Balooee, Javad; Chang, Shih-Sen; Tang, Jinfang System of generalized multi-valued resolvent equations: algorithmic and analytical approach. (English) Zbl 07770035 Bull. Korean Math. Soc. 60, No. 3, 785-827 (2023). MSC: 47H05 47H09 47J20 47J22 47J25 49J40 PDF BibTeX XML Cite \textit{J. Balooee} et al., Bull. Korean Math. Soc. 60, No. 3, 785--827 (2023; Zbl 07770035) Full Text: DOI
Peng, Zheng; Zhang, Xu; Yao, Zhiqiang A modified multivariate spectral gradient projection method for nonlinear complementarity problems. (English) Zbl 07761019 Comput. Appl. Math. 42, No. 8, Paper No. 323, 16 p. (2023). MSC: 90C33 PDF BibTeX XML Cite \textit{Z. Peng} et al., Comput. Appl. Math. 42, No. 8, Paper No. 323, 16 p. (2023; Zbl 07761019) Full Text: DOI
Van, Le Huynh My; Thuy, Dang Le; Anh, Tran Viet Modified subgradient extragradient methods for solving bilevel split variational inequality problems in Hilbert spaces. (English) Zbl 07755369 Acta Math. Vietnam. 48, No. 3, 459-478 (2023). MSC: 49J40 49J27 49M37 90C26 65K15 PDF BibTeX XML Cite \textit{L. H. M. Van} et al., Acta Math. Vietnam. 48, No. 3, 459--478 (2023; Zbl 07755369) Full Text: DOI
Zhang, Yan; Yang, Denglian; Zhang, Yongle Relaxation inertial projection algorithms for solving monotone variational inequality problems. (English) Zbl 07753351 Pac. J. Optim. 19, No. 3, 507-528 (2023). MSC: 65K15 47J20 47J25 49J40 49M20 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Pac. J. Optim. 19, No. 3, 507--528 (2023; Zbl 07753351) Full Text: Link
Salisu, Sani; Kumam, Poom; Sriwongsa, Songpong On fixed points of enriched contractions and enriched nonexpansive mappings. (English) Zbl 07752878 Carpathian J. Math. 39, No. 1, 237-254 (2023). MSC: 47H05 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{S. Salisu} et al., Carpathian J. Math. 39, No. 1, 237--254 (2023; Zbl 07752878) Full Text: DOI
Berinde, Vasile Approximating fixed points of demicontractive mappings via the quasi-nonexpansive case. (English) Zbl 07752866 Carpathian J. Math. 39, No. 1, 73-84 (2023). MSC: 47H10 47H05 54H25 PDF BibTeX XML Cite \textit{V. Berinde}, Carpathian J. Math. 39, No. 1, 73--84 (2023; Zbl 07752866) Full Text: DOI
Belay, Yirga Abebe; Zegeye, Habtu; Boikanyo, Oganeditse A. Solutions of split equality Hammerstein type equation problems in reflexive real Banach spaces. (English) Zbl 07752865 Carpathian J. Math. 39, No. 1, 45-72 (2023). MSC: 47H05 47H30 47J05 47J25 45L05 PDF BibTeX XML Cite \textit{Y. A. Belay} et al., Carpathian J. Math. 39, No. 1, 45--72 (2023; Zbl 07752865) Full Text: DOI
Baiya, Suparat; Ungchittrakool, Kasamsuk Modified inertial Mann’s algorithm and inertial hybrid algorithm for \(k\)-strict pseudo-contractive mappings. (English) Zbl 07752864 Carpathian J. Math. 39, No. 1, 27-43 (2023). MSC: 47H05 47H09 47H10 47J25 49M37 PDF BibTeX XML Cite \textit{S. Baiya} and \textit{K. Ungchittrakool}, Carpathian J. Math. 39, No. 1, 27--43 (2023; Zbl 07752864) Full Text: DOI
Liu, Leon; Moursi, Walaa M.; Vanderwerff, Jon Strongly nonexpansive mappings revisited: uniform monotonicity and operator splitting. (English) Zbl 07751184 SIAM J. Optim. 33, No. 4, 2570-2597 (2023). MSC: 49M27 65K10 90C25 47H14 49M29 49N15 49N45 PDF BibTeX XML Cite \textit{L. Liu} et al., SIAM J. Optim. 33, No. 4, 2570--2597 (2023; Zbl 07751184) Full Text: DOI arXiv
Balooee, Javad; Chang, Shih-sen; Yao, Jen-Chih A proximal iterative algorithm for system of generalized nonlinear variational-like inequalities and fixed point problems. (English) Zbl 07744447 Appl. Anal. 102, No. 13, 3661-3688 (2023). MSC: 47H05 47H06 47H09 47J22 PDF BibTeX XML Cite \textit{J. Balooee} et al., Appl. Anal. 102, No. 13, 3661--3688 (2023; Zbl 07744447) Full Text: DOI
Boikanyo, Oganeditse A.; Zegeye, Habtu New iterative methods for finding solutions of Hammerstein equations. (English) Zbl 07734293 J. Appl. Math. Comput. 69, No. 2, 1465-1490 (2023). MSC: 47J25 47H05 47H09 47H30 PDF BibTeX XML Cite \textit{O. A. Boikanyo} and \textit{H. Zegeye}, J. Appl. Math. Comput. 69, No. 2, 1465--1490 (2023; Zbl 07734293) Full Text: DOI
Bauschke, Heinz H.; Singh, Shambhavi; Wang, Xianfu On Carlier’s inequality. (English) Zbl 07733430 J. Convex Anal. 30, No. 2, 499-514 (2023). MSC: 90Cxx 26B25 47H05 26D07 90C25 PDF BibTeX XML Cite \textit{H. H. Bauschke} et al., J. Convex Anal. 30, No. 2, 499--514 (2023; Zbl 07733430) Full Text: arXiv Link
Caruso, Francesco; Ceparano, Maria Carmela; Morgan, Jacqueline Affine relaxations of the best response algorithm: global convergence in ratio-bounded games. (English) Zbl 07725765 SIAM J. Optim. 33, No. 3, 1914-1942 (2023). MSC: 47N10 91A10 91A68 PDF BibTeX XML Cite \textit{F. Caruso} et al., SIAM J. Optim. 33, No. 3, 1914--1942 (2023; Zbl 07725765) Full Text: DOI
