Hoyois, Marc; Safronov, Pavel; Scherotzke, Sarah; Sibilla, Nicolò The categorified Grothendieck-Riemann-Roch theorem. (English) Zbl 07317314 Compos. Math. 157, No. 1, 154-214 (2021). MSC: 14A30 14F42 19D55 PDF BibTeX XML Cite \textit{M. Hoyois} et al., Compos. Math. 157, No. 1, 154--214 (2021; Zbl 07317314) Full Text: DOI
Hoyois, Marc The localization theorem for framed motivic spaces. (English) Zbl 07317308 Compos. Math. 157, No. 1, 1-11 (2021). MSC: 14F42 PDF BibTeX XML Cite \textit{M. Hoyois}, Compos. Math. 157, No. 1, 1--11 (2021; Zbl 07317308) Full Text: DOI
Bloch, Spencer; Vlasenko, Masha Gamma functions, monodromy and Frobenius constants. (English) Zbl 07310886 Commun. Number Theory Phys. 15, No. 1, 91-147 (2021). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D07 11G35 14D05 14F42 PDF BibTeX XML Cite \textit{S. Bloch} and \textit{M. Vlasenko}, Commun. Number Theory Phys. 15, No. 1, 91--147 (2021; Zbl 07310886) Full Text: DOI
Tsybyshev, A. A motivic Segal theorem for pairs (announcement). (English. Russian original) Zbl 07308629 J. Math. Sci., New York 252, No. 6, 860-872 (2021); translation from Zap. Nauchn. Semin. POMI 484, 165-184 (2019). MSC: 14F42 18G99 PDF BibTeX XML Cite \textit{A. Tsybyshev}, J. Math. Sci., New York 252, No. 6, 860--872 (2021; Zbl 07308629); translation from Zap. Nauchn. Semin. POMI 484, 165--184 (2019) Full Text: DOI
McKean, Stephen An arithmetic enrichment of Bézout’s theorem. (English) Zbl 07307521 Math. Ann. 379, No. 1-2, 633-660 (2021). MSC: 14N15 14F42 PDF BibTeX XML Cite \textit{S. McKean}, Math. Ann. 379, No. 1--2, 633--660 (2021; Zbl 07307521) Full Text: DOI
Garkusha, Grigory; Panin, Ivan Framed motives of algebraic varieties (after V. Voevodsky). (English) Zbl 07304882 J. Am. Math. Soc. 34, No. 1, 261-313 (2021). MSC: 14F42 14F45 55Q10 55P47 PDF BibTeX XML Cite \textit{G. Garkusha} and \textit{I. Panin}, J. Am. Math. Soc. 34, No. 1, 261--313 (2021; Zbl 07304882) Full Text: DOI
Burton, Simon; Sati, Hisham; Schreiber, Urs Lift of fractional D-brane charge to equivariant Cohomotopy theory. (English) Zbl 07303897 J. Geom. Phys. 161, Article ID 104034, 21 p. (2021). MSC: 81T32 81T13 19L47 55N32 14F42 19A22 20N02 13D03 PDF BibTeX XML Cite \textit{S. Burton} et al., J. Geom. Phys. 161, Article ID 104034, 21 p. (2021; Zbl 07303897) Full Text: DOI
Hu, Xiaowen; Kahn, Bruno On Suslin homology with integral coefficients in characteristic zero (with an appendix by Bruno Kahn). (English) Zbl 07303205 J. Pure Appl. Algebra 225, No. 5, Article ID 106570, 29 p. (2021). MSC: 14F42 19E15 PDF BibTeX XML Cite \textit{X. Hu} and \textit{B. Kahn}, J. Pure Appl. Algebra 225, No. 5, Article ID 106570, 29 p. (2021; Zbl 07303205) Full Text: DOI
Yang, Nanjun Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology. (English) Zbl 07302642 Manuscr. Math. 164, No. 1-2, 39-65 (2021). MSC: 14F42 11E81 PDF BibTeX XML Cite \textit{N. Yang}, Manuscr. Math. 164, No. 1--2, 39--65 (2021; Zbl 07302642) Full Text: DOI
Belmont, Eva; Guillou, Bertrand J.; Isaksen, Daniel C. \(C_2\)-equivariant and \(\mathbb{R}\)-motivic stable stems. II. (English) Zbl 07301316 Proc. Am. Math. Soc. 149, No. 1, 53-61 (2021). MSC: 14F42 55Q45 55Q91 55T15 PDF BibTeX XML Cite \textit{E. Belmont} et al., Proc. Am. Math. Soc. 149, No. 1, 53--61 (2021; Zbl 07301316) Full Text: DOI
Tsybyshev, A. Cobordism-framed correspondences and the Milnor \(K\)-theory. (English. Russian original) Zbl 1453.14070 St. Petersbg. Math. J. 32, No. 1, 183-198 (2021); translation from Algebra Anal. 32, No. 1, 244-264 (2020). MSC: 14F42 19D45 PDF BibTeX XML Cite \textit{A. Tsybyshev}, St. Petersbg. Math. J. 32, No. 1, 183--198 (2021; Zbl 1453.14070); translation from Algebra Anal. 32, No. 1, 244--264 (2020) Full Text: DOI
Navarro, A.; Navarro, J. On the Riemann-Roch formula without projective hypotheses. (English) Zbl 07291881 Trans. Am. Math. Soc. 374, No. 2, 755-772 (2021). MSC: 14C40 14F42 19E15 19E20 19L10 PDF BibTeX XML Cite \textit{A. Navarro} and \textit{J. Navarro}, Trans. Am. Math. Soc. 374, No. 2, 755--772 (2021; Zbl 07291881) Full Text: DOI
Deshmukh, Neeraj; Hogadi, Amit; Kulkarni, Girish; Yadav, Suraj Gabber’s presentation lemma over noetherian domains. (English) Zbl 07286480 J. Algebra 569, 169-179 (2021). Reviewer: Sebastian Wolf (Regensburg) MSC: 14F20 14F42 PDF BibTeX XML Cite \textit{N. Deshmukh} et al., J. Algebra 569, 169--179 (2021; Zbl 07286480) Full Text: DOI
