Freiberg, Uta; Kohl, Stefan Box dimension of fractal attractors and their numerical computation. (English) Zbl 07299019 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021). Reviewer: George Stoica (Saint John) MSC: 28A80 28A78 37C45 37D45 PDF BibTeX XML Cite \textit{U. Freiberg} and \textit{S. Kohl}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021; Zbl 07299019) Full Text: DOI
Wang, Fang; Fan, Qingju Coupling correlation detrended analysis for multiple nonstationary series. (English) Zbl 07280115 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105579, 16 p. (2021). MSC: 62M10 62H20 62P12 86A10 PDF BibTeX XML Cite \textit{F. Wang} and \textit{Q. Fan}, Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105579, 16 p. (2021; Zbl 07280115) Full Text: DOI
Samti, Amal Multifractal formalism of an inhomogeneous multinomial measure with various parameters. (English) Zbl 07309333 Extr. Math. 35, No. 2, 229-252 (2020). MSC: 28A80 28A78 28A12 11K55 PDF BibTeX XML Cite \textit{A. Samti}, Extr. Math. 35, No. 2, 229--252 (2020; Zbl 07309333) Full Text: DOI
Yuan, Zhihui Multifractal formalism for the inverse of random weak Gibbs measures. (English) Zbl 07272804 Stoch. Dyn. 20, No. 4, Article ID 2050024, 45 p. (2020). MSC: 37D35 37C45 28A78 PDF BibTeX XML Cite \textit{Z. Yuan}, Stoch. Dyn. 20, No. 4, Article ID 2050024, 45 p. (2020; Zbl 07272804) Full Text: DOI
Selmi, Bilel Some new characterizations of Olsen’s multifractal functions. (English) Zbl 1451.28008 Result. Math. 75, No. 4, Paper No. 147, 15 p. (2020). MSC: 28A80 28A20 28A75 28A78 49Q15 PDF BibTeX XML Cite \textit{B. Selmi}, Result. Math. 75, No. 4, Paper No. 147, 15 p. (2020; Zbl 1451.28008) Full Text: DOI
Selmi, Bilel A note on the multifractal Hewitt-Stromberg measures in a probability space. (English) Zbl 1448.28006 Korean J. Math. 28, No. 2, 323-341 (2020). Reviewer: Peter Massopust (München) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{B. Selmi}, Korean J. Math. 28, No. 2, 323--341 (2020; Zbl 1448.28006) Full Text: DOI
Allaart, Pieter The pointwise Hölder spectrum of general self-affine functions on an interval. (English) Zbl 1441.37045 J. Math. Anal. Appl. 488, No. 2, Article ID 124096, 35 p. (2020). Reviewer: Peter Massopust (München) MSC: 37E05 37C45 28A80 28A78 39B22 PDF BibTeX XML Cite \textit{P. Allaart}, J. Math. Anal. Appl. 488, No. 2, Article ID 124096, 35 p. (2020; Zbl 1441.37045) Full Text: DOI
Forde, Martin; Smith, Benjamin The conditional law of the Bacry-Muzy and Riemann-Liouville log correlated Gaussian fields and their GMC, via Gaussian Hilbert and fractional Sobolev spaces. (English) Zbl 1434.60131 Stat. Probab. Lett. 161, Article ID 108732, 11 p. (2020). MSC: 60G57 60G15 28A80 PDF BibTeX XML Cite \textit{M. Forde} and \textit{B. Smith}, Stat. Probab. Lett. 161, Article ID 108732, 11 p. (2020; Zbl 1434.60131) Full Text: DOI
Wolf, Christian A shift map with a discontinuous entropy function. (English) Zbl 1432.37009 Discrete Contin. Dyn. Syst. 40, No. 1, 319-329 (2020). Reviewer: George Stoica (Saint John) MSC: 37A35 37C40 28D20 37B40 PDF BibTeX XML Cite \textit{C. Wolf}, Discrete Contin. Dyn. Syst. 40, No. 1, 319--329 (2020; Zbl 1432.37009) Full Text: DOI arXiv
Menceur, Mohamed; Ben Mabrouk, Anouar A joint multifractal analysis of vector valued non Gibbs measures. (English) Zbl 1448.28005 Chaos Solitons Fractals 126, 203-217 (2019). MSC: 28A78 28A80 60B05 PDF BibTeX XML Cite \textit{M. Menceur} and \textit{A. Ben Mabrouk}, Chaos Solitons Fractals 126, 203--217 (2019; Zbl 1448.28005) Full Text: DOI
Garnier, Josselin; Solna, Knut Emergence of turbulent epochs in oil prices. (English) Zbl 1448.91201 Chaos Solitons Fractals 122, 281-292 (2019). MSC: 91B84 91B82 60G22 62M09 PDF BibTeX XML Cite \textit{J. Garnier} and \textit{K. Solna}, Chaos Solitons Fractals 122, 281--292 (2019; Zbl 1448.91201) Full Text: DOI