Hernández-Linares, Carlos Alberto; Martínez-Anteo, Eduardo; Muñiz-Pérez, Omar Characterizations of the existence of solutions for variational inequality problems in Hilbert spaces. (English) Zbl 07725408 J. Fixed Point Theory Appl. 25, No. 3, Paper No. 66, 16 p. (2023). MSC: 47N10 47H05 47H09 47H10 49J40 PDF BibTeX XML Cite \textit{C. A. Hernández-Linares} et al., J. Fixed Point Theory Appl. 25, No. 3, Paper No. 66, 16 p. (2023; Zbl 07725408) Full Text: DOI
Ugwunnadi, G. C.; Haruna, L. Y.; Harbau, M. H. Accelerated Krasnoselski-Mann type algorithm for hierarchical fixed point and split monotone variational inclusion problems in Hilbert spaces. (English) Zbl 07723421 Carpathian Math. Publ. 15, No. 1, 158-179 (2023). MSC: 47J25 47J22 47H09 PDF BibTeX XML Cite \textit{G. C. Ugwunnadi} et al., Carpathian Math. Publ. 15, No. 1, 158--179 (2023; Zbl 07723421) Full Text: DOI
Thong, Duong Viet; Li, Xiao-Huan; Dong, Qiao-Li; Van Thang, Hoang; Van Long, Luong Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces. (English) Zbl 07715008 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 917-937 (2023). MSC: 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 3, 917--937 (2023; Zbl 07715008) Full Text: DOI
Mewomo, Oluwatosin Temitope; Ogbuisi, Ferdinard Udochukwu An iterative technique for solving split equality monotone variational inclusion and fixed point problems. (English) Zbl 1519.47089 J. Appl. Anal. 29, No. 1, 187-204 (2023). MSC: 47J25 47J40 90C25 90C52 PDF BibTeX XML Cite \textit{O. T. Mewomo} and \textit{F. U. Ogbuisi}, J. Appl. Anal. 29, No. 1, 187--204 (2023; Zbl 1519.47089) Full Text: DOI
Balooee, Javad; Yao, Jen-Chih Algorithmic and analytical approach for a class of generalized nonlinear variational-like inclusion problems. (English) Zbl 1519.47070 J. Nonlinear Convex Anal. 24, No. 4, 801-836 (2023). MSC: 47J22 47J25 47H05 47H06 47H09 49J40 PDF BibTeX XML Cite \textit{J. Balooee} and \textit{J.-C. Yao}, J. Nonlinear Convex Anal. 24, No. 4, 801--836 (2023; Zbl 1519.47070) Full Text: Link
Anh, Pham Ngoc; Kim, Jong Kyu; Hien, Nguyen Duc; Hong, Nguyen Van Strong convergence of inertial hybrid subgradient methods for solving equilibrium problems in Hilbert spaces. (English) Zbl 1514.65075 J. Nonlinear Convex Anal. 24, No. 3, 499-514 (2023). MSC: 65K10 90C25 49J35 47J25 47J20 91B50 PDF BibTeX XML Cite \textit{P. N. Anh} et al., J. Nonlinear Convex Anal. 24, No. 3, 499--514 (2023; Zbl 1514.65075) Full Text: Link
Balooee, Javad; Chang, Shih-Sen; Yao, Jen-Chih Generalized set-valued nonlinear variational-like inequalities and fixed point problems: existence and approximation solvability results. (English) Zbl 07708645 J. Optim. Theory Appl. 197, No. 3, 891-938 (2023). MSC: 47H05 47H09 47J20 47J22 47J25 PDF BibTeX XML Cite \textit{J. Balooee} et al., J. Optim. Theory Appl. 197, No. 3, 891--938 (2023; Zbl 07708645) Full Text: DOI
Udom, Akaninyene Udo; Nweke, Chijioke Joel Convergence results for stochastic convex feasibility problem using random Mann and simultaneous projection iterative algorithms in Hilbert space. (English) Zbl 07706317 Commun. Stat., Theory Methods 52, No. 12, 4329-4343 (2023). MSC: 47H07 49M05 54H25 58J65 PDF BibTeX XML Cite \textit{A. U. Udom} and \textit{C. J. Nweke}, Commun. Stat., Theory Methods 52, No. 12, 4329--4343 (2023; Zbl 07706317) Full Text: DOI
Belay, Yirga Abebe; Zegeye, Habtu; Boikanyo, Oganeditse A. Approximation methods for solving split equality of variational inequality and \(f,g\)-fixed point problems in reflexive Banach spaces. (English) Zbl 1519.47075 Nonlinear Funct. Anal. Appl. 28, No. 1, 135-173 (2023). MSC: 47J25 47H05 47H06 47H09 90C25 49J40 PDF BibTeX XML Cite \textit{Y. A. Belay} et al., Nonlinear Funct. Anal. Appl. 28, No. 1, 135--173 (2023; Zbl 1519.47075) Full Text: Link
Bauschke, Heinz H.; Singh, Shambhavi; Wang, Xianfu The splitting algorithms by Ryu, by Malitsky-Tam, and by Campoy applied to normal cones of linear subspaces converge strongly to the projection onto the intersection. (English) Zbl 07700282 SIAM J. Optim. 33, No. 2, 739-765 (2023). MSC: 41A50 49M27 65K05 47H05 15A10 47H09 49M37 90C25 PDF BibTeX XML Cite \textit{H. H. Bauschke} et al., SIAM J. Optim. 33, No. 2, 739--765 (2023; Zbl 07700282) Full Text: DOI arXiv
Tan, Bing; Li, Songxiao; Cho, Sun Young Inertial projection and contraction methods for pseudomonotone variational inequalities with non-Lipschitz operators and applications. (English) Zbl 1518.47109 Appl. Anal. 102, No. 4, 1199-1221 (2023). MSC: 47J25 47H05 47H09 49J40 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., Appl. Anal. 102, No. 4, 1199--1221 (2023; Zbl 1518.47109) Full Text: DOI