Jin, Fangzhou; Yang, Enlin Künneth formulas for motives and additivity of traces. (English) Zbl 07282548 Adv. Math. 376, Article ID 107446, 84 p. (2021). MSC: 14F42 PDF BibTeX XML Cite \textit{F. Jin} and \textit{E. Yang}, Adv. Math. 376, Article ID 107446, 84 p. (2021; Zbl 07282548) Full Text: DOI
Knight, Joseph; Swaminathan, Ashvin A.; Tseng, Dennis On the EKL-degree of a Weyl cover. (English) Zbl 07262027 J. Algebra 565, 64-81 (2021). MSC: 14M15 55M25 14F42 14G27 PDF BibTeX XML Cite \textit{J. Knight} et al., J. Algebra 565, 64--81 (2021; Zbl 07262027) Full Text: DOI
Iwanari, Isamu Motivic rational homotopy type. (English) Zbl 07308121 High. Struct. 4, No. 2, 57-133 (2020). MSC: 14F35 55P62 19E15 PDF BibTeX XML Cite \textit{I. Iwanari}, High. Struct. 4, No. 2, 57--133 (2020; Zbl 07308121) Full Text: Link
Elmanto, Elden; Hoyois, Marc; Khan, Adeel A.; Sosnilo, Vladimir; Yakerson, Maria Modules over algebraic cobordism. (English) Zbl 07305786 Forum Math. Pi 8, Paper No. e14, 44 p. (2020). MSC: 14F42 14D23 PDF BibTeX XML Cite \textit{E. Elmanto} et al., Forum Math. Pi 8, Paper No. e14, 44 p. (2020; Zbl 07305786) Full Text: DOI
Levine, Marc Aspects of enumerative geometry with quadratic forms. (English) Zbl 07289291 Doc. Math. 25, 2179-2239 (2020). MSC: 14C17 14F42 PDF BibTeX XML Cite \textit{M. Levine}, Doc. Math. 25, 2179--2239 (2020; Zbl 07289291) Full Text: DOI
Brazelton, Thomas; Burklund, Robert; McKean, Stephen; Montoro, Michael; Opie, Morgan The trace of the local \(\mathbb{A}^1\)-degree. (English) Zbl 07283640 Homology Homotopy Appl. 23, No. 1, 243-255 (2020). MSC: 14F42 55M25 55P42 PDF BibTeX XML Cite \textit{T. Brazelton} et al., Homology Homotopy Appl. 23, No. 1, 243--255 (2020; Zbl 07283640) Full Text: DOI
Thai, Hieu The wedge family of the cohomology of the \(\mathbb{C}\)-motivic Steenrod algebra. (English) Zbl 07283634 Homology Homotopy Appl. 23, No. 1, 101-117 (2020). MSC: 55S10 55T15 PDF BibTeX XML Cite \textit{H. Thai}, Homology Homotopy Appl. 23, No. 1, 101--117 (2020; Zbl 07283634) Full Text: DOI
Nizioł, Wiesława On uniqueness of \(p\)-adic period morphisms. II. (English) Zbl 07283073 Compos. Math. 156, No. 9, 1915-1964 (2020). MSC: 14F30 11F80 14F40 14F42 PDF BibTeX XML Cite \textit{W. Nizioł}, Compos. Math. 156, No. 9, 1915--1964 (2020; Zbl 07283073) Full Text: DOI
Li, Ang The \(v_1\)-periodic region in the cohomology of the \(\mathbb{C}\)-motivic Steenrod algebra. (English) Zbl 07283055 New York J. Math. 26, 1355-1374 (2020). Reviewer: Geoffrey Powell (Angers) MSC: 55S30 55S10 55T15 14F42 PDF BibTeX XML Cite \textit{A. Li}, New York J. Math. 26, 1355--1374 (2020; Zbl 07283055) Full Text: Link
Primozic, Eric Motivic Steenrod operations in characteristic \(p\). (English) Zbl 07276288 Forum Math. Sigma 8, Paper No. e52, 25 p. (2020). MSC: 14F42 19E15 55P43 PDF BibTeX XML Cite \textit{E. Primozic}, Forum Math. Sigma 8, Paper No. e52, 25 p. (2020; Zbl 07276288) Full Text: DOI
Bachmann, Tom; Yakerson, Maria Towards conservativity of \(\mathbb{G}_m\)-stabilization. (English) Zbl 07274793 Geom. Topol. 24, No. 4, 1969-2034 (2020). MSC: 14F42 19E15 PDF BibTeX XML Cite \textit{T. Bachmann} and \textit{M. Yakerson}, Geom. Topol. 24, No. 4, 1969--2034 (2020; Zbl 07274793) Full Text: DOI
Varshovi, Amir Abbass \(\star\)-cohomology, Connes-Chern characters, and anomalies in general translation-invariant noncommutative Yang-Mills. (English) Zbl 1451.81328 Rep. Math. Phys. 86, No. 2, 157-173 (2020). MSC: 81T13 81T50 19L10 81R05 14F42 PDF BibTeX XML Cite \textit{A. A. Varshovi}, Rep. Math. Phys. 86, No. 2, 157--173 (2020; Zbl 1451.81328) Full Text: DOI
Guillou, Bertrand J.; Isaksen, Daniel C. The Bredon-Landweber region in \(C_2\)-equivariant stable homotopy groups. (English) Zbl 1453.55012 Doc. Math. 25, 1865-1880 (2020). Reviewer: Luca Pol (Regensburg) MSC: 55Q91 55T15 14F42 55Q45 PDF BibTeX XML Cite \textit{B. J. Guillou} and \textit{D. C. Isaksen}, Doc. Math. 25, 1865--1880 (2020; Zbl 1453.55012) Full Text: DOI
