×

VIV modelled using simplified cable dynamics coupled to sub-critical cylinder flow simulations in a moving reference frame. (English) Zbl 1479.74058

Summary: This work focuses on the study of the phenomenon of vortex-induced vibrations in overhead lines under the effect of weak winds. Full three-dimensional simulation is not feasible because of the high length to width aspect ratios of the overhead lines. Thus a quasi-3D method based on strip theory is adopted in this work. This method decouples the system of interactions between the overhead line and the wind into a series of sub-systems. The fluid flow in each sub-system is represented as a series of independent rigid oscillating cylinder flows that are only coupled through the transmission line model. To avoid the use of a moving mesh for the fluid domain, a moving reference frame approach is employed. In this approach, the coordinate axes of the flow simulation are attached to the oscillating cylinder and an acceleration term in the flow equations accounts for the cable motion. Moreover, in order to take into account the turbulent effect in the flow, turbulence models, including RANS, LES and DES, are evaluated for the present application involving flows in the sub-critical regime. Finally, numerical test cases are performed in order to validate the turbulence models and the moving reference frame approach, then cable dynamics test cases are conducted to validate the quasi-3D method.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76F65 Direct numerical and large eddy simulation of turbulence
76F55 Statistical turbulence modeling

Software:

Code_Saturne
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vecchiarelli, J.; Currie, I. G.; Havard, D. G., Computational analysis of aeolian conductor vibration with a stockbridge-type damper, J. Fluids Struct., 14, 489-509 (2000)
[2] CIGRE SC 22 WG 01: Report on aeolian vibration, ELECTRA, 41-77, 41-77 (1989)
[3] Hübner, B.; Walhorn, E.; Dinkler, D., A monolithic approach to fluid-structure interaction using space-time finite elements, Comput. Methods Appl. Mech. Engrg., 193, 23-26, 2087-2104 (2004) · Zbl 1067.74575
[4] Küttler, U.; Wall, W. A., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 1, 61-72 (2008) · Zbl 1236.74284
[5] Habchi, C.; Russeil, S.; Bougeard, D.; Harion, J.-L.; Lemenand, T.; Ghanem, A.; Della Valle, D.; Peerhossaini, H., Partitioned solver for strongly coupled fluid-structure interaction, Comput. & Fluids, 71, 306-319 (2013) · Zbl 1365.76155
[6] Yvin, C., Couplage fluide-structure partitionné avec une chaîne de calculs open-source, (12è Journées de L’Hydrodynamique (2010))
[7] Jus, Y., Modélisation et simulation numérique de vibrations induites par écoulements autour d’obstacles cylindriques seuls ou en réseaux (2011), UPMC, (Ph.D. thesis
[8] Facchinetti, M. L.; de Langre, E.; Biolley, F., Coupling of structure and wake oscillators in vortex-induced vibrations, J. Fluids Struct., 19, 2, 123-140 (2004)
[9] Violette, R.; de Langre, E.; Szydlowski, J., Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments, Comput. Struct., 85, 11-14, 1134-1141 (2007)
[10] Gao, Y.; Zong, Z.; Zou, L.; Takagi, S., Vortex-induced vibrations and waves of a long circular cylinder predicted using a wake oscillator model, Ocean Eng., 156, 294-305 (2018)
[11] Srinil, N.; Wiercigroch, M.; O’Brien, P., Reduced-order modelling of vortex-induced vibration of catenary riser, Ocean Eng., 36, 17-18, 1404-1414 (2009)
[12] Willden, R. H.J.; Graham, J. M.R., Numerical prediction of VIV on long flexible circular cylinders, J. Fluids Struct., 15, 659-669 (2001)
[13] Meneghini, J. R.; Saltara, F.; de Andrade Fregonesi, R.; Yamamoto, C. T.; Casaprima, E.; Ferrari, J. A., Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields, Eur. J. Mech. B Fluids, 23, 51-63 (2004) · Zbl 1071.76043
[14] Herfjord, K.; Holmas, T.; Randa, K., A parallel approach for numerical solution of vortex induced vibrations of very long risers, (Computational Mechanics - New Trends and Applications (1998))
[15] Duanmu, Y.; Zou, L.; Wan, D.-c., Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratios in uniform and shear currents, J. Hydrodyn., 29, 6, 1010-1022 (2017)
[16] R.H.J. Willden, J.M.R. Graham, Vortex induced vibration of deep water risers, in: The 7th International Conference on Flow-Induced Vibration, 2000, pp. 29-36.
