich, Peter; Webb, David Steklov and Robin isospectral manifolds. (English) Zbl 1469.58021 J. Spectr. Theory 11, No. 1, 39-61 (2021). MSC: 58J53 35J25 35J20 PDF BibTeX XML Cite \textit{C. Gordon} et al., J. Spectr. Theory 11, No. 1, 39--61 (2021; Zbl 1469.58021) Full Text: DOI arXiv OpenURL
Khan, Muhammad Ijaz; Alzahrani, Faris Numerical simulation for the mixed convective flow of non-Newtonian fluid with activation energy and entropy generation. (English) Zbl 1475.35283 Math. Methods Appl. Sci. 44, No. 9, 7766-7777 (2021). MSC: 35Q35 76A05 76R05 76R10 76W05 60J65 76M55 PDF BibTeX XML Cite \textit{M. I. Khan} and \textit{F. Alzahrani}, Math. Methods Appl. Sci. 44, No. 9, 7766--7777 (2021; Zbl 1475.35283) Full Text: DOI OpenURL
Ghiba, Ionel-Dumitrel; Neff, Patrizio; Owczarek, Sebastian Existence results for non-homogeneous boundary conditions in the relaxed micromorphic model. (English) Zbl 1475.35336 Math. Methods Appl. Sci. 44, No. 2, 2040-2049 (2021). MSC: 35Q74 35M33 74H20 74M25 74B99 PDF BibTeX XML Cite \textit{I.-D. Ghiba} et al., Math. Methods Appl. Sci. 44, No. 2, 2040--2049 (2021; Zbl 1475.35336) Full Text: DOI arXiv OpenURL
Krim, Salim; Abbas, Saïd; Benchohra, Mouffak Caputo-Hadamard implicit fractional differential equations with delay. (English) Zbl 1481.34088 São Paulo J. Math. Sci. 15, No. 1, 463-484 (2021). MSC: 34K37 34K32 34K10 34K43 47N20 PDF BibTeX XML Cite \textit{S. Krim} et al., São Paulo J. Math. Sci. 15, No. 1, 463--484 (2021; Zbl 1481.34088) Full Text: DOI OpenURL
Sperone, Gianmarco On the steady motion of Navier-Stokes flows past a fixed obstacle in a three-dimensional channel under mixed boundary conditions. (English) Zbl 1475.35245 Ann. Mat. Pura Appl. (4) 200, No. 5, 1961-1985 (2021). MSC: 35Q30 35G60 76D03 76D07 46E35 PDF BibTeX XML Cite \textit{G. Sperone}, Ann. Mat. Pura Appl. (4) 200, No. 5, 1961--1985 (2021; Zbl 1475.35245) Full Text: DOI arXiv OpenURL
Graef, John R.; Kong, Lingju; Wang, Min A variational framework for a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1468.39004 Result. Math. 76, No. 2, Paper No. 98, 12 p. (2021). MSC: 39A27 39A12 34B15 49K30 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Result. Math. 76, No. 2, Paper No. 98, 12 p. (2021; Zbl 1468.39004) Full Text: DOI OpenURL
Esposito, Luca; Roy, Prosenjit; Sk, Firoj On the asymptotic behavior of the eigenvalues of nonlinear elliptic problems in domains becoming unbounded. (English) Zbl 1479.35478 Asymptotic Anal. 123, No. 1-2, 79-94 (2021). Reviewer: Michael Perelmuter (Kyïv) MSC: 35J92 35J25 35P15 PDF BibTeX XML Cite \textit{L. Esposito} et al., Asymptotic Anal. 123, No. 1--2, 79--94 (2021; Zbl 1479.35478) Full Text: DOI arXiv OpenURL
Kielty, Derek Singular limits of sign-changing weighted eigenproblems. (English) Zbl 1472.35402 Asymptotic Anal. 122, No. 1-2, 165-200 (2021). MSC: 35Q92 35Q79 92D25 92D40 80A19 47A75 PDF BibTeX XML Cite \textit{D. Kielty}, Asymptotic Anal. 122, No. 1--2, 165--200 (2021; Zbl 1472.35402) Full Text: DOI arXiv OpenURL
Zhu, Pengxian; Xiang, Qiaomin; Lu, Kai Chaotic dynamics of a 2D hyperbolic PDE with the boundary conditions of superlinear type. (English) Zbl 1468.35090 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 30, 18 p. (2021). MSC: 35L20 35B40 PDF BibTeX XML Cite \textit{P. Zhu} et al., Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 30, 18 p. (2021; Zbl 1468.35090) Full Text: DOI OpenURL