Kylling, Jonas Irgens; Röndigs, Oliver; Østvær, Paul Arne Hermitian \(K\)-theory, Dedekind \(\zeta \)-functions, and quadratic forms over rings of integers in number fields. (English) Zbl 07270297 Camb. J. Math. 8, No. 3, 505-607 (2020). MSC: 11R70 11R42 14F42 19E15 19F27 PDF BibTeX XML Cite \textit{J. I. Kylling} et al., Camb. J. Math. 8, No. 3, 505--607 (2020; Zbl 07270297) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb A^1\)-homotopy theory. III: Finite fields and complements. (English) Zbl 07262981 Algebr. Geom. 7, No. 5, 634-644 (2020). MSC: 14F42 14L10 55R15 20G15 PDF BibTeX XML Cite \textit{A. Asok} et al., Algebr. Geom. 7, No. 5, 634--644 (2020; Zbl 07262981) Full Text: DOI
Joachimi, Ruth Thick ideals in equivariant and motivic stable homotopy categories. (English) Zbl 07261946 Ohsawa, Takeo (ed.) et al., Bousfield classes and Ohkawa’s theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28–30, 2015. Singapore: Springer (ISBN 978-981-15-1587-3/hbk; 978-981-15-1588-0/ebook). Springer Proceedings in Mathematics & Statistics 309, 109-219 (2020). MSC: 55 PDF BibTeX XML Cite \textit{R. Joachimi}, in: Bousfield classes and Ohkawa's theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28--30, 2015. Singapore: Springer. 109--219 (2020; Zbl 07261946) Full Text: DOI
Minami, Norihiko From Ohkawa to strong generation via approximable triangulated categories – a variation on the theme of Amnon Neeman’s Nagoya lecture series. (English) Zbl 07261943 Ohsawa, Takeo (ed.) et al., Bousfield classes and Ohkawa’s theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28–30, 2015. Singapore: Springer (ISBN 978-981-15-1587-3/hbk; 978-981-15-1588-0/ebook). Springer Proceedings in Mathematics & Statistics 309, 17-88 (2020). MSC: 55 PDF BibTeX XML Cite \textit{N. Minami}, in: Bousfield classes and Ohkawa's theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28--30, 2015. Singapore: Springer. 17--88 (2020; Zbl 07261943) Full Text: DOI
Dan-Cohen, Ishai; Corwin, David The polylog quotient and the goncharov quotient in computational Chabauty-Kim theory. II. (English) Zbl 07254266 Trans. Am. Math. Soc. 373, No. 10, 6835-6861 (2020). MSC: 11G55 14F35 14F42 14G05 14F30 PDF BibTeX XML Cite \textit{I. Dan-Cohen} and \textit{D. Corwin}, Trans. Am. Math. Soc. 373, No. 10, 6835--6861 (2020; Zbl 07254266) Full Text: DOI
Levine, Marc; Raksit, Arpon Motivic Gauss-Bonnet formulas. (English) Zbl 07248673 Algebra Number Theory 14, No. 7, 1801-1851 (2020). MSC: 14F42 55N20 55N35 PDF BibTeX XML Cite \textit{M. Levine} and \textit{A. Raksit}, Algebra Number Theory 14, No. 7, 1801--1851 (2020; Zbl 07248673) Full Text: DOI
Ayoub, Joseph New Weil cohomologies in positive characteristic. (Nouvelles cohomologies de Weil en caractéristique positive.) (French. English summary) Zbl 07248671 Algebra Number Theory 14, No. 7, 1747-1790 (2020). MSC: 14F42 PDF BibTeX XML Cite \textit{J. Ayoub}, Algebra Number Theory 14, No. 7, 1747--1790 (2020; Zbl 07248671) Full Text: DOI
Doubek, Martin; Jurčo, Branislav; Markl, Martin; Sachs, Ivo Algebraic structure of string field theory. (English) Zbl 07245766 Lecture Notes in Physics 973. Cham: Springer (ISBN 978-3-030-53054-9/pbk; 978-3-030-53056-3/ebook). xi, 221 p. (2020). MSC: 81T30 81R15 18M60 14F42 55P40 PDF BibTeX XML Cite \textit{M. Doubek} et al., Algebraic structure of string field theory. Cham: Springer (2020; Zbl 07245766) Full Text: DOI
Dan-Cohen, Ishai Mixed Tate motives and the unit equation. II. (English) Zbl 1452.11076 Algebra Number Theory 14, No. 5, 1175-1237 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 11G55 11D45 14F30 14F35 14F42 14G05 PDF BibTeX XML Cite \textit{I. Dan-Cohen}, Algebra Number Theory 14, No. 5, 1175--1237 (2020; Zbl 1452.11076) Full Text: DOI
Yagita, Nobuaki Motivic cohomology of twisted flag varieties. (English) Zbl 07242771 Kyushu J. Math. 74, No. 1, 43-62 (2020). MSC: 14F42 14M15 55N20 57T15 PDF BibTeX XML Cite \textit{N. Yagita}, Kyushu J. Math. 74, No. 1, 43--62 (2020; Zbl 07242771) Full Text: DOI
Binda, Federico A motivic homotopy theory without \(\mathbb{A}^1 \)-invariance. (English) Zbl 1443.14025 Math. Z. 295, No. 3-4, 1475-1519 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 19E15 PDF BibTeX XML Cite \textit{F. Binda}, Math. Z. 295, No. 3--4, 1475--1519 (2020; Zbl 1443.14025) Full Text: DOI