Thong, Duong Viet; Dung, Vu Tien; Anh, Pham Ky; Thang, Hoang Van A single projection algorithm with double inertial extrapolation steps for solving pseudomonotone variational inequalities in Hilbert space. (English) Zbl 1512.65114 J. Comput. Appl. Math. 426, Article ID 115099, 17 p. (2023). MSC: 65K15 47H05 47J25 65Y05 PDF BibTeX XML Cite \textit{D. V. Thong} et al., J. Comput. Appl. Math. 426, Article ID 115099, 17 p. (2023; Zbl 1512.65114) Full Text: DOI
Abass, H. A.; Ugwunnadi, G. C.; Narain, O. K. A modified inertial Halpern method for solving split monotone variational inclusion problems in Banach spaces. (English) Zbl 1518.47097 Rend. Circ. Mat. Palermo (2) 72, No. 3, 2287-2310 (2023). MSC: 47J25 47J22 47H09 47H06 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Rend. Circ. Mat. Palermo (2) 72, No. 3, 2287--2310 (2023; Zbl 1518.47097) Full Text: DOI
Asfaw, Teffera M. On Nirenberg’s problem for compact perturbations of expansive operator and an application to \(p\)-Laplacian type equation with nonmonotone convection function. (English) Zbl 07688497 Mediterr. J. Math. 20, No. 4, Paper No. 209, 24 p. (2023). MSC: 47H14 47H07 47H11 PDF BibTeX XML Cite \textit{T. M. Asfaw}, Mediterr. J. Math. 20, No. 4, Paper No. 209, 24 p. (2023; Zbl 07688497) Full Text: DOI
Belay, Yirga Abebe; Zegeye, Habtu; Boikanyo, Oganeditse A. An inertial method for split equality common \(f, g\)-fixed point problems of \(f, g\)-pseudocontractive mappings in reflexive real Banach spaces. (English) Zbl 1517.47112 J. Anal. 31, No. 2, 963-1000 (2023). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{Y. A. Belay} et al., J. Anal. 31, No. 2, 963--1000 (2023; Zbl 1517.47112) Full Text: DOI
Zegeye, Habtu; Boikanyo, Oganeditse A. A Halpern-type algorithm for a common solution of nonlinear problems in Banach spaces. (English) Zbl 07682018 Topol. Algebra Appl. 11, Article ID 20220133, 17 p. (2023). MSC: 47H05 47H10 47J25 47J05 47J20 47J26 PDF BibTeX XML Cite \textit{H. Zegeye} and \textit{O. A. Boikanyo}, Topol. Algebra Appl. 11, Article ID 20220133, 17 p. (2023; Zbl 07682018) Full Text: DOI
Balooee, Javad; Chang, Shih-Sen; Yao, Jen-Chih A new class of variational-like inclusion problems: algorithmic and analytical approach. (English) Zbl 1516.47098 J. Ind. Manag. Optim. 19, No. 9, 6364-6397 (2023). MSC: 47J22 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{J. Balooee} et al., J. Ind. Manag. Optim. 19, No. 9, 6364--6397 (2023; Zbl 1516.47098) Full Text: DOI
Dey, Soumitra A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions. (English) Zbl 07676508 Numer. Algorithms 93, No. 1, 1-25 (2023). MSC: 65Y05 65K15 68W10 47H05 47H10 PDF BibTeX XML Cite \textit{S. Dey}, Numer. Algorithms 93, No. 1, 1--25 (2023; Zbl 07676508) Full Text: DOI
Kondo, Atsumasa Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert spaces. (English) Zbl 07670403 Rend. Circ. Mat. Palermo (2) 72, No. 2, 1417-1435 (2023). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, Rend. Circ. Mat. Palermo (2) 72, No. 2, 1417--1435 (2023; Zbl 07670403) Full Text: DOI
Bauschke, Heinz H.; Krishan Lal, Manish; Wang, Xianfu Directional asymptotics of Fejér monotone sequences. (English) Zbl 1515.90098 Optim. Lett. 17, No. 3, 531-544 (2023). MSC: 90C25 47H09 47J26 47H05 65K10 PDF BibTeX XML Cite \textit{H. H. Bauschke} et al., Optim. Lett. 17, No. 3, 531--544 (2023; Zbl 1515.90098) Full Text: DOI arXiv
Zegeye, Habtu; Boikanyo, Oganeditse A. A common solution of \(f\)-fixed point and variational inequality problems in Banach spaces. (English) Zbl 07664568 Optimization 72, No. 3, 737-762 (2023). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{H. Zegeye} and \textit{O. A. Boikanyo}, Optimization 72, No. 3, 737--762 (2023; Zbl 07664568) Full Text: DOI
Dang Van Hieu; Pham Kim Quy One-step iterative method for bilevel equilibrium problem in Hilbert space. (English) Zbl 1515.47089 J. Glob. Optim. 85, No. 2, 487-510 (2023). MSC: 47J25 47H05 49J27 49J40 65K15 91A65 PDF BibTeX XML Cite \textit{Dang Van Hieu} and \textit{Pham Kim Quy}, J. Glob. Optim. 85, No. 2, 487--510 (2023; Zbl 1515.47089) Full Text: DOI
Balooee, Javad; Chang, Shih-sen; Liu, Min; Zhu, Jinhua Algorithmic aspect and iterative approximation of a solution for a system of generalized multi-valued variational-like inclusions in Banach spaces. (English) Zbl 07644250 Numer. Funct. Anal. Optim. 44, No. 2, 138-159 (2023). MSC: 47H05 47H09 47J20 47J22 PDF BibTeX XML Cite \textit{J. Balooee} et al., Numer. Funct. Anal. Optim. 44, No. 2, 138--159 (2023; Zbl 07644250) Full Text: DOI
Ouyang, Hui Bregman circumcenters: monotonicity and forward weak convergence. (English) Zbl 1518.90124 Optim. Lett. 17, No. 1, 121-141 (2023). Reviewer: Ctirad Matonoha (Praha) MSC: 90C48 47H04 47H05 52A41 26A51 PDF BibTeX XML Cite \textit{H. Ouyang}, Optim. Lett. 17, No. 1, 121--141 (2023; Zbl 1518.90124) Full Text: DOI arXiv