Chen, Hongbin; Li, Rui; Yao, Ruofei Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a sub-spherical sector. (English) Zbl 1467.35173 Nonlinearity 34, No. 6, 3858-3878 (2021). MSC: 35J91 35J25 35B09 35B06 PDF BibTeX XML Cite \textit{H. Chen} et al., Nonlinearity 34, No. 6, 3858--3878 (2021; Zbl 1467.35173) Full Text: DOI OpenURL
Beneš, Michal On existence, uniqueness and two-scale convergence of a model for coupled flows in heterogeneous media. (English) Zbl 1464.35208 Acta Appl. Math. 171, Paper No. 12, 30 p. (2021). MSC: 35Q35 35A01 35A02 35B27 35K55 35K65 76S05 PDF BibTeX XML Cite \textit{M. Beneš}, Acta Appl. Math. 171, Paper No. 12, 30 p. (2021; Zbl 1464.35208) Full Text: DOI OpenURL
Krause, Andrew L.; Klika, Václav; Maini, Philip K.; Headon, Denis; Gaffney, Eamonn A. Isolating patterns in open reaction-diffusion systems. (English) Zbl 1467.92034 Bull. Math. Biol. 83, No. 7, Paper No. 82, 35 p. (2021). MSC: 92C15 35K57 35Q92 PDF BibTeX XML Cite \textit{A. L. Krause} et al., Bull. Math. Biol. 83, No. 7, Paper No. 82, 35 p. (2021; Zbl 1467.92034) Full Text: DOI arXiv OpenURL
Dong, Hongjie; Li, Zongyuan The Dirichlet-conormal problem with homogeneous and inhomogeneous boundary conditions. (English) Zbl 1467.35130 Commun. Partial Differ. Equations 46, No. 3, 470-497 (2021). MSC: 35J25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Dong} and \textit{Z. Li}, Commun. Partial Differ. Equations 46, No. 3, 470--497 (2021; Zbl 1467.35130) Full Text: DOI arXiv OpenURL
Wang, Chunmei; Zikatanov, Ludmil Low regularity primal-dual weak Galerkin finite element methods for convection-diffusion equations. (English) Zbl 1467.65114 J. Comput. Appl. Math. 394, Article ID 113543, 18 p. (2021). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N15 65N12 74N20 35B45 35J50 35J35 PDF BibTeX XML Cite \textit{C. Wang} and \textit{L. Zikatanov}, J. Comput. Appl. Math. 394, Article ID 113543, 18 p. (2021; Zbl 1467.65114) Full Text: DOI arXiv OpenURL
Chai, Min; Luo, Kun; Wang, Haiou; Zheng, Shuihua; Fan, Jianren Imposing mixed Dirichlet-Neumann-Robin boundary conditions on irregular domains in a level set/ghost fluid based finite difference framework. (English) Zbl 07352805 Comput. Fluids 214, Article ID 104772, 13 p. (2021). MSC: 76-XX PDF BibTeX XML Cite \textit{M. Chai} et al., Comput. Fluids 214, Article ID 104772, 13 p. (2021; Zbl 07352805) Full Text: DOI OpenURL
Aspri, Andrea; Beretta, Elena; de Hoop, Maarten; Mazzucato, Anna L. Detection of dislocations in a 2D anisotropic elastic medium. (English) Zbl 1465.35404 Rend. Mat. Appl., VII. Ser. 42, No. 3-4, 183-195 (2021). MSC: 35R30 35A01 35A02 35J57 74B05 86A60 PDF BibTeX XML Cite \textit{A. Aspri} et al., Rend. Mat. Appl., VII. Ser. 42, No. 3--4, 183--195 (2021; Zbl 1465.35404) Full Text: Link OpenURL
Li, Wan-Tong; López-Gómez, Julián; Sun, Jian-Wen Sharp patterns of positive solutions for some weighted semilinear elliptic problems. (English) Zbl 1462.35034 Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 85, 36 p. (2021). MSC: 35B25 35B08 35J25 35J61 92D25 PDF BibTeX XML Cite \textit{W.-T. Li} et al., Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 85, 36 p. (2021; Zbl 1462.35034) Full Text: DOI OpenURL
