×

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. (English) Zbl 1443.82008

Summary: We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. The latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

MSC:

82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

Software:

Trilinos; Peridigm
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Phillips, R., Crystals, Defects and Microstructures: Modeling Across Scales (2001), Cambridge University Press
[2] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[3] Silling, S. A.; Lehoucq, R. B., (Peridynamic Theory of Solid Mechanics. Peridynamic Theory of Solid Mechanics, Advances in Applied Mechanics, vol. 44 (2010), Elsevier), 73-168
[4] Di Paola, M.; Failla, G.; Zingales, M., Physically-based approach to the mechanics of strong non-local linear elasticity theory, J. Elasticity, 97, 2, 103-130 (2009) · Zbl 1188.74010
[5] Han, Fei; Lubineau, Gilles, Coupling of nonlocal and local continuum models by the Arlequin approach, Internat. J. Numer. Methods Engrg., 89, 6, 671-685 (2012) · Zbl 1242.74004
[6] Hildebrandt, A.; Blossey, R.; Rjasanow, S.; Kohlbacher, O.; Lenhof, H.-P., Novel formulation of nonlocal electrostatics, Phys. Rev. Lett., 93, Article 108104 pp. (2004)
[7] Bardhan, Jaydeep P., Gradient models in molecular biophysics: Progress, challenges, opportunities, J. Mech. Behav. Mater., 22, 5-6, 169-184 (2013)
[8] Miller, R.; Tadmor, E., A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Modelling Simul. Mater. Sci. Eng., 17, 5, Article 053001 pp. (2009)
[9] Luskin, M.; Ortner, C., Atomistic-to-continuum coupling, Acta Numer., 22, 397-508 (2013) · Zbl 1464.74007
[10] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73, 6, 1529-1563 (1996)
[11] Kohlhoff, S.; Gumbsch, P.; Fischmeister, H. F., Crack propagation in bcc crystals studied with a combined finite-element and atomistic model, Phil. Mag., 64, 4, 851-878 (1991)
[12] Seleson, Pablo; Beneddine, Samir; Prudhomme, Serge, A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci., 66, 0, 34-49 (2013), Multiscale simulation of heterogeneous materials and coupling of thermodynamic models
[13] Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian; Askari, Abe, A morphing strategy to couple non-local to local continuum mechanics, J. Mech. Phys. Solids, 60, 6, 1088-1102 (2012)
[14] Azdoud, Yan; Han, Fei; Lubineau, Gilles, A morphing framework to couple non-local and local anisotropic continua, Internat. J. Solids Structures, 50, 9, 1332-1341 (2013)
[15] Badia, S.; Bochev, P.; Gunzburger, M.; Lehoucq, R.; Parks, M., Blending methods for coupling atomistic and continuum models, (Fish, J., Bridging the Scales in Science and Engineering (2009), Oxford University Press), 165-186 · Zbl 1432.74001
[16] Ben Dhia, Hashmi; Rateau, Guillaume, The Arlequin method as a flexible engineering design tool, Internat. J. Numer. Methods Engrg., 62, 11, 1442-1462 (2005) · Zbl 1084.74049
[17] Salinger, A. G.; Bartlett, R. A.; Chen, Q.; Gao, X.; Hansen, G. A.; Kalashnikova, I.; Mota, A.; Muller, R. P.; Nielsen, E.; Ostien, J. T.; Pawlowski, R. P.; Phipps, E. T.; Sun, W., Albany: A component-based partial differential equation code built on trilinos. SAND Report 2013-8430J (2013), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM and Livermore, CA
[18] Parks, M. L.; Littlewood, D. J.; Mitchell, J. A.; Silling, S. A., Peridigm Users’ Guide v1.0.0. SAND Report 2012-7800 (2012), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM and Livermore, CA
[19] Olson, D.; Bochev, P.; Luskin, M.; Shapeev, A., An optimization-based atomistic-to-continuum coupling method, SIAM J. Numer. Anal., 52, 4, 2183-2204 (2014) · Zbl 1306.65220
[20] Olson, D.; Shapeev, A.; Bochev, P.; Luskin, M., Analysis of an optimization-based atomistic-to-continuum coupling method for point defects, M2AN Math. Model. Numer. Anal. (ESAIM), 50, 1, 1-41 (2016) · Zbl 1353.82022
[22] D’Elia, M.; Bochev, P., Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method. Sandia Report SAND (2015), Sandia National Laboratories, Sandia National Laboratories Albuquerque: Sandia National Laboratories, Sandia National Laboratories Albuquerque New Mexico 87185
[23] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 03, 493-540 (2013) · Zbl 1266.26020
[24] D’Elia, M.; Du, Q.; Gunzburger, M. D.; Lehoucq, R. B., Finite range jump processes and volume-constrained diffusion problems. Technical Report SAND2014-2584J (2014), Sandia National Laboratories
[25] Du, Q.; Gunzburger, M.; Lehoucq, R.; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 4, 667-696 (2012) · Zbl 1422.76168
[26] Chen, X.; Gunzburger, Max, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Methods Appl. Mech. Engrg., 200, 9-12, 1237-1250 (2011) · Zbl 1225.74082
[27] Aksoylu, B.; Parks, M., Towards domain decomposition for nonlocal problems. Technical Report (2009)
[28] Burch, N.; Lehoucq, R. B., Classical, nonlocal, and fractional diffusion equations on bounded domains, Int. J. Multiscale Comput. Eng., 9, 661-674 (2011)
[29] Tian, L.; Du, Q.; Ju, L.; Zhou, K., A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models, Math. Comp., 82, 1889-1922 (2013) · Zbl 1327.65101
[30] Gunzburger, M. D.; Seleson, P.; Parks, M. L.; Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul., 8, 204-227 (2009) · Zbl 1375.82073
[31] Zhou, K.; Du, Q., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Numer. Anal., 48, 5, 1759-1780 (2010) · Zbl 1220.82074
[32] Salsa, Sandro, Partial Differential Equations in Action: From Modelling to Theory (2008), Universitext. Springer-Verlag: Universitext. Springer-Verlag Italia Milano, Milano · Zbl 1146.35001
[33] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535 (2005)
[34] Littlewood, D. J., Roadmap for peridynamic software implementation. SAND Report (2015), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM and Livermore, CA
[35] Gunzburger, M. D., Perspectives in Flow Control and Optimization (2002), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA
[36] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Software, 31, 3, 397-423 (2005) · Zbl 1136.65354
[37] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 1641-1665 (2014) · Zbl 1303.65098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.