Thong, Duong Viet; Dung, Vu Tien A relaxed inertial factor of the modified subgradient extragradient method for solving pseudo monotone variational inequalities in Hilbert spaces. (English) Zbl 1513.65205 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 184-204 (2023). MSC: 65K15 47H05 47J25 65J05 65Y05 PDF BibTeX XML Cite \textit{D. V. Thong} and \textit{V. T. Dung}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 184--204 (2023; Zbl 1513.65205) Full Text: DOI
Thong, Duong Viet; Liu, Lu-Lu; Dong, Qiao-Li; Long, Luong Van; Tuan, Pham Anh Fast relaxed inertial Tseng’s method-based algorithm for solving variational inequality and fixed point problems in Hilbert spaces. (English) Zbl 1497.65103 J. Comput. Appl. Math. 418, Article ID 114739, 22 p. (2023). MSC: 65K15 47H05 47J25 65Y05 PDF BibTeX XML Cite \textit{D. V. Thong} et al., J. Comput. Appl. Math. 418, Article ID 114739, 22 p. (2023; Zbl 1497.65103) Full Text: DOI
Yotkaew, Pongsakorn; Rehman, Habib ur; Panyanak, Bancha; Pakkaranang, Nuttapol Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems. (English) Zbl 07752816 Carpathian J. Math. 38, No. 1, 249-262 (2022). MSC: 65K15 49J40 47H05 PDF BibTeX XML Cite \textit{P. Yotkaew} et al., Carpathian J. Math. 38, No. 1, 249--262 (2022; Zbl 07752816) Full Text: DOI
Kumar, Santosh; Osward, Richard; Sangago, Mengistu Goa Extragradient method for approximating a common solution for a fixed point and variational inequality problems in Hilbert space. (English) Zbl 07712138 Novi Sad J. Math. 52, No. 2, 13-29 (2022). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{S. Kumar} et al., Novi Sad J. Math. 52, No. 2, 13--29 (2022; Zbl 07712138) Full Text: DOI
Jung, Jong Soo An implicit iterative algorithm for finding common solutions of convex minimization, variational inequality and fixed point problems. (English) Zbl 1507.49007 Linear Nonlinear Anal. 8, No. 3, 277-293 (2022). MSC: 49J40 49J45 47H09 47H10 47J20 47J25 47J05 PDF BibTeX XML Cite \textit{J. S. Jung}, Linear Nonlinear Anal. 8, No. 3, 277--293 (2022; Zbl 1507.49007) Full Text: Link
Godwin, Emeka Chigaemezu; Abass, Hammed Anuoluwapo; Izuchukwu, Chinedu; Mewomo, Oluwatosin Temitope On split equality equilibrium, monotone variational inclusion and fixed point problems in Banach spaces. (English) Zbl 1510.47087 Asian-Eur. J. Math. 15, No. 7, Article ID 2250139, 29 p. (2022). MSC: 47J25 47H09 47J22 PDF BibTeX XML Cite \textit{E. C. Godwin} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250139, 29 p. (2022; Zbl 1510.47087) Full Text: DOI
Atsushiba, Sachiko A nonlinear mean convergence theorem for two monotone nonexpansive mappings in Banach spaces. (English) Zbl 07644617 Linear Nonlinear Anal. 8, No. 2, 155-162 (2022). MSC: 47H05 47H07 47H09 47H25 PDF BibTeX XML Cite \textit{S. Atsushiba}, Linear Nonlinear Anal. 8, No. 2, 155--162 (2022; Zbl 07644617) Full Text: Link
ur Rehman, Habib; Kumam, Poom; Ozdemir, Murat; Argyros, Ioannis K.; Kumam, Wiyada Three novel inertial explicit Tseng’s extragradient methods for solving pseudomonotone variational inequalities. (English) Zbl 1508.65072 Optimization 71, No. 16, 4697-4730 (2022). MSC: 65K15 47H05 47H10 49J40 65Y05 PDF BibTeX XML Cite \textit{H. ur Rehman} et al., Optimization 71, No. 16, 4697--4730 (2022; Zbl 1508.65072) Full Text: DOI
Abass, H. A.; Jolaoso, L. O.; Mewomo, O. T. Convergence analysis for split hierachical monotone variational inclusion problem in Hilbert spaces. (English) Zbl 1514.47089 Topol. Algebra Appl. 10, 167-184 (2022). MSC: 47J25 47J22 47H05 47H09 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Topol. Algebra Appl. 10, 167--184 (2022; Zbl 1514.47089) Full Text: DOI
Reich, Simeon; Tuyen, Truong Minh A new approach to solving split equality problems in Hilbert spaces. (English) Zbl 07632504 Optimization 71, No. 15, 4423-4445 (2022). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} and \textit{T. M. Tuyen}, Optimization 71, No. 15, 4423--4445 (2022; Zbl 07632504) Full Text: DOI
Mendy, John T.; Shukla, Rahul Viscosity like implicit methods for zeros of monotone operators in Banach spaces. (English) Zbl 1513.47123 Khayyam J. Math. 8, No. 1, 53-72 (2022). MSC: 47J25 47H05 45B05 PDF BibTeX XML Cite \textit{J. T. Mendy} and \textit{R. Shukla}, Khayyam J. Math. 8, No. 1, 53--72 (2022; Zbl 1513.47123) Full Text: DOI
Rahaman, Mijanur; Ishtyak, Mohd.; Ahmad, Iqbal; Ahmad, Rais Split monotone variational inclusion problem involving Cayley operators. (English) Zbl 07626525 Georgian Math. J. 29, No. 6, 897-911 (2022). MSC: 47H05 47H09 47J25 PDF BibTeX XML Cite \textit{M. Rahaman} et al., Georgian Math. J. 29, No. 6, 897--911 (2022; Zbl 07626525) Full Text: DOI
Tan, Bing; Cho, Sun Young Two new projection algorithms for variational inequalities in Hilbert spaces. (English) Zbl 1506.47121 J. Nonlinear Convex Anal. 23, No. 11, 2523-2534 (2022). MSC: 47J25 47H05 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, J. Nonlinear Convex Anal. 23, No. 11, 2523--2534 (2022; Zbl 1506.47121) Full Text: Link