Rosales, Rodolfo Ruben; Seibold, Benjamin; Shirokoff, David; Zhou, Dong High-order finite element methods for a pressure Poisson equation reformulation of the Navier-Stokes equations with electric boundary conditions. (English) Zbl 07337746 Comput. Methods Appl. Mech. Eng. 373, Article ID 113451, 28 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{R. R. Rosales} et al., Comput. Methods Appl. Mech. Eng. 373, Article ID 113451, 28 p. (2021; Zbl 07337746) Full Text: DOI arXiv OpenURL
Wang, Li; Xu, Qiang; Zhao, Peihao Convergence rates for linear elasticity systems on perforated domains. (English) Zbl 1462.35049 Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 74, 51 p. (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35J57 PDF BibTeX XML Cite \textit{L. Wang} et al., Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 74, 51 p. (2021; Zbl 1462.35049) Full Text: DOI OpenURL
Amrouche, Chérif; Boussetouan, Imane Vector potentials with mixed boundary conditions: application to the Stokes problem with pressure and Navier-type boundary conditions. (English) Zbl 1465.35122 SIAM J. Math. Anal. 53, No. 2, 1745-1784 (2021). MSC: 35J05 35J20 35J25 76D03 76D07 PDF BibTeX XML Cite \textit{C. Amrouche} and \textit{I. Boussetouan}, SIAM J. Math. Anal. 53, No. 2, 1745--1784 (2021; Zbl 1465.35122) Full Text: DOI OpenURL
Sadali, D.; Moulay, M. S. A new Carleman inequality for a heat equation in presence of singularities and controllability consequences. (English) Zbl 1466.35252 J. Dyn. Control Syst. 27, No. 1, 51-65 (2021). Reviewer: Xiangdong Yang (Kunming) MSC: 35K58 93B05 93B07 35K20 PDF BibTeX XML Cite \textit{D. Sadali} and \textit{M. S. Moulay}, J. Dyn. Control Syst. 27, No. 1, 51--65 (2021; Zbl 1466.35252) Full Text: DOI OpenURL
Paoli, Gloria; Piscitelli, Gianpaolo; Sannipoli, Rossanno A stability result for the Steklov Laplacian eigenvalue problem with a spherical obstacle. (English) Zbl 1460.35086 Commun. Pure Appl. Anal. 20, No. 1, 145-158 (2021). MSC: 35J05 35J25 35P15 PDF BibTeX XML Cite \textit{G. Paoli} et al., Commun. Pure Appl. Anal. 20, No. 1, 145--158 (2021; Zbl 1460.35086) Full Text: DOI arXiv OpenURL
Kuchta, Miroslav; Laurino, Federica; Mardal, Kent-Andre; Zunino, Paolo Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers. (English) Zbl 1460.35109 SIAM J. Numer. Anal. 59, No. 1, 558-582 (2021). MSC: 35J25 35A01 65N30 PDF BibTeX XML Cite \textit{M. Kuchta} et al., SIAM J. Numer. Anal. 59, No. 1, 558--582 (2021; Zbl 1460.35109) Full Text: DOI arXiv OpenURL
Felli, Veronica; Noris, Benedetta; Ognibene, Roberto Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region. (English) Zbl 1464.35086 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 12, 33 p. (2021). Reviewer: Rodica Luca (Iaşi) MSC: 35J25 35P20 35B25 PDF BibTeX XML Cite \textit{V. Felli} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 12, 33 p. (2021; Zbl 1464.35086) Full Text: DOI arXiv OpenURL
Zhou, Bibo; Zhang, Lingling; Xing, Gaofeng; Zhang, Nan Existence-uniqueness and monotone iteration of positive solutions to nonlinear tempered fractional differential equation with \(p\)-Laplacian operator. (English) Zbl 07509752 Bound. Value Probl. 2020, Paper No. 117, 17 p. (2020). MSC: 34A08 34B10 34A45 PDF BibTeX XML Cite \textit{B. Zhou} et al., Bound. Value Probl. 2020, Paper No. 117, 17 p. (2020; Zbl 07509752) Full Text: DOI OpenURL
Feng, Hongsong; Zhao, Shan A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. (English) Zbl 07507238 J. Comput. Phys. 419, Article ID 109677, 25 p. (2020). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{H. Feng} and \textit{S. Zhao}, J. Comput. Phys. 419, Article ID 109677, 25 p. (2020; Zbl 07507238) Full Text: DOI OpenURL