[17] Willden, R. H.J.; Graham, J. M.R., Multi-modal vortex-induced vibrations of a vertical riser pipe subject to a uniform current profile, Eur. J. Mech. B/Fluids, 23, 209-218 (2004) · Zbl 1045.76519
[18] R.H.J. Willden, J.M.R. Graham, CFD simulations of the vortex-induced vibrations of model riser pipes, in: 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005.
[19] Newman, D. J.; Karniadakis, G. E., A direct numerical simulation study of flow past a freely vibrating cable, J. Fluid Mech., 344, 95-136 (1997) · Zbl 0901.76062
[20] Lee, C. L.; Perkins, N. C., Nonlinear oscillations of suspended cables containing a two-to-one internal resonance, Nonlinear Dynam., 3, 465-490 (1992)
[21] Mise en œuvre d’un modèle simplifié de vibration d’un conducteur et prise en compte des efforts issus du vent sur la portée (2018), OLLA 2020 seminar No. 1
[22] Celik, I.; Shaffer, F. D., Long time-averaged solutions of turbulent flow past a circular cylinder, J. Wind Eng. Ind. Aerodyn., 56, 2-3, 185-212 (1995)
[23] Lakehal, D., Computation of turbulent shear flows over rough-walled circular cylinders, J. Wind Eng. Ind. Aerodyn., 80, 1-2, 47-68 (1999)
[24] Breuer, M., Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects, Internat. J. Numer. Methods Fluids, 28, 9, 1281-1302 (1998) · Zbl 0933.76041
[25] Dong, S.; Karniadakis, G. E., DNS Of flow past a stationary and oscillating cylinder at Re = 10000, J. Fluids Struct., 20, 519-531 (2005)
[26] Achenbach, E., Influence of surface roughness on the cross-flow around a circular cylinder, J. Fluid Mech., 46, 02, 321-335 (1971)
[27] Evangelinos, C.; Lucor, D.; Karniadakis, G. E., DNS- derived force distribution on flexible cylinders subject to vortex-induced vibration, J. Fluids Struct., 14, 429-440 (2000)
[28] Breuer, M., A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow, Int. J. Heat Fluid Flow, 21, 648-654 (2000)
[29] Catalano, P.; Wang, M.; Iaccarino, G.; Moin, P., Numerical simulation of the flow around a circular cylinder at high Reynolds numbers, Int. J. Heat Fluid Flow, 24, 463-469 (2003)
[30] U.O. Unal, O. Goren, Vortex shedding from a circular cylinder at high Reynolds number, Proc. 11th Int. Congress of the Int. Maritime Assn. of the Mediterranean, Lisbon, Maritime Transportation and Exploitation of Ocean and Coastal Resources, 2005, pp. 301-307.
[31] Pang, A. L.J.; Skote, M.; Lim, S. Y., Modelling high Re flow around a 2D cylindrical bluff body using the k-\( \omega \) (SST) turbulence model, Prog. Comput. Fluid Dyn., 16, 1, 48-57 (2016)
[32] Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 8, 1598-1605 (1994)
[33] F.R. Menter, Zonal two equation \(k - \omega\) turbulence models for aerodynamic flows, in: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993, 10.2514/6.1993-2906.
[34] Kato, M.; Launder, B. E., The modeling of turbulent flow around stationary and vibrating square cylinders, (Ninth Symposium on Turbulent Shear Flows (1993))
[35] Smirnov, P. E.; Menter, F. R., Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, (ASME Turbo Expo (2008))
[36] F.R. Menter, J. Carregal Ferreira, T. Esch, B. Konno, The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines, in: Proceeding of the International Gas Turbine Congress, 2003.
[37] Billard, F.; Naughton, J. M.; Revell, A., Unsteady RANS study of a flow past a vertical axis turbine, (ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction (2013))
[38] Wang, S.; Ingham, D. B.; Ma, L.; Pourkashanian, M.; Tao, Z., Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils, Comput. & Fluids, 39, 9, 1529-1541 (2010) · Zbl 1245.76041
[39] Travin, A.; Shur, M.; Strelets, M.; Spalart, P., Detached-Eddy simulations past a circular cylinder, Flow Turbul. Combust., 63, 293-313 (1999) · Zbl 0990.76032
[40] Menter, F. R.; Kuntz, M.; Langtry, R., Ten years of industrial experience with the SST turbulence model, (4th International Symposium on Turbulence, Heat and Mass Transfer (2003)), 625-632
[41] Nguyen, V.-T.; Nguyen, H. H., Detached eddy simulations of flow induced vibrations of circular cylinders at high Reynolds numbers, J. Fluids Struct., 63, 103-119 (2016)
[42] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodriguez-Ferran, A., Arbitrary Lagrangian-Eulerian methods, (Encyclopedia of Computational Mechanics (2004), John Wiley & Sons)
[43] Li, L.; Sherwin, S. J.; Bearman, P. W., A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies, Internat. J. Numer. Methods Fluids, 38, 2, 187-206 (2002) · Zbl 1009.76055
[44] Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S., Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders, J. Comput. Phys., 321, 1079-1097 (2016) · Zbl 1349.74168
[45] Ibrahim, R. A., Nonlinear vibrations of suspended cables - part III: Random excitation and interaction with fluid flow, Appl. Mech. Rev., 57, 515-549 (2004)
[46] Clough, R. W.; Penzien, J., Dynamics of structures (1995), Computers & Structures, Inc.