Hojo, Mayumi A strong convergence theorem under Halpern’s iteration for generalized nonexpansive mappings in a Banach spaces. (English) Zbl 07620769 J. Nonlinear Convex Anal. 23, No. 2, 377-395 (2022). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{M. Hojo}, J. Nonlinear Convex Anal. 23, No. 2, 377--395 (2022; Zbl 07620769) Full Text: Link
Tri, Vo Viet Fixed point index computations for multivalued mapping and application to the problem of positive eigenvalues in ordered space. (English) Zbl 1515.47075 Appl. Gen. Topol. 23, No. 1, 107-119 (2022). MSC: 47H11 47H07 47H04 35P30 PDF BibTeX XML Cite \textit{V. V. Tri}, Appl. Gen. Topol. 23, No. 1, 107--119 (2022; Zbl 1515.47075) Full Text: DOI
Adhikari, Dhruba R.; Aryal, Ashok; Bhatt, Ghanshyam; Kunwar, Ishwari J.; Puri, Rajan; Ranabhat, Min Solvability of inclusions involving perturbations of positively homogeneous maximal monotone operators. (English) Zbl 07612975 Electron. J. Differ. Equ. 2022, Paper No. 63, 25 p. (2022). MSC: 47J22 47H14 47H05 47H11 PDF BibTeX XML Cite \textit{D. R. Adhikari} et al., Electron. J. Differ. Equ. 2022, Paper No. 63, 25 p. (2022; Zbl 07612975) Full Text: arXiv Link
Thong, Duong Viet; Luong, Van Long; Li, Xiao-Huan; Dong, Qiao-Li; Cho, Yeol Je; Tuan, Pham Anh A new self-adaptive algorithm for solving pseudomonotone variational inequality problems in Hilbert spaces. (English) Zbl 1508.65071 Optimization 71, No. 12, 3669-3693 (2022). MSC: 65K15 47H05 47H10 49J40 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Optimization 71, No. 12, 3669--3693 (2022; Zbl 1508.65071) Full Text: DOI
Jitpeera, Thanyarat; Tanaka, Tamaki; Kumam, Poom Triple-hierarchical problems with variational inequality. (English) Zbl 07611149 Numer. Algebra Control Optim. 12, No. 4, 837-858 (2022). MSC: 47H06 47H09 47H10 47J20 47J25 65J15 PDF BibTeX XML Cite \textit{T. Jitpeera} et al., Numer. Algebra Control Optim. 12, No. 4, 837--858 (2022; Zbl 07611149) Full Text: DOI
Khuangsatung, Wongvisarut; Kangtunyakarn, Atid Strong convergence for the modified split monotone variational inclusion and fixed point problem. (English) Zbl 1504.47100 Thai J. Math. 20, No. 2, 889-904 (2022). MSC: 47J25 47H09 47J22 PDF BibTeX XML Cite \textit{W. Khuangsatung} and \textit{A. Kangtunyakarn}, Thai J. Math. 20, No. 2, 889--904 (2022; Zbl 1504.47100) Full Text: Link
Ezeora, Jeremiah Nkwegu; Jackreece, Prebo Clifford Inertial-based iterative algorithms for solving generalized split common null point problems in real Hilbert spaces. (English) Zbl 07596408 Appl. Anal. Optim. 6, No. 2, 269-287 (2022). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{J. N. Ezeora} and \textit{P. C. Jackreece}, Appl. Anal. Optim. 6, No. 2, 269--287 (2022; Zbl 07596408) Full Text: Link
Ogbuisi, Ferdinard Udochukwu An inertial type algorithm for extended split equality variational inclusion and fixed point problems. (English) Zbl 07595348 Bull. Iran. Math. Soc. 48, No. 5, 2057-2078 (2022). MSC: 47H05 47H06 47H30 47J05 47J25 PDF BibTeX XML Cite \textit{F. U. Ogbuisi}, Bull. Iran. Math. Soc. 48, No. 5, 2057--2078 (2022; Zbl 07595348) Full Text: DOI
Rahimi, Asghar; Rezaei, Ali; Daraby, Bayaz; Ghasemi, Mostafa A new and faster iterative scheme including generalized \(\alpha\)-nonexpansive mappings in Banach spaces. (English) Zbl 1500.47113 Sahand Commun. Math. Anal. 19, No. 2, 91-111 (2022). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{A. Rahimi} et al., Sahand Commun. Math. Anal. 19, No. 2, 91--111 (2022; Zbl 1500.47113) Full Text: DOI
El Khannoussi, Mohammed Said; Zertiti, Abderrahim Bounds for the spectral radius of positive operators. (English) Zbl 1500.47059 Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022). MSC: 47B65 47A10 47H07 47H10 PDF BibTeX XML Cite \textit{M. S. El Khannoussi} and \textit{A. Zertiti}, Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022; Zbl 1500.47059) Full Text: Link
Balooee, Javad Generalized set-valued nonlinear variational-like inequality problems. (English) Zbl 1500.47090 Linear Nonlinear Anal. 8, No. 1, 49-79 (2022). MSC: 47J25 47H05 47J22 49J40 PDF BibTeX XML Cite \textit{J. Balooee}, Linear Nonlinear Anal. 8, No. 1, 49--79 (2022; Zbl 1500.47090) Full Text: Link
Matsushita, Shin-ya Strongly convergent fixed point algorithm with applications to structured monotone inclusion problems. (English) Zbl 1500.47111 Linear Nonlinear Anal. 8, No. 1, 31-48 (2022). MSC: 47J26 47H09 47H05 47J22 90C25 PDF BibTeX XML Cite \textit{S.-y. Matsushita}, Linear Nonlinear Anal. 8, No. 1, 31--48 (2022; Zbl 1500.47111) Full Text: Link