Bollati, Julieta; Gariboldi, Claudia M.; Tarzia, Domingo A. Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems. (English) Zbl 1480.35106 J. Appl. Math. Comput. 64, No. 1-2, 283-311 (2020). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{J. Bollati} et al., J. Appl. Math. Comput. 64, No. 1--2, 283--311 (2020; Zbl 1480.35106) Full Text: DOI arXiv OpenURL
Israilov, M. Sh.; Nosov, S. Ye.; Khadisov, M.-R. B. Solution of mixed half-plane diffraction problems of non-stationary plane and cylindrical waves and blast wave protection by barriers. (English. Russian original) Zbl 1472.35083 Mosc. Univ. Mech. Bull. 75, No. 3, 69-74 (2020); translation from Vestn. Mosk. Univ., Ser. I 75, No. 3, 58-62 (2020). MSC: 35C05 35Q31 PDF BibTeX XML Cite \textit{M. Sh. Israilov} et al., Mosc. Univ. Mech. Bull. 75, No. 3, 69--74 (2020; Zbl 1472.35083); translation from Vestn. Mosk. Univ., Ser. I 75, No. 3, 58--62 (2020) Full Text: DOI OpenURL
Chernikova, N. Yu.; Laneev, E. B.; Muratov, M. N.; Ponomarenko, E. Yu. On an inverse problem to a mixed problem for the Poisson equation. (English) Zbl 1472.35450 Pinelas, Sandra (ed.) et al., Mathematical analysis with applications. In honor of the 90th birthday of Constantin Corduneanu, Ekaterinburg, Russia, July 26–28, 2018. Cham: Springer. Springer Proc. Math. Stat. 318, 141-149 (2020). MSC: 35R30 35J25 PDF BibTeX XML Cite \textit{N. Yu. Chernikova} et al., Springer Proc. Math. Stat. 318, 141--149 (2020; Zbl 1472.35450) Full Text: DOI OpenURL
Wang, Juan; Yuan, Zixia Global existence and convergence of solutions to a chemotactic model with logarithmic sensitivity and mixed boundary conditions. (Chinese. English summary) Zbl 1474.35371 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 6, 1646-1669 (2020). MSC: 35K51 92C17 92C15 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Z. Yuan}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 6, 1646--1669 (2020; Zbl 1474.35371) OpenURL
Howard, Kimberly; Wang, Long; Wang, Min Existence of multiple solutions to a discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1468.39005 Involve 13, No. 4, 673-681 (2020). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{K. Howard} et al., Involve 13, No. 4, 673--681 (2020; Zbl 1468.39005) Full Text: DOI OpenURL
Pietra, Francesco Della; Piscitelli, Gianpaolo An optimal bound for nonlinear eigenvalues and torsional rigidity on domains with holes. (English) Zbl 1465.35328 Milan J. Math. 88, No. 2, 373-384 (2020). MSC: 35P30 35P15 47J30 35J92 35J25 PDF BibTeX XML Cite \textit{F. Della Pietra} and \textit{G. Piscitelli}, Milan J. Math. 88, No. 2, 373--384 (2020; Zbl 1465.35328) Full Text: DOI arXiv OpenURL
Chainais-Hillairet, Claire; Herda, Maxime Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. (English) Zbl 1467.65088 IMA J. Numer. Anal. 40, No. 4, 2473-2504 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 76S05 35Q84 35Q81 PDF BibTeX XML Cite \textit{C. Chainais-Hillairet} and \textit{M. Herda}, IMA J. Numer. Anal. 40, No. 4, 2473--2504 (2020; Zbl 1467.65088) Full Text: DOI arXiv OpenURL
Gravina, Giovanni; Leoni, Giovanni On the behavior of the free boundary for a one-phase Bernoulli problem with mixed boundary conditions. (English) Zbl 1460.35397 Commun. Pure Appl. Anal. 19, No. 10, 4853-4878 (2020). MSC: 35R35 35B45 35B65 35J20 35J25 PDF BibTeX XML Cite \textit{G. Gravina} and \textit{G. Leoni}, Commun. Pure Appl. Anal. 19, No. 10, 4853--4878 (2020; Zbl 1460.35397) Full Text: DOI arXiv OpenURL