Behrens, Mark; Shah, Jay \(C_2\)-equivariant stable homotopy from real motivic stable homotopy. (English) Zbl 07237238 Ann. \(K\)-Theory 5, No. 3, 411-464 (2020). MSC: 55N91 55P91 55Q91 14F42 PDF BibTeX XML Cite \textit{M. Behrens} and \textit{J. Shah}, Ann. \(K\)-Theory 5, No. 3, 411--464 (2020; Zbl 07237238) Full Text: DOI
Ormsby, Kyle; Röndigs, Oliver The homotopy groups of the \(\eta \)-periodic motivic sphere spectrum. (English) Zbl 1444.14051 Pac. J. Math. 306, No. 2, 679-697 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55Q45 PDF BibTeX XML Cite \textit{K. Ormsby} and \textit{O. Röndigs}, Pac. J. Math. 306, No. 2, 679--697 (2020; Zbl 1444.14051) Full Text: DOI
Gaitsgory, Dennis Parameterization of factorizable line bundles by \(K\)-theory and motivic cohomology. (English) Zbl 07229484 Sel. Math., New Ser. 26, No. 3, Paper No. 44, 50 p. (2020). MSC: 14F42 14D24 PDF BibTeX XML Cite \textit{D. Gaitsgory}, Sel. Math., New Ser. 26, No. 3, Paper No. 44, 50 p. (2020; Zbl 07229484) Full Text: DOI
Bondarko, Mikhail Vladimirovich On infinite effectivity of motivic spectra and the vanishing of their motives. (English) Zbl 07225793 Doc. Math. 25, 811-840 (2020). MSC: 18G80 14F42 14C15 55P42 11E81 14F20 18E40 PDF BibTeX XML Cite \textit{M. V. Bondarko}, Doc. Math. 25, 811--840 (2020; Zbl 07225793) Full Text: DOI
Elmanto, Elden; Kolderup, Håkon On modules over motivic ring spectra. (English) Zbl 1440.14120 Ann. \(K\)-Theory 5, No. 2, 327-355 (2020). MSC: 14F40 14F42 19E15 55P42 55P43 55U35 PDF BibTeX XML Cite \textit{E. Elmanto} and \textit{H. Kolderup}, Ann. \(K\)-Theory 5, No. 2, 327--355 (2020; Zbl 1440.14120) Full Text: DOI
Krishna, Amalendu; Park, Jinhyun A moving lemma for relative 0-cycles. (English) Zbl 1440.14036 Algebra Number Theory 14, No. 4, 991-1054 (2020). MSC: 14C25 14F42 19E15 PDF BibTeX XML Cite \textit{A. Krishna} and \textit{J. Park}, Algebra Number Theory 14, No. 4, 991--1054 (2020; Zbl 1440.14036) Full Text: DOI
Druzhinin, A. Rigidity theorem for presheaves with Witt-transfers. (English. Russian original) Zbl 1447.13001 St. Petersbg. Math. J. 31, No. 4, 657-673 (2020); translation from Algebra Anal. 31, No. 4, 114-136 (2019). MSC: 13D15 14C35 11E81 14F42 13F35 19G12 PDF BibTeX XML Cite \textit{A. Druzhinin}, St. Petersbg. Math. J. 31, No. 4, 657--673 (2020; Zbl 1447.13001); translation from Algebra Anal. 31, No. 4, 114--136 (2019) Full Text: DOI
Kolster, Manfred; Taleb, Reza The \(p\)-adic Coates-Sinnott conjecture over maximal orders. (English) Zbl 07219267 Int. J. Number Theory 16, No. 6, 1227-1246 (2020). MSC: 11R23 11R42 14F42 19F27 11R70 PDF BibTeX XML Cite \textit{M. Kolster} and \textit{R. Taleb}, Int. J. Number Theory 16, No. 6, 1227--1246 (2020; Zbl 07219267) Full Text: DOI
Wendt, Matthias Oriented Schubert calculus in Chow-Witt rings of Grassmannians. (English) Zbl 07217790 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4898-1/pbk; 978-1-4704-5455-5/ebook). Contemporary Mathematics 745, 217-267 (2020). MSC: 14C17 14F42 14M15 14N15 PDF BibTeX XML Cite \textit{M. Wendt}, Contemp. Math. 745, 217--267 (2020; Zbl 07217790) Full Text: DOI
Röndigs, Oliver Remarks on motivic Moore spectra. (English) Zbl 1442.14082 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 745, 199-215 (2020). MSC: 14F42 PDF BibTeX XML Cite \textit{O. Röndigs}, Contemp. Math. 745, 199--215 (2020; Zbl 1442.14082) Full Text: DOI
Levine, Marc Lectures on quadratic enumerative geometry. (English) Zbl 07217788 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4898-1/pbk; 978-1-4704-5455-5/ebook). Contemporary Mathematics 745, 163-198 (2020). MSC: 14F42 18N40 55P42 14-02 PDF BibTeX XML Cite \textit{M. Levine}, Contemp. Math. 745, 163--198 (2020; Zbl 07217788) Full Text: DOI
Hornbostel, Jens; Xie, Heng; Zibrowius, Marcus Chow-Witt rings of split quadrics. (English) Zbl 07217787 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4898-1/pbk; 978-1-4704-5455-5/ebook). Contemporary Mathematics 745, 123-161 (2020). MSC: 14F42 14C15 19G12 55N25 13F35 PDF BibTeX XML Cite \textit{J. Hornbostel} et al., Contemp. Math. 745, 123--161 (2020; Zbl 07217787) Full Text: DOI
Bethea, Candace; Kass, Jesse Leo; Wickelgren, Kirsten Examples of wild ramification in an enriched Riemann-Hurwitz formula. (English) Zbl 1441.14076 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 745, 69-82 (2020). Reviewer: Ben Williams (Vancouver) MSC: 14F42 55M25 14H30 PDF BibTeX XML Cite \textit{C. Bethea} et al., Contemp. Math. 745, 69--82 (2020; Zbl 1441.14076) Full Text: DOI