Khammahawong, Konrawut; Chaipunya, Parin; Kumam, Poom Iterative algorithms for monotone variational inequality and fixed point problems on Hadamard manifolds. (English) Zbl 1517.47101 Adv. Oper. Theory 7, No. 4, Paper No. 43, 38 p. (2022). MSC: 47J25 47H09 54H25 PDF BibTeX XML Cite \textit{K. Khammahawong} et al., Adv. Oper. Theory 7, No. 4, Paper No. 43, 38 p. (2022; Zbl 1517.47101) Full Text: DOI
Zegeye, Solomon B.; Sangago, Mengistu G.; Zegeye, Habtu Approximation of common solutions of nonlinear problems in Banach spaces. (English) Zbl 1503.47102 Comput. Appl. Math. 41, No. 5, Paper No. 200, 20 p. (2022). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{S. B. Zegeye} et al., Comput. Appl. Math. 41, No. 5, Paper No. 200, 20 p. (2022; Zbl 1503.47102) Full Text: DOI
Thong, Duong Viet; Li, Xiaoxiao; Dong, Qiao-Li; Van, Nguyen Thi Cam; Thang, Hoang Van Revisiting the extragradient method for finding the minimum-norm solution of non-Lipschitzian pseudo-monotone variational inequalities. (English) Zbl 1513.65206 Comput. Appl. Math. 41, No. 4, Paper No. 186, 22 p. (2022). MSC: 65K15 47J20 47J25 65Y05 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Comput. Appl. Math. 41, No. 4, Paper No. 186, 22 p. (2022; Zbl 1513.65206) Full Text: DOI
Linh, Nguyen Xuan; Thong, Duong Viet; Cholamjiak, Prasit; Tuan, Pham Anh; Long, Luong Van Strong convergence of an inertial extragradient method with an adaptive nondecreasing step size for solving variational inequalities. (English) Zbl 1513.65203 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 795-812 (2022). MSC: 65K15 47H05 47J20 47J25 65Y05 PDF BibTeX XML Cite \textit{N. X. Linh} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 795--812 (2022; Zbl 1513.65203) Full Text: DOI
Abass, H. A.; Ugwunnadi, G. C.; Narain, O. K.; Darvish, V. Inertial extragradient method for solving variational inequality and fixed point problems of a Bregman demigeneralized mapping in a reflexive Banach spaces. (English) Zbl 1507.47111 Numer. Funct. Anal. Optim. 43, No. 8, 933-960 (2022). MSC: 47J25 47H06 47H09 65K15 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Numer. Funct. Anal. Optim. 43, No. 8, 933--960 (2022; Zbl 1507.47111) Full Text: DOI
Thong, Duong Viet; Li, Xiao-Huan; Dong, Qiao-Li; Cho, Yeol Je; Rassias, Themistocles M. A projection and contraction method with adaptive step sizes for solving bilevel pseudo-monotone variational inequality problems. (English) Zbl 07558497 Optimization 71, No. 7, 2073-2096 (2022). MSC: 47H09 47J20 47J05 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Optimization 71, No. 7, 2073--2096 (2022; Zbl 07558497) Full Text: DOI
Wega, Getahun B.; Zegeye, Habtu; Boikanyo, Oganeditse A. Convergence results for a zero of the sum of a finite family of maximal monotone mappings in Banach spaces. (English) Zbl 07558490 Optimization 71, No. 7, 1907-1936 (2022). MSC: 47H05 47H09 47H10 47J25 90C25 PDF BibTeX XML Cite \textit{G. B. Wega} et al., Optimization 71, No. 7, 1907--1936 (2022; Zbl 07558490) Full Text: DOI
Ryu, Ernest K.; Hannah, Robert; Yin, Wotao Scaled relative graphs: nonexpansive operators via 2D Euclidean geometry. (English) Zbl 07550212 Math. Program. 194, No. 1-2 (A), 569-619 (2022). MSC: 47H05 47H09 51M04 90C25 49M27 PDF BibTeX XML Cite \textit{E. K. Ryu} et al., Math. Program. 194, No. 1--2 (A), 569--619 (2022; Zbl 07550212) Full Text: DOI arXiv
Husain, Shamshad; Asad, Mohd A modified Picard S-hybrid iterative process for solving split generalized equilibrium problem. (English) Zbl 07549860 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 120, 16 p. (2022). MSC: 47H04 47H05 47H09 47H10 PDF BibTeX XML Cite \textit{S. Husain} and \textit{M. Asad}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 120, 16 p. (2022; Zbl 07549860) Full Text: DOI
Egbulem, S. C.; Nwankwor, N. M.; Araka, N. N.; Ofoedu, E. U. Existence of fixed points of monotone asymptotic pointwise Lipschitzian mappings in hyperbolic metric spaces. (English) Zbl 1505.54068 J. Niger. Math. Soc. 41, No. 1, 1-12 (2022). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{S. C. Egbulem} et al., J. Niger. Math. Soc. 41, No. 1, 1--12 (2022; Zbl 1505.54068) Full Text: Link
Seshagiri Rao, N.; Kalyani, K.; Mitiku, Belay Fixed point results of almost generalized \((\phi, \psi, \theta)_s\)-contractive mappings in ordered \(b\)-metric spaces. (English) Zbl 1491.54155 Afr. Mat. 33, No. 2, Paper No. 64, 19 p. (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{N. Seshagiri Rao} et al., Afr. Mat. 33, No. 2, Paper No. 64, 19 p. (2022; Zbl 1491.54155) Full Text: DOI
Wang, W. Y.; Xia, F. Q. Random and cyclic projection algorithms for variational inequalities. (English) Zbl 1492.49015 Optimization 71, No. 6, 1677-1707 (2022). MSC: 49J40 49J55 PDF BibTeX XML Cite \textit{W. Y. Wang} and \textit{F. Q. Xia}, Optimization 71, No. 6, 1677--1707 (2022; Zbl 1492.49015) Full Text: DOI