Pauly, Dirk A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains. (English) Zbl 1459.35086 Dörfler, Willy (ed.) et al., Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23–27, 2018. Cham: Birkhäuser. Trends Math., 243-250 (2020). MSC: 35F35 35A27 58A12 PDF BibTeX XML Cite \textit{D. Pauly}, in: Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018. Cham: Birkhäuser. 243--250 (2020; Zbl 1459.35086) Full Text: DOI arXiv OpenURL
Cano-Casanova, Santiago Influence of the spatial heterogeneities in the existence of positive solutions of logistic BVPs with sublinear mixed boundary conditions. (English) Zbl 1459.35210 Rend. Ist. Mat. Univ. Trieste 52, 163-191 (2020). MSC: 35J91 35J25 35B09 PDF BibTeX XML Cite \textit{S. Cano-Casanova}, Rend. Ist. Mat. Univ. Trieste 52, 163--191 (2020; Zbl 1459.35210) Full Text: DOI Link OpenURL
Kong, Lingju; Wang, Min Multiple and particular solutions of a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1474.39036 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020). MSC: 39A27 34B15 49K30 PDF BibTeX XML Cite \textit{L. Kong} and \textit{M. Wang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020; Zbl 1474.39036) Full Text: DOI OpenURL
Ammari, Habib; Imeri, Kthim; Nigam, Nilima Optimization of Steklov-Neumann eigenvalues. (English) Zbl 1453.35056 J. Comput. Phys. 406, Article ID 109211, 15 p. (2020). MSC: 35J08 35B20 35P05 76B10 65N25 35A02 35A01 PDF BibTeX XML Cite \textit{H. Ammari} et al., J. Comput. Phys. 406, Article ID 109211, 15 p. (2020; Zbl 1453.35056) Full Text: DOI arXiv OpenURL
Zhao, Zhongjian; Chen, Shaochun A triangular prism finite element for the second-order elliptic mixed problem. (Chinese. English summary) Zbl 1463.65391 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 684-693 (2020). MSC: 65N30 65N12 65N15 35J15 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{S. Chen}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 684--693 (2020; Zbl 1463.65391) OpenURL
Tarzia, Domingo; Bollo, Carolina; Gariboldi, Claudia Convergence of simultaneous distributed-boundary parabolic optimal control problems. (English) Zbl 1455.49004 Evol. Equ. Control Theory 9, No. 4, 1187-1201 (2020). MSC: 49J20 35K05 49K20 49J45 PDF BibTeX XML Cite \textit{D. Tarzia} et al., Evol. Equ. Control Theory 9, No. 4, 1187--1201 (2020; Zbl 1455.49004) Full Text: DOI arXiv OpenURL
Guidetti, Davide On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. (English) Zbl 1455.35142 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3461-3471 (2020). MSC: 35L53 47D06 PDF BibTeX XML Cite \textit{D. Guidetti}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3461--3471 (2020; Zbl 1455.35142) Full Text: DOI OpenURL
Umavathi, Jawali C.; Ali, Hafiz Muhammad; Patil, Sapnali Limbaraj Triple diffusive mixed convection flow in a duct using convective boundary conditions. (English) Zbl 1454.35300 Math. Methods Appl. Sci. 43, No. 15, 9223-9244 (2020). MSC: 35Q35 76V05 76R50 35B20 65L10 65L06 65M22 PDF BibTeX XML Cite \textit{J. C. Umavathi} et al., Math. Methods Appl. Sci. 43, No. 15, 9223--9244 (2020; Zbl 1454.35300) Full Text: DOI OpenURL
