×

New strong convergence method for the sum of two maximal monotone operators. (English) Zbl 07460650

A significant inclusion problem based on the sum of two set-valued maximal operators in Hilbert spaces is examined. Under proper hypotheses, the authors develop some of the corresponding point algorithms, with original contributions on the strong convergence of the inertial Douglas-Rachford splitting method, completed by adequated numerical examples and references.

MSC:

47H04 Set-valued operators
47H05 Monotone operators and generalizations

Software:

SPGL1; L1TestPack
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez, F.; Attouch, H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal, 9, 3-11 (2001) · Zbl 0991.65056
[2] Attouch, H.; Cabot, A., Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions, Appl Math Optim (2019) · Zbl 1434.90129 · doi:10.1007/s00245-019-09584-z
[3] Bauschke, HH; Combettes, PL, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math Oper Res, 26, 248-264 (2001) · Zbl 1082.65058
[4] Bauschke, HH; Combettes, PL, Convex analysis and monotone operator theory in Hilbert spaces. CMS books in mathematics (2011), New York: Springer, New York · Zbl 1218.47001
[5] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J Imaging Sci, 2, 1, 183-202 (2009) · Zbl 1175.94009
[6] Boikanyo OA (2016) The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators. Abstr Appl Anal. Article ID 2371857 · Zbl 1470.65109
[7] Boţ, RI; Csetnek, ER, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71, 519-540 (2016) · Zbl 1338.47076
[8] Boţ, RI; Csetnek, ER; Hendrich, C., Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl Math Comput, 256, 472-487 (2015) · Zbl 1338.65145
[9] Cegielski, A., Iterative methods for fixed point problems in Hilbert spaces. Lecture notes in mathematics 2057 (2012), Berlin: Springer, Berlin · Zbl 1256.47043
[10] Chang, S-S; Wen, C-F; Yao, J-C, A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces, RACSAM, 113, 729-747 (2019) · Zbl 07086844
[11] Cholamjiak, P., A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces, Numer. Algorithms, 71, 915-932 (2016) · Zbl 1342.47079
[12] Cholamjiak, W.; Cholamjiak, P.; Prasit, SS, An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20, 42 (2018) · Zbl 1491.47059
[13] Combettes, PL, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53, 475-504 (2004) · Zbl 1153.47305
[14] Dong, Q.; Jiang, D.; Cholamjiak, P.; Shehu, Y., A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions, J. Fixed Point Theory Appl., 19, 3097-3118 (2017) · Zbl 1482.47118
[15] Dong, QL; Cho, YJ; Zhong, Zhong LL; Rassias, TM, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70, 3, 687-704 (2018) · Zbl 1390.90568
[16] Douglas, J.; Rachford, HH, On the numerical solution of heat conduction problems in two or three space variables, Trans. Am. Math. Soc., 82, 421-439 (1956) · Zbl 0070.35401
[17] Eckstein J (1989) Splitting methods for monotone operators with applications to parallel optimization. Doctoral dissertation, Department of Civil Engineering, Massachusetts Institute of Technology. Available as Report LIDS-TH-1877, Laboratory for Information and Decision Sciences, MIT, Cambridge
[18] Eckstein, J.; Bertsekas, DP, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55, 3, 293-318 (1992) · Zbl 0765.90073
[19] Fukushima, M., The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Math. Program., 72, 1-15 (1996) · Zbl 0851.90138
[20] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Comput. Math. Appl., 2, 17-40 (1976) · Zbl 0352.65034
[21] Gibali, A.; Thong, DV, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55, 49 (2018) · Zbl 1482.65096
[22] Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics, vol 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. ISBN: 0-89871-230-0 · Zbl 0698.73001
[23] Glowinski, R.; Marrocco, A., Approximation par é’ements finis d’ordre un et résolution par pénalisation-dualité d’une classe de problémes non linéaires, R.A.I.R.O., R2, 41-76 (1975) · Zbl 0368.65053