Ogwo, Grace N.; Alakoya, Timilehin O.; Mewomo, Oluwatosin T. Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces. (English) Zbl 1504.47102 Demonstr. Math. 55, 193-216 (2022). MSC: 47J25 47H06 47H09 47J22 PDF BibTeX XML Cite \textit{G. N. Ogwo} et al., Demonstr. Math. 55, 193--216 (2022; Zbl 1504.47102) Full Text: DOI
Wang, Xianfu; Bauschke, Heinz H. The Bregman proximal average. (English) Zbl 1501.49013 SIAM J. Optim. 32, No. 2, 1379-1401 (2022). MSC: 49J53 26B25 26E60 47H05 90C26 52A01 PDF BibTeX XML Cite \textit{X. Wang} and \textit{H. H. Bauschke}, SIAM J. Optim. 32, No. 2, 1379--1401 (2022; Zbl 1501.49013) Full Text: DOI arXiv
Rezapour, Reza Shrinking projection method for demimetric mappings with variational inequality problems in an Hadamard space. (English) Zbl 1489.65097 J. Nonlinear Convex Anal. 23, No. 5, 957-967 (2022). MSC: 65K15 54H25 54E40 PDF BibTeX XML Cite \textit{R. Rezapour}, J. Nonlinear Convex Anal. 23, No. 5, 957--967 (2022; Zbl 1489.65097) Full Text: Link
Cai, Gang; Dong, Qiao Li; Peng, Yu Inertial viscosity iterative method for solving pseudo-monotone variational inequality problems and fixed point problems. (English) Zbl 1492.65176 Acta Math. Sin., Engl. Ser. 38, No. 5, 937-952 (2022). MSC: 65K15 47H10 47H05 65Y05 PDF BibTeX XML Cite \textit{G. Cai} et al., Acta Math. Sin., Engl. Ser. 38, No. 5, 937--952 (2022; Zbl 1492.65176) Full Text: DOI
Salehnejad, Maryam; Azhini, Mahdi Vector variational inequalities in \(G\)-convex spaces. (English) Zbl 1492.49011 Tamkang J. Math. 53, No. 2, 147-161 (2022). Reviewer: Liya Liu (Chengdu) MSC: 49J40 49J27 90C33 47H10 PDF BibTeX XML Cite \textit{M. Salehnejad} and \textit{M. Azhini}, Tamkang J. Math. 53, No. 2, 147--161 (2022; Zbl 1492.49011) Full Text: DOI
Kondo, Atsumasa Mean convergence theorems using hybrid methods to find common fixed points for noncommutative nonlinear mappings in Hilbert spaces. (English) Zbl 1496.47116 J. Appl. Math. Comput. 68, No. 1, 217-248 (2022). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, J. Appl. Math. Comput. 68, No. 1, 217--248 (2022; Zbl 1496.47116) Full Text: DOI
Sunthrayuth, Pongsakorn; Jolaoso, Lateef Olakunle; Cholamjiak, Prasit New Bregman projection methods for solving pseudo-monotone variational inequality problem. (English) Zbl 07532895 J. Appl. Math. Comput. 68, No. 3, 1565-1589 (2022). MSC: 47H09 47H10 47J25 47J05 PDF BibTeX XML Cite \textit{P. Sunthrayuth} et al., J. Appl. Math. Comput. 68, No. 3, 1565--1589 (2022; Zbl 07532895) Full Text: DOI
Wega, Getahun Bekele Construction of a solution of split equality variational inequality problem for pseudomonotone mappings in Banach spaces. (English) Zbl 1502.47094 J. Korean Math. Soc. 59, No. 3, 595-619 (2022). MSC: 47J25 49J40 65K15 90C25 PDF BibTeX XML Cite \textit{G. B. Wega}, J. Korean Math. Soc. 59, No. 3, 595--619 (2022; Zbl 1502.47094) Full Text: DOI
Tan, Bing; Cho, Sun Young Inertial extragradient algorithms with non-monotone stepsizes for pseudomonotone variational inequalities and applications. (English) Zbl 1497.47099 Comput. Appl. Math. 41, No. 3, Paper No. 121, 25 p. (2022). MSC: 47J25 47H05 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, Comput. Appl. Math. 41, No. 3, Paper No. 121, 25 p. (2022; Zbl 1497.47099) Full Text: DOI
Pham Ky Anh; Duong Viet Thong; Nguyen The Vinh Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. (English) Zbl 1492.65180 Optimization 71, No. 3, 505-528 (2022). MSC: 65K15 47H05 47H10 65Y05 68W10 PDF BibTeX XML Cite \textit{Pham Ky Anh} et al., Optimization 71, No. 3, 505--528 (2022; Zbl 1492.65180) Full Text: DOI
Thong, Duong Viet; Dong, Qiao-Li; Liu, Lu-Lu; Triet, Nguyen Anh; Lan, Nguyen Phuong Two fast converging inertial subgradient extragradient algorithms with variable stepsizes for solving pseudo-monotone VIPs in Hilbert spaces. (English) Zbl 1491.65041 J. Comput. Appl. Math. 410, Article ID 114260, 19 p. (2022). MSC: 65J99 65K15 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., J. Comput. Appl. Math. 410, Article ID 114260, 19 p. (2022; Zbl 1491.65041) Full Text: DOI
Tang, Yan; Lin, Honghua; Gibali, Aviv; Cho, Yeol Je Convergence analysis and applications of the inertial algorithm solving inclusion problems. (English) Zbl 1484.65114 Appl. Numer. Math. 175, 1-17 (2022). MSC: 65J15 47H05 47J22 PDF BibTeX XML Cite \textit{Y. Tang} et al., Appl. Numer. Math. 175, 1--17 (2022; Zbl 1484.65114) Full Text: DOI
Kwelegano, Karabo M. T.; Zegeye, Habtu; Boikanyo, Oganeditse A. An iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. (English) Zbl 07501041 Rend. Circ. Mat. Palermo (2) 71, No. 1, 325-348 (2022). MSC: 47H09 47J20 65K15 47J05 90C25 PDF BibTeX XML Cite \textit{K. M. T. Kwelegano} et al., Rend. Circ. Mat. Palermo (2) 71, No. 1, 325--348 (2022; Zbl 07501041) Full Text: DOI