Asok, Aravind; Déglise, Frédéric; Nagel, Jan The homotopy Leray spectral sequence. (English) Zbl 1440.14122 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 745, 21-68 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55R20 PDF BibTeX XML Cite \textit{A. Asok} et al., Contemp. Math. 745, 21--68 (2020; Zbl 1440.14122) Full Text: DOI
Ananyevskiy, Alexey SL-oriented cohomology theories. (English) Zbl 1442.14078 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 745, 1-19 (2020). MSC: 14F42 55R40 PDF BibTeX XML Cite \textit{A. Ananyevskiy}, Contemp. Math. 745, 1--19 (2020; Zbl 1442.14078) Full Text: DOI
Vaish, Vaibhav Punctual gluing of \(t\)-structures and weight structures. (English) Zbl 07211735 Manuscr. Math. 162, No. 3-4, 341-366 (2020). MSC: 18G80 14F42 14F08 14K30 14H40 PDF BibTeX XML Cite \textit{V. Vaish}, Manuscr. Math. 162, No. 3--4, 341--366 (2020; Zbl 07211735) Full Text: DOI
Hoyois, Marc cdh descent in equivariant homotopy \(K\)-theory. (English) Zbl 1453.14068 Doc. Math. 25, 457-482 (2020). MSC: 14F42 14D23 19D25 14A20 PDF BibTeX XML Cite \textit{M. Hoyois}, Doc. Math. 25, 457--482 (2020; Zbl 1453.14068) Full Text: DOI
Druzhinin, Andrei; Kolderup, Håkon Cohomological correspondence categories. (English) Zbl 1442.14079 Algebr. Geom. Topol. 20, No. 3, 1487-1541 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 19E15 14F35 PDF BibTeX XML Cite \textit{A. Druzhinin} and \textit{H. Kolderup}, Algebr. Geom. Topol. 20, No. 3, 1487--1541 (2020; Zbl 1442.14079) Full Text: DOI
Li, Jiangtao Depth-graded motivic Lie algebra. (English) Zbl 1436.14013 J. Number Theory 214, 38-55 (2020). MSC: 14C15 14G32 11M32 14F42 17B01 17B55 19E15 PDF BibTeX XML Cite \textit{J. Li}, J. Number Theory 214, 38--55 (2020; Zbl 1436.14013) Full Text: DOI
Spitzweck, Markus Algebraic cobordism in mixed characteristic. (English) Zbl 1440.14126 Homology Homotopy Appl. 22, No. 2, 91-103 (2020). MSC: 14F42 57R90 PDF BibTeX XML Cite \textit{M. Spitzweck}, Homology Homotopy Appl. 22, No. 2, 91--103 (2020; Zbl 1440.14126) Full Text: DOI
Hain, Richard; Matsumoto, Makoto Universal mixed elliptic motives. (English) Zbl 07202790 J. Inst. Math. Jussieu 19, No. 3, 663-766 (2020). MSC: 14F42 14F35 14H52 11G55 14C30 19E20 PDF BibTeX XML Cite \textit{R. Hain} and \textit{M. Matsumoto}, J. Inst. Math. Jussieu 19, No. 3, 663--766 (2020; Zbl 07202790) Full Text: DOI
Larsen, Michael J.; Lunts, Valery A. Irrationality of motivic zeta functions. (English) Zbl 07198454 Duke Math. J. 169, No. 1, 1-30 (2020). MSC: 14G10 11F80 14F42 14K15 PDF BibTeX XML Cite \textit{M. J. Larsen} and \textit{V. A. Lunts}, Duke Math. J. 169, No. 1, 1--30 (2020; Zbl 07198454) Full Text: DOI Euclid
Elmanto, Elden; Hoyois, Marc; Khan, Adeel A.; Sosnilo, Vladimir; Yakerson, Maria Framed transfers and motivic fundamental classes. (English) Zbl 1444.14050 J. Topol. 13, No. 2, 460-500 (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 14C17 PDF BibTeX XML Cite \textit{E. Elmanto} et al., J. Topol. 13, No. 2, 460--500 (2020; Zbl 1444.14050) Full Text: DOI
Binda, Federico (ed.); Levine, Marc (ed.); Nguyen, Manh Toan (ed.); Röndigs, Oliver (ed.) Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. (English) Zbl 1435.14021 Contemporary Mathematics 745. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4898-1/pbk; 978-1-4704-5455-5/ebook). xv, 267 p. (2020). MSC: 14F42 14N99 00B25 PDF BibTeX XML Cite \textit{F. Binda} (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14--18, 2018. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1435.14021) Full Text: DOI
Elmanto, Elden; Khan, Adeel A. Perfection in motivic homotopy theory. (English) Zbl 1440.14123 Proc. Lond. Math. Soc. (3) 120, No. 1, 28-38 (2020). MSC: 14F42 19E08 19E15 PDF BibTeX XML Cite \textit{E. Elmanto} and \textit{A. A. Khan}, Proc. Lond. Math. Soc. (3) 120, No. 1, 28--38 (2020; Zbl 1440.14123) Full Text: DOI
Kahn, Bruno Zeta and \(L\)-functions of varieties and motives. Translated from the French. (English) Zbl 07191386 London Mathematical Society Lecture Note Series 462. Cambridge: Cambridge University Press (ISBN 978-1-108-70339-0/pbk; 978-1-108-69153-6/ebook). viii, 208 p. (2020). MSC: 14-02 14G10 14F42 11M41 30D15 PDF BibTeX XML Cite \textit{B. Kahn}, Zeta and \(L\)-functions of varieties and motives. Translated from the French. Cambridge: Cambridge University Press (2020; Zbl 07191386) Full Text: DOI