Tang, Zhenpeng; Chen, Weihong; Lu, Ting Modeling and empirical research on portfolio risk measurement based on multi-fractal. (Chinese. English summary) Zbl 1449.91130 J. Syst. Eng. 34, No. 5, 644-655 (2019). MSC: 91G10 91G70 62H10 62M10 PDF BibTeX XML Cite \textit{Z. Tang} et al., J. Syst. Eng. 34, No. 5, 644--655 (2019; Zbl 1449.91130) Full Text: DOI
Abid, Moez Ben \(T^{[p]}\)-formalism in Besov spaces. (English) Zbl 07143565 Result. Math. 74, No. 4, Paper No. 187, 31 p. (2019). MSC: 26A16 28A78 28A80 37C20 42C40 PDF BibTeX XML Cite \textit{M. B. Abid}, Result. Math. 74, No. 4, Paper No. 187, 31 p. (2019; Zbl 07143565) Full Text: DOI
Selmi, Bilel On the strong regularity with the multifractal measures in a probability space. (English) Zbl 1428.28008 Anal. Math. Phys. 9, No. 3, 1525-1534 (2019). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{B. Selmi}, Anal. Math. Phys. 9, No. 3, 1525--1534 (2019; Zbl 1428.28008) Full Text: DOI
Yuan, Zhihui Multifractal spectra of Moran measures without local dimension. (English) Zbl 1425.28002 Nonlinearity 32, No. 12, 5060-5086 (2019). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{Z. Yuan}, Nonlinearity 32, No. 12, 5060--5086 (2019; Zbl 1425.28002) Full Text: DOI
Attia, Najmeddine; Selmi, Bilel Regularities of multifractal Hewitt-Stromberg measures. (English) Zbl 1428.28006 Commun. Korean Math. Soc. 34, No. 1, 213-230 (2019). Reviewer: Daniele Puglisi (Catania) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{N. Attia} and \textit{B. Selmi}, Commun. Korean Math. Soc. 34, No. 1, 213--230 (2019; Zbl 1428.28006) Full Text: DOI
Bayart, Frédéric; Heurteaux, Yanick Multifractal phenomena and packing dimension. (English) Zbl 07083111 Rev. Mat. Iberoam. 35, No. 3, 767-804 (2019). MSC: 28A78 42A38 PDF BibTeX XML Cite \textit{F. Bayart} and \textit{Y. Heurteaux}, Rev. Mat. Iberoam. 35, No. 3, 767--804 (2019; Zbl 07083111) Full Text: DOI
Zhao, Yun Constrained ergodic optimization for asymptotically additive potentials. (English) Zbl 07056512 J. Math. Anal. Appl. 474, No. 1, 612-639 (2019). Reviewer: Chryssoula Ganatsiou (Larissa) MSC: 37A30 37C40 37A25 37D35 PDF BibTeX XML Cite \textit{Y. Zhao}, J. Math. Anal. Appl. 474, No. 1, 612--639 (2019; Zbl 07056512) Full Text: DOI
Ngai, Sze-Man; Xie, Yuanyuan \(L^{q}\)-spectrum of self-similar measures with overlaps in the absence of second-order identities. (English) Zbl 1408.28015 J. Aust. Math. Soc. 106, No. 1, 56-103 (2019). Reviewer: Peter Massopust (München) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{S.-M. Ngai} and \textit{Y. Xie}, J. Aust. Math. Soc. 106, No. 1, 56--103 (2019; Zbl 1408.28015) Full Text: DOI
Selmi, Bilel Some results about the regularities of multifractal measures. (English) Zbl 1428.28009 Korean J. Math. 26, No. 2, 271-283 (2018). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{B. Selmi}, Korean J. Math. 26, No. 2, 271--283 (2018; Zbl 1428.28009) Full Text: DOI
Hare, Kathryn E.; Hare, Kevin G.; Troscheit, Sascha Local dimensions of random homogeneous self-similar measures: strong separation and finite type. (English) Zbl 1404.28011 Math. Nachr. 291, No. 16, 2397-2426 (2018). MSC: 28A80 28C10 PDF BibTeX XML Cite \textit{K. E. Hare} et al., Math. Nachr. 291, No. 16, 2397--2426 (2018; Zbl 1404.28011) Full Text: DOI
Neuman, Eyal; Rosenbaum, Mathieu Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint. (English) Zbl 1401.60064 Electron. Commun. Probab. 23, Paper No. 61, 12 p. (2018). MSC: 60G22 60G15 60G57 60G18 28A80 PDF BibTeX XML Cite \textit{E. Neuman} and \textit{M. Rosenbaum}, Electron. Commun. Probab. 23, Paper No. 61, 12 p. (2018; Zbl 1401.60064) Full Text: DOI Euclid arXiv