Lotfikar, R.; Zamani Eskandani, G. A new algorithm for finding fixed points of Bregman asymptotically regular quasi-nonexpansive mapping and solutions of equilibrium problems. (English) Zbl 1497.47094 Asian-Eur. J. Math. 15, No. 1, Article ID 2250004, 24 p. (2022). MSC: 47J25 47H09 47H05 PDF BibTeX XML Cite \textit{R. Lotfikar} and \textit{G. Zamani Eskandani}, Asian-Eur. J. Math. 15, No. 1, Article ID 2250004, 24 p. (2022; Zbl 1497.47094) Full Text: DOI
Le, Vy Khoi On inclusions with monotone-type mappings in nonreflexive Banach spaces. (English) Zbl 07490441 J. Optim. Theory Appl. 192, No. 2, 484-509 (2022). MSC: 47J20 47J22 47H04 47H05 35J87 58E35 PDF BibTeX XML Cite \textit{V. K. Le}, J. Optim. Theory Appl. 192, No. 2, 484--509 (2022; Zbl 07490441) Full Text: DOI
Tan, Bing; Qin, Xiaolong; Yao, Jen-Chih Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems. (English) Zbl 1497.47100 J. Glob. Optim. 82, No. 3, 523-557 (2022). MSC: 47J25 47H05 47H09 49J15 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., J. Glob. Optim. 82, No. 3, 523--557 (2022; Zbl 1497.47100) Full Text: DOI
Orouji, Bijan; Agarwal, Ravi P.; Soori, Ebrahim; O’Regan, Donal The split common null point problem for generalized resolvents and nonexpansive mappings in Banach spaces. (English) Zbl 1487.47085 J. Nonlinear Convex Anal. 23, No. 1, 165-183 (2022). MSC: 47J05 47H05 47H09 PDF BibTeX XML Cite \textit{B. Orouji} et al., J. Nonlinear Convex Anal. 23, No. 1, 165--183 (2022; Zbl 1487.47085) Full Text: arXiv Link
Kondo, Atsumasa Strong approximation using hybrid methods to find common fixed points of noncommutative nonlinear mappings in Hilbert spaces. (English) Zbl 07489373 J. Nonlinear Convex Anal. 23, No. 1, 33-58 (2022). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, J. Nonlinear Convex Anal. 23, No. 1, 33--58 (2022; Zbl 07489373) Full Text: Link
Truong, N. D.; Kim, J. K.; Anh, T. H. H. Hybrid inertial contraction projection methods extended to variational inequality problems. (English) Zbl 1481.65097 Nonlinear Funct. Anal. Appl. 27, No. 1, 203-221 (2022). MSC: 65K15 90C25 49J35 47J25 47J20 PDF BibTeX XML Cite \textit{N. D. Truong} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 203--221 (2022; Zbl 1481.65097) Full Text: Link
Muangchoo, Kanikar A new explicit extragradient method for solving equilibrium problems with convex constraints. (English) Zbl 1496.47099 Nonlinear Funct. Anal. Appl. 27, No. 1, 1-22 (2022). MSC: 47J25 47H05 65K15 PDF BibTeX XML Cite \textit{K. Muangchoo}, Nonlinear Funct. Anal. Appl. 27, No. 1, 1--22 (2022; Zbl 1496.47099) Full Text: Link
Yang, Jun Projection and contraction methods for solving bilevel pseudomonotone variational inequalities. (English) Zbl 07483088 Acta Appl. Math. 177, Paper No. 7, 16 p. (2022). MSC: 47J20 90C25 90C30 47H05 PDF BibTeX XML Cite \textit{J. Yang}, Acta Appl. Math. 177, Paper No. 7, 16 p. (2022; Zbl 07483088) Full Text: DOI
Khuangsatung, Wongvisarut; Kangtunyakarn, Atid A method for solving the variational inequality problem and fixed point problems in Banach spaces. (English) Zbl 07472890 Tamkang J. Math. 53, No. 1, 23-36 (2022). MSC: 47H05 47H06 47H10 PDF BibTeX XML Cite \textit{W. Khuangsatung} and \textit{A. Kangtunyakarn}, Tamkang J. Math. 53, No. 1, 23--36 (2022; Zbl 07472890) Full Text: DOI
Thong, Duong Viet; Vuong, Phan Tu R-linear convergence analysis of inertial extragradient algorithms for strongly pseudo-monotone variational inequalities. (English) Zbl 1482.65099 J. Comput. Appl. Math. 406, Article ID 114003, 13 p. (2022). MSC: 65K15 65Y05 68W10 47H05 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} and \textit{P. T. Vuong}, J. Comput. Appl. Math. 406, Article ID 114003, 13 p. (2022; Zbl 1482.65099) Full Text: DOI
Husain, Shamshad; Asad, Mohd; Khairoowala, Mubashshir U. Strong convergence algorithm for the split problem of variational inclusions, split generalized equilibrium problem and fixed point problem. (English) Zbl 07638328 Armen. J. Math. 13, Paper No. 7, 32 p. (2021). MSC: 47H05 47H09 47H10 49J40 PDF BibTeX XML Cite \textit{S. Husain} et al., Armen. J. Math. 13, Paper No. 7, 32 p. (2021; Zbl 07638328) Full Text: DOI
Tan, Bing; Cho, Sun Young Self-adaptive inertial shrinking projection algorithms for solving pseudomonotone variational inequalities. (English) Zbl 07617212 J. Nonlinear Convex Anal. 22, No. 3, 613-627 (2021). MSC: 47H05 47J20 47J25 65K15 68W10 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, J. Nonlinear Convex Anal. 22, No. 3, 613--627 (2021; Zbl 07617212) Full Text: Link
Jing, Yixin Hybrid splitting algorithm for generalized equilibrium problems and monotone operators in Hilbert space. (English) Zbl 07617211 J. Nonlinear Convex Anal. 22, No. 3, 601-612 (2021). MSC: 47H09 47H05 47J25 PDF BibTeX XML Cite \textit{Y. Jing}, J. Nonlinear Convex Anal. 22, No. 3, 601--612 (2021; Zbl 07617211) Full Text: Link