[47] Archambeau, F.; Méchitoua, N.; Sakiz, M., Code_Saturne: A finite volume code for the computation of turbulent incompressible flows - industrial applications, Int. J. Finite Vol., 1, 1, 1-62 (2004) · Zbl 1490.76137
[48] R&D-EDF, Code_SAturne 5.0.9 theory guide (2018)
[49] Lodefier, K.; Merci, B.; De Langhe, C.; Dick, E., Transition modelling with the SST turbulence model and an intermittency transport equation, (ASME Turbo Expo (2003))
[50] Smagorinsky, J., General circulation experiments with the primitive equations. Part I: The basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[51] Menter, F. R.; Kuntz, M., Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles, (The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (2004)), 339-352
[52] Batcho, P.; Karniadakis, G. E., Chaotic transport in two- and three-dimensional flow past a cylinder, Phys. Fluids, 3, 5, 1051-1062 (1991)
[53] Norberg, C., Fluctuating lift on a circular cylinder: Review and new measurements, J. Fluids Struct., 17, 1, 57-96 (2003)
[54] Bishop, R. E.D.; Hassan, A. Y., The lift and drag forces on a circular cylinder in a flowing fluid, Proc. R. Soc., 277, 1368, 32-50 (1964)
[55] Gramlich, M., Numerical investigations of the unsteady flow in the Stuttgart Swirl Generator with OpenFOAM (2012), Chalmers University of Technology
[56] Norberg, C., Pressure forces on a circular cylinder in cross flow, (IUTAM Symposium Bluff-Body Wakes, Dynamics, and Instabilites (1992)), 275-278
[57] Anagnostopoulos, P.; Bearman, P. W., Response characteristics of a vortex-excited cylinder at low Reynolds numbers, J. Fluids Struct., 6, 1, 39-50 (1992)
[58] Wei, R.; Sekine, A.; Shimura, M., Numerical analysis of 2D vortex-induced oscillations of a circular cylinder, Internat. J. Numer. Methods Fluids, 21, 993-1005 (1995) · Zbl 0862.76040
[59] Schulz, K. W.; Kallinderis, Y., Unsteady flow structure interaction for incompressible flows using deformable hybrid grid, J. Comput. Phys., 143, 2, 569-597 (1998) · Zbl 0935.76052
[60] Gopalkrishnan, R., Vortex-induced forces on oscillating bluff cylinders (1993), Massachusetts Institute of Technology, (Ph.D. thesis)
[61] Lucor, D.; Mukundan, H.; Triantafyllou, M. S., Riser modal identification in CFD and full-scale experiments, J. Fluids Struct., 22, 6-7, 905-917 (2006)
[62] Redford, J.; Gueguin, M.; Nguyen, M.; Lieurade, H.-P.; Yang, C.; Hafid, F.; Ghidaglia, J.-M., Calibration of a numerical prediction methodology for fretting-fatigue crack initiation in overhead power lines, Int. J. Fatigue, 124, 400-410 (2019)
[63] Redford, J.; Lieurade, H.-P.; Gueguin, M.; Hafid, F.; Yang, C.; Ghidaglia, J.-M., Modélisation numérique du phénomène de fretting-fatigue intervenant dans le vieillissement des conducteurs de lignes aériennes, Matériaux Tech., 106, 3, 308 (2018)
[64] Speziale, C. G., Invariance of turbulent closure models, Phys. Fluids, 22, 6, 1033-1037 (1979) · Zbl 0416.76026
[65] Speziale, C. G., Turbulence modeling in noninertial frames of reference, Theor. Comput. Fluid Dyn., 3-19 (1989) · Zbl 0712.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.