[24] Güler, O., On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29, 403-419 (1991) · Zbl 0737.90047
[25] He, B.; Yuan, X., On the convergence rate of Douglas-Rachford operator splitting method, Math. Program., 153, 715-722 (2015) · Zbl 1327.90211
[26] Hirstoaga, SA, Iterative selection methods for common fixed point problems, J. Math. Anal. Appl., 324, 2, 1020-1035 (2006) · Zbl 1106.47057
[27] Lions, PL; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16, 964-979 (1979) · Zbl 0426.65050
[28] López G, Martín-Márquez V, Wang F, Xu H-K (2012) Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. Article ID 109236 · Zbl 1252.47043
[29] Lorenz, DA, Constructing test instances for Basis Pursuit Denoising, IEEE Trans. Signal Process., 61, 1210-1214 (2013) · Zbl 1393.94345
[30] Lorenz, DA; Pock, T., An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51, 311-325 (2015) · Zbl 1327.47063
[31] MacNamara, S.; Strang, G.; Glowinski, R.; Osher, S.; Yin, W., Operator splitting, Splitting methods in communication, imaging, science, and engineering, 95-114 (2016), Berlin: Springer, Berlin · Zbl 1372.65236
[32] Maingé, PE, Convergence theorem for inertial KM-type algorithms, J. Comput. Appl. Math., 219, 1, 223-236 (2008) · Zbl 1156.65054
[33] Martinet, B., Regularisation dequations variationnelles par approximations successives, Rev. Francaise Informat. Recherche. Operationnelle, 4, 154-158 (1970) · Zbl 0215.21103
[34] Moreau, JJ, Proximité et dualit’e dans un espace Hilbertien, Bull. Soc. Math. Fr., 93, 273-299 (1965) · Zbl 0136.12101
[35] Riahi, H.; Chbani, Z.; Loumi, M-T, Weak and strong convergences of the generalized penalty Forward-Forward and Forward-Backward splitting algorithms for solving bilevel hierarchical pseudomonotone equilibrium problems, Optimization, 67, 1745-1767 (2018) · Zbl 07001083
[36] Rockafellar, RT, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053
[37] Shehu Y (2016) Iterative approximations for zeros of sum of accretive operators in Banach spaces. J Funct Spaces. Article ID 5973468 · Zbl 1337.47096
[38] Shehu, Y., Convergence rate analysis of inertial Krasnoselskii-Mann-type iteration with applications, Numer. Funct. Anal. Optim., 39, 1077-1091 (2018) · Zbl 1401.49007
[39] Shehu, Y., Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math., 74, 138 (2019) · Zbl 07099993
[40] Shehu, Y.; Cai, G., Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications, RACSAM, 112, 71-87 (2018) · Zbl 06836237
[41] Shehu, Y.; Li, X-H; Dong, Q-L, An efficient projection-type method for monotone variational inequalities in Hilbert spaces, Numer. Algorithms, 84, 365-388 (2020) · Zbl 07202163
[42] Solodov, MV; Svaiter, BF, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. Ser. A, 87, 189-202 (2000) · Zbl 0971.90062
[43] Svaiter, BF, On weak convergence of the Douglas-Rachford method, SIAM J. Control Optim., 49, 280-287 (2011) · Zbl 1220.47064
[44] Thong, DV; Cholamjiak, P., Strong convergence of a forward-backward splitting method with a new step size for solving monotone inclusions, Comput. Appl. Math., 38, 94 (2019) · Zbl 1438.47106
[45] Thong, DV; Vinh, NT, Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings, Optimization, 68, 1037-1072 (2019) · Zbl 07068096
[46] van den Berg E, Friedlander MP (2007) SPGL1: a solver for large-scale sparse reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1. Version 1.9. Accessed 2015
[47] Villa, S.; Salzo, S.; Baldassarres, L.; Verri, A., Accelerated and inexact forward-backward, SIAM J. Optim., 23, 1607-1633 (2013) · Zbl 1295.90049
[48] Wang, Y.; Wang, F., Strong convergence of the forward-backward splitting method with multiple parameters in Hilbert spaces, Optimization, 67, 493-505 (2018) · Zbl 06865949
[49] Zhang, H.; Cheng, L., Projective splitting methods for sums of maximal monotone operators with applications, J. Math. Anal. Appl., 406, 323-334 (2013) · Zbl 1310.47109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.