Buijs, Urtzi; Cantero Morán, Federico; Cirici, Joana Weight decompositions of Thom spaces of vector bundles in rational homotopy. (English) Zbl 1440.55010 J. Homotopy Relat. Struct. 15, No. 1, 1-26 (2020). Reviewer: John F. Oprea (Cleveland) MSC: 55P62 55R25 PDF BibTeX XML Cite \textit{U. Buijs} et al., J. Homotopy Relat. Struct. 15, No. 1, 1--26 (2020; Zbl 1440.55010) Full Text: DOI
Saito, Shuji Purity of reciprocity sheaves. (English) Zbl 1437.19001 Adv. Math. 366, Article ID 107067, 70 p. (2020). Reviewer: Alberto Merici (Zürich) MSC: 19E15 14F42 19D45 19F15 PDF BibTeX XML Cite \textit{S. Saito}, Adv. Math. 366, Article ID 107067, 70 p. (2020; Zbl 1437.19001) Full Text: DOI
Vishik, Alexander Operations and poly-operations in algebraic cobordism. (English) Zbl 1444.14052 Adv. Math. 366, Article ID 107066, 56 p. (2020). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 19L10 55N20 PDF BibTeX XML Cite \textit{A. Vishik}, Adv. Math. 366, Article ID 107066, 56 p. (2020; Zbl 1444.14052) Full Text: DOI
Kass, Jesse Leo; Wickelgren, Kirsten A classical proof that the algebraic homotopy class of a rational function is the residue pairing. (English) Zbl 1437.14030 Linear Algebra Appl. 595, 157-181 (2020). Reviewer: Ben Williams (Vancouver) MSC: 14F42 14B05 55M25 PDF BibTeX XML Cite \textit{J. L. Kass} and \textit{K. Wickelgren}, Linear Algebra Appl. 595, 157--181 (2020; Zbl 1437.14030) Full Text: DOI
Ananyevskiy, Alexey; Röndigs, Oliver; Østvær, Paul Arne On very effective Hermitian \(K\)-theory. (English) Zbl 1453.14064 Math. Z. 294, No. 3-4, 1021-1034 (2020). MSC: 14F42 19G38 PDF BibTeX XML Cite \textit{A. Ananyevskiy} et al., Math. Z. 294, No. 3--4, 1021--1034 (2020; Zbl 1453.14064) Full Text: DOI
Chiarellotto, Bruno; Mazzari, Nicola Extensions of filtered Ogus structures. (English) Zbl 1439.14079 Appl. Categ. Struct. 28, No. 1, 143-148 (2020). MSC: 14F42 13D09 14F30 PDF BibTeX XML Cite \textit{B. Chiarellotto} and \textit{N. Mazzari}, Appl. Categ. Struct. 28, No. 1, 143--148 (2020; Zbl 1439.14079) Full Text: DOI
Levine, Marc Some recent trends in motivic homotopy theory. (English) Zbl 1441.14078 Notices Am. Math. Soc. 67, No. 1, 9-20 (2020). MSC: 14F42 19E15 14-03 01A61 PDF BibTeX XML Cite \textit{M. Levine}, Notices Am. Math. Soc. 67, No. 1, 9--20 (2020; Zbl 1441.14078) Full Text: DOI
Garkusha, Grigory; Panin, Ivan Homotopy invariant presheaves with framed transfers. (English) Zbl 1453.14066 Camb. J. Math. 8, No. 1, 1-94 (2020). MSC: 14F42 14F06 14F08 18N45 PDF BibTeX XML Cite \textit{G. Garkusha} and \textit{I. Panin}, Camb. J. Math. 8, No. 1, 1--94 (2020; Zbl 1453.14066) Full Text: DOI
Barbieri-Viale, Luca; Prest, Mike Tensor product of motives via Künneth formula. (English) Zbl 1439.14077 J. Pure Appl. Algebra 224, No. 6, Article ID 106267, 13 p. (2020). MSC: 14F42 03C60 18C10 18E10 PDF BibTeX XML Cite \textit{L. Barbieri-Viale} and \textit{M. Prest}, J. Pure Appl. Algebra 224, No. 6, Article ID 106267, 13 p. (2020; Zbl 1439.14077) Full Text: DOI
Hogadi, Amit; Kulkarni, Girish Gabber’s presentation lemma for finite fields. (English) Zbl 1453.14067 J. Reine Angew. Math. 759, 265-289 (2020). MSC: 14F42 14G15 PDF BibTeX XML Cite \textit{A. Hogadi} and \textit{G. Kulkarni}, J. Reine Angew. Math. 759, 265--289 (2020; Zbl 1453.14067) Full Text: DOI
Guillou, Bertrand J.; Hill, Michael A.; Isaksen, Daniel C.; Ravenel, Douglas Conner The cohomology of \(C_2\)-equivariant \(\mathcal{A} (1)\) and the homotopy of \(\operatorname{ko}_{C_2} \). (English) Zbl 1440.14124 Tunis. J. Math. 2, No. 3, 567-632 (2020). MSC: 14F42 55Q91 55T15 PDF BibTeX XML Cite \textit{B. J. Guillou} et al., Tunis. J. Math. 2, No. 3, 567--632 (2020; Zbl 1440.14124) Full Text: DOI
Asok, Aravind; Fasel, Jean; Williams, Ben Motivic spheres and the image of the Suslin-Hurewicz map. (English) Zbl 1444.19004 Invent. Math. 219, No. 1, 39-73 (2020). Reviewer: Kevin Hutchinson (Dublin) MSC: 19D50 PDF BibTeX XML Cite \textit{A. Asok} et al., Invent. Math. 219, No. 1, 39--73 (2020; Zbl 1444.19004) Full Text: DOI arXiv