Mamanazarov, A. O. Unique solvability of problems for a mixed parabolic equation in unbounded domain. (English) Zbl 1452.35113 Lobachevskii J. Math. 41, No. 9, 1837-1845 (2020). MSC: 35M12 35A01 35A02 45B05 45D05 34A08 34B60 35B45 33E12 PDF BibTeX XML Cite \textit{A. O. Mamanazarov}, Lobachevskii J. Math. 41, No. 9, 1837--1845 (2020; Zbl 1452.35113) Full Text: DOI OpenURL
Islomov, B. I.; Ubaydullayev, U. Sh. On a boundary-value problem for a parabolic-hyperbolic equation with fractional order Caputo operator in rectangular domain. (English) Zbl 1452.35111 Lobachevskii J. Math. 41, No. 9, 1801-1810 (2020). MSC: 35M12 35R11 PDF BibTeX XML Cite \textit{B. I. Islomov} and \textit{U. Sh. Ubaydullayev}, Lobachevskii J. Math. 41, No. 9, 1801--1810 (2020; Zbl 1452.35111) Full Text: DOI OpenURL
Jleli, Mohamed; Kirane, Mokhtar; Samet, Bessem Solution blow-up for a fractional in time acoustic wave equation. (English) Zbl 1452.35046 Math. Methods Appl. Sci. 43, No. 10, 6566-6575 (2020). MSC: 35B44 35L05 35L20 35R11 26A33 PDF BibTeX XML Cite \textit{M. Jleli} et al., Math. Methods Appl. Sci. 43, No. 10, 6566--6575 (2020; Zbl 1452.35046) Full Text: DOI OpenURL
Wang, Yan’e; Nie, Hua; Wu, Jianhua Coexistence and bistability of a competition model with mixed dispersal strategy. (English) Zbl 1451.35070 Nonlinear Anal., Real World Appl. 56, Article ID 103175, 19 p. (2020). MSC: 35K57 92D25 35R60 35K51 PDF BibTeX XML Cite \textit{Y. Wang} et al., Nonlinear Anal., Real World Appl. 56, Article ID 103175, 19 p. (2020; Zbl 1451.35070) Full Text: DOI OpenURL
Carmona, José; Colorado, Eduardo; Leonori, Tommaso; Ortega, Alejandro Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions. (English) Zbl 1474.35261 Fract. Calc. Appl. Anal. 23, No. 4, 1208-1239 (2020). MSC: 35J25 35J61 35J20 PDF BibTeX XML Cite \textit{J. Carmona} et al., Fract. Calc. Appl. Anal. 23, No. 4, 1208--1239 (2020; Zbl 1474.35261) Full Text: DOI arXiv OpenURL
Toprakseven, Şuayip On Lyapunov-type inequalities for boundary value problems of fractional Caputo-Fabrizio derivative. (English) Zbl 1450.35280 Turk. J. Math. 44, No. 4, 1362-1375 (2020). MSC: 35R11 35A09 34A40 26D10 34C10 PDF BibTeX XML Cite \textit{Ş. Toprakseven}, Turk. J. Math. 44, No. 4, 1362--1375 (2020; Zbl 1450.35280) Full Text: DOI OpenURL
Kim, Tujin; Cao, Daomin Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating. (English) Zbl 1448.35241 Methods Appl. Anal. 27, No. 2, 87-124 (2020). MSC: 35J87 35Q35 49J40 76D03 76D05 PDF BibTeX XML Cite \textit{T. Kim} and \textit{D. Cao}, Methods Appl. Anal. 27, No. 2, 87--124 (2020; Zbl 1448.35241) Full Text: DOI OpenURL
Rapún, Maria-Luisa On the solution of direct and inverse multiple scattering problems for mixed sound-soft, sound-hard and penetrable objects. (English) Zbl 1448.35408 Inverse Probl. 36, No. 9, Article ID 095014, 30 p. (2020). MSC: 35Q35 76Q05 35J05 65N38 65N35 35R30 65N30 PDF BibTeX XML Cite \textit{M.-L. Rapún}, Inverse Probl. 36, No. 9, Article ID 095014, 30 p. (2020; Zbl 1448.35408) Full Text: DOI OpenURL
Baranetskij, Ya. O.; Kalenyuk, P. I.; Kopach, M. I.; Solomko, A. V. The nonlocal boundary value problem with perturbations of mixed boundary conditions for an elliptic equation with constant coefficients. II. (English) Zbl 1448.35153 Carpathian Math. Publ. 12, No. 1, 173-188 (2020). MSC: 35J30 35J40 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} et al., Carpathian Math. Publ. 12, No. 1, 173--188 (2020; Zbl 1448.35153) Full Text: DOI OpenURL