Friedlander, Eric M.; Merkurjev, Alexander S. The mathematics of Andrei Suslin. (English) Zbl 1447.20015 Bull. Am. Math. Soc., New Ser. 57, No. 1, 1-22 (2020). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 20G05 20C20 20G10 20-03 19-03 14-03 01A60 14C35 14F42 01A70 PDF BibTeX XML Cite \textit{E. M. Friedlander} and \textit{A. S. Merkurjev}, Bull. Am. Math. Soc., New Ser. 57, No. 1, 1--22 (2020; Zbl 1447.20015) Full Text: DOI
Geisser, Thomas H.; Suzuki, Takashi A Weil-étale version of the Birch and Swinnerton-Dyer formula over function fields. (English) Zbl 1432.11067 J. Number Theory 208, 367-389 (2020). Reviewer: Kazuma Morita (Sapporo) MSC: 11G40 14F20 14F42 PDF BibTeX XML Cite \textit{T. H. Geisser} and \textit{T. Suzuki}, J. Number Theory 208, 367--389 (2020; Zbl 1432.11067) Full Text: DOI
Andreatta, F.; Barbieri-Viale, L.; Bertapelle, A.; Kahn, B. Motivic periods and Grothendieck arithmetic invariants. (English) Zbl 1433.14017 Adv. Math. 359, Article ID 106880, 50 p. (2020). Reviewer: Alberto Merici (Zürich) MSC: 14F42 14F40 19E15 14C30 14L15 PDF BibTeX XML Cite \textit{F. Andreatta} et al., Adv. Math. 359, Article ID 106880, 50 p. (2020; Zbl 1433.14017) Full Text: DOI
Black, Rebecca Vanishing of degree 3 cohomological invariants. (English) Zbl 1441.14024 J. Pure Appl. Algebra 224, No. 4, Article ID 106214, 6 p. (2020). MSC: 14C15 14F42 20G10 PDF BibTeX XML Cite \textit{R. Black}, J. Pure Appl. Algebra 224, No. 4, Article ID 106214, 6 p. (2020; Zbl 1441.14024) Full Text: DOI arXiv
Voineagu, Mircea About Bredon motivic cohomology of a field. (English) Zbl 1453.14071 J. Pure Appl. Algebra 224, No. 4, Article ID 106199, 28 p. (2020). MSC: 14F42 19G38 PDF BibTeX XML Cite \textit{M. Voineagu}, J. Pure Appl. Algebra 224, No. 4, Article ID 106199, 28 p. (2020; Zbl 1453.14071) Full Text: DOI arXiv
Déglise, Frédéric Orientation theory in arithmetic geometry. (English) Zbl 1451.14067 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 239-347 (2019). MSC: 14F42 14G40 14F08 14F20 19E99 55P43 PDF BibTeX XML Cite \textit{F. Déglise}, Tata Inst. Fundam. Res., Stud. Math. 23, 239--347 (2019; Zbl 1451.14067)
Fasel, Jean The Vaserstein symbol on real smooth affine threefolds. (English) Zbl 1451.19014 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 211-222 (2019). MSC: 19G99 14F42 PDF BibTeX XML Cite \textit{J. Fasel}, Tata Inst. Fundam. Res., Stud. Math. 23, 211--222 (2019; Zbl 1451.19014)
Geisser, Thomas H. Duality of integral étale motivic cohomology. (English) Zbl 1451.19008 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 195-209 (2019). MSC: 19E15 14F42 14F20 PDF BibTeX XML Cite \textit{T. H. Geisser}, Tata Inst. Fundam. Res., Stud. Math. 23, 195--209 (2019; Zbl 1451.19008)
Röndigs, Oliver On the \(\eta\)-inverted sphere. (English) Zbl 1451.14069 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 41-63 (2019). MSC: 14F42 19D45 19G12 55P43 PDF BibTeX XML Cite \textit{O. Röndigs}, Tata Inst. Fundam. Res., Stud. Math. 23, 41--63 (2019; Zbl 1451.14069)
Sawant, Anand Naive vs. genuine \(\mathbb{A}^1\)-connectedness. (English) Zbl 1451.19007 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 21-33 (2019). MSC: 19E08 14F42 PDF BibTeX XML Cite \textit{A. Sawant}, Tata Inst. Fundam. Res., Stud. Math. 23, 21--33 (2019; Zbl 1451.19007)
Sadhu, Vivek; Weibel, Charles Relative Cartier divisors and \(K\)-theory. (English) Zbl 1451.14019 Srinivas, V. (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. Tata Inst. Fundam. Res., Stud. Math. 23, 1-19 (2019). MSC: 14C22 19D35 19E99 14F42 PDF BibTeX XML Cite \textit{V. Sadhu} and \textit{C. Weibel}, Tata Inst. Fundam. Res., Stud. Math. 23, 1--19 (2019; Zbl 1451.14019)
Geisser, Thomas (ed.); Hesselholt, Lars (ed.); Huber-Klawitter, Annette (ed.); Kerz, Moritz (ed.) Algebraic \(K\)-theory. Abstracts from the workshop held June 23–29, 2019. (English) Zbl 1439.00065 Oberwolfach Rep. 16, No. 2, 1737-1790 (2019). MSC: 00B05 00B25 19-06 19Axx 19Exx 19Fxx 14-06 14F42 14C35 PDF BibTeX XML Cite \textit{T. Geisser} (ed.) et al., Oberwolfach Rep. 16, No. 2, 1737--1790 (2019; Zbl 1439.00065) Full Text: DOI
Levine, Marc Motivic Euler characteristics and Witt-valued characteristic classes. (English) Zbl 07209518 Nagoya Math. J. 236, 251-310 (2019). MSC: 14F42 55N20 55N35 PDF BibTeX XML Cite \textit{M. Levine}, Nagoya Math. J. 236, 251--310 (2019; Zbl 07209518) Full Text: DOI
Kelly, Shane A better comparison of \(\mathrm{cdh}\)- and \(l\mathrm{dh}\)-cohomologies. (English) Zbl 1442.14081 Nagoya Math. J. 236, 183-213 (2019). MSC: 14F42 18F10 14A05 PDF BibTeX XML Cite \textit{S. Kelly}, Nagoya Math. J. 236, 183--213 (2019; Zbl 1442.14081) Full Text: DOI
Geisser, Thomas H. Hasse principles for étale motivic cohomology. (English) Zbl 1436.11074 Nagoya Math. J. 236, 63-83 (2019). MSC: 11G35 14G12 14F22 14F42 PDF BibTeX XML Cite \textit{T. H. Geisser}, Nagoya Math. J. 236, 63--83 (2019; Zbl 1436.11074) Full Text: DOI
Panin, I. A.; Walter, C. On the relation of symplectic algebraic cobordism to Hermitian \(K\)-theory. (English. Russian original) Zbl 1442.19012 Proc. Steklov Inst. Math. 307, 162-173 (2019); translation from Tr. Mat. Inst. Steklova 307, 180-192 (2019). MSC: 19G38 55N22 14F42 PDF BibTeX XML Cite \textit{I. A. Panin} and \textit{C. Walter}, Proc. Steklov Inst. Math. 307, 162--173 (2019; Zbl 1442.19012); translation from Tr. Mat. Inst. Steklova 307, 180--192 (2019) Full Text: DOI
Srinivas, V. (ed.); Roushon, S. K. (ed.); Rao, Ravi A. (ed.); Parameswaran, A. J. (ed.); Krishna, A. (ed.) \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. (English) Zbl 1435.19001 Studies in Mathematics. Tata Institute of Fundamental Research 23. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research (ISBN 978-93-86279-74-3/hbk). xxii, 393 p. (2019). MSC: 19-06 19Exx 19Fxx 14F42 00B25 PDF BibTeX XML Cite \textit{V. Srinivas} (ed.) et al., \(K\)-theory. Proceedings of the international colloquium, Mumbai, 2016. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research (2019; Zbl 1435.19001)
Srinivasan, Srimathy Correction to: “Motivic decomposition of projective pseudo-homogeneous varieties”. (English) Zbl 1431.14016 Transform. Groups 24, No. 4, 1309-1311 (2019). MSC: 14F42 14M17 14C15 14G17 20G15 PDF BibTeX XML Cite \textit{S. Srinivasan}, Transform. Groups 24, No. 4, 1309--1311 (2019; Zbl 1431.14016) Full Text: DOI
Heard, Drew On equivariant and motivic slices. (English) Zbl 1441.14077 Algebr. Geom. Topol. 19, No. 7, 3641-3681 (2019). MSC: 14F42 55P91 18G80 55N20 55P42 PDF BibTeX XML Cite \textit{D. Heard}, Algebr. Geom. Topol. 19, No. 7, 3641--3681 (2019; Zbl 1441.14077) Full Text: DOI
Isaksen, Daniel C. Stable stems. (English) Zbl 07161627 Memoirs of the American Mathematical Society 1269. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3788-6/pbk; 978-1-4704-5511-8/ebook). viii, 159 p. (2019). Reviewer: Stephen McKean (Durham) MSC: 55-02 14-02 14F42 55Q45 55S10 55T15 16T05 55P42 55Q10 55S30 PDF BibTeX XML Cite \textit{D. C. Isaksen}, Stable stems. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 07161627) Full Text: DOI
Syed, Tariq A generalized Vaserstein symbol. (English) Zbl 1445.13013 Ann. \(K\)-Theory 4, No. 4, 671-706 (2019). Reviewer: Jason Polak (Montréal) MSC: 13C10 14F42 19A13 19G38 PDF BibTeX XML Cite \textit{T. Syed}, Ann. \(K\)-Theory 4, No. 4, 671--706 (2019; Zbl 1445.13013) Full Text: DOI
Rosen, Julian The completed finite period map and Galois theory of supercongruences. (English) Zbl 07154612 Int. Math. Res. Not. 2019, No. 23, 7379-7405 (2019). MSC: 11M32 11M38 14F42 14C15 PDF BibTeX XML Cite \textit{J. Rosen}, Int. Math. Res. Not. 2019, No. 23, 7379--7405 (2019; Zbl 07154612) Full Text: DOI
Tanania, Fabio Subtle characteristic classes and Hermitian forms. (English) Zbl 1453.14069 Doc. Math. 24, 2493-2523 (2019). MSC: 14F42 11E39 20G15 55R40 PDF BibTeX XML Cite \textit{F. Tanania}, Doc. Math. 24, 2493--2523 (2019; Zbl 1453.14069) Full Text: DOI arXiv
Khan, Adeel The Morel-Voevodsky localization theorem in spectral algebraic geometry. (English) Zbl 1451.14068 Geom. Topol. 23, No. 7, 3647-3685 (2019). MSC: 14F42 14A30 14F08 55P43 55P42 PDF BibTeX XML Cite \textit{A. Khan}, Geom. Topol. 23, No. 7, 3647--3685 (2019; Zbl 1451.14068) Full Text: DOI
Dubouloz, Adrien; Pauli, Sabrina; Østvær, Paul Arne \(\mathbb{A}^1\)-contractibility of affine modifications. (English) Zbl 1436.14043 Int. J. Math. 30, No. 14, Article ID 1950069, 34 p. (2019). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 14L30 14R20 19E15 PDF BibTeX XML Cite \textit{A. Dubouloz} et al., Int. J. Math. 30, No. 14, Article ID 1950069, 34 p. (2019; Zbl 1436.14043) Full Text: DOI