Buczolich, Zoltán; Seuret, Stéphane Multifractal properties of typical convex functions. (English) Zbl 1401.28011 Monatsh. Math. 187, No. 1, 59-78 (2018). Reviewer: George Stoica (Saint John) MSC: 28A80 26B25 28A78 54E52 PDF BibTeX XML Cite \textit{Z. Buczolich} and \textit{S. Seuret}, Monatsh. Math. 187, No. 1, 59--78 (2018; Zbl 1401.28011) Full Text: DOI arXiv
Attia, Najmeddine Relative multifractal spectrum. (English) Zbl 1396.28007 Commun. Korean Math. Soc. 33, No. 2, 459-471 (2018). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{N. Attia}, Commun. Korean Math. Soc. 33, No. 2, 459--471 (2018; Zbl 1396.28007) Full Text: DOI
Allaart, Pieter C. Differentiability and Hölder spectra of a class of self-affine functions. (English) Zbl 1391.28004 Adv. Math. 328, 1-39 (2018). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 28A78 26A16 26A27 26A30 28A80 PDF BibTeX XML Cite \textit{P. C. Allaart}, Adv. Math. 328, 1--39 (2018; Zbl 1391.28004) Full Text: DOI
Liu, Chenggong; Shang, Pengjian; Feng, Guochen The high order dispersion analysis based on first-passage-time probability in financial markets. (English) Zbl 1400.91685 Physica A 471, 1-9 (2017). MSC: 91G80 91G70 91B84 62P05 62M10 PDF BibTeX XML Cite \textit{C. Liu} et al., Physica A 471, 1--9 (2017; Zbl 1400.91685) Full Text: DOI
Attia, Najmeddine; Selmi, Bilel; Souissi, Chouhaïd Some density results of relative multifractal analysis. (English) Zbl 1375.28007 Chaos Solitons Fractals 103, 1-11 (2017). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{N. Attia} et al., Chaos Solitons Fractals 103, 1--11 (2017; Zbl 1375.28007) Full Text: DOI
Ben Abid, Moez; Ben Slimane, Mourad; Ben Omrane, Ines; Halouani, Borhen Mixed wavelet leaders multifractal formalism in a product of critical Besov spaces. (English) Zbl 1379.28006 Mediterr. J. Math. 14, No. 4, Paper No. 176, 20 p. (2017). Reviewer: Peter Massopust (München) MSC: 28A80 26A30 28A78 42C40 54E52 PDF BibTeX XML Cite \textit{M. Ben Abid} et al., Mediterr. J. Math. 14, No. 4, Paper No. 176, 20 p. (2017; Zbl 1379.28006) Full Text: DOI
Rosenberg, Eric Maximal entropy coverings and the information dimension of a complex network. (English) Zbl 1375.91213 Phys. Lett., A 381, No. 6, 574-580 (2017). MSC: 91D30 05C82 94A17 28A80 PDF BibTeX XML Cite \textit{E. Rosenberg}, Phys. Lett., A 381, No. 6, 574--580 (2017; Zbl 1375.91213) Full Text: DOI
Deng, Guotai; Ngai, Sze-Man Differentiability of \(L^{q}\)-spectrum and multifractal decomposition by using infinite graph-directed IFSs. (English) Zbl 06766540 Adv. Math. 311, 190-237 (2017). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{G. Deng} and \textit{S.-M. Ngai}, Adv. Math. 311, 190--237 (2017; Zbl 06766540) Full Text: DOI
Yuan, Zhihui Multifractal analysis of random weak Gibbs measures. (English) Zbl 1378.37050 Discrete Contin. Dyn. Syst. 37, No. 10, 5367-5405 (2017). MSC: 37C45 37D35 28A78 PDF BibTeX XML Cite \textit{Z. Yuan}, Discrete Contin. Dyn. Syst. 37, No. 10, 5367--5405 (2017; Zbl 1378.37050) Full Text: DOI arXiv
Ye, Yuan-Ling Multifractal analysis of non-uniformly contracting iterated function systems. (English) Zbl 1366.28006 Nonlinearity 30, No. 5, 1708-1733 (2017). MSC: 28A78 28A80 37C45 37D25 37D35 PDF BibTeX XML Cite \textit{Y.-L. Ye}, Nonlinearity 30, No. 5, 1708--1733 (2017; Zbl 1366.28006) Full Text: DOI
Ostrovsky, Dmitry A note on moments of limit log-infinitely divisible stochastic measures of Bacry and Muzy. (English) Zbl 1373.60038 Lett. Math. Phys. 107, No. 2, 267-289 (2017). MSC: 60E07 60G57 05A10 33F10 PDF BibTeX XML Cite \textit{D. Ostrovsky}, Lett. Math. Phys. 107, No. 2, 267--289 (2017; Zbl 1373.60038) Full Text: DOI arXiv
Lee, Hojin; Song, Jae Wook; Chang, Woojin Multifractal value at risk model. (English) Zbl 1400.91667 Physica A 451, 113-122 (2016). MSC: 91G70 62M10 PDF BibTeX XML Cite \textit{H. Lee} et al., Physica A 451, 113--122 (2016; Zbl 1400.91667) Full Text: DOI
Feng, Ling; Wu, Jiangqiao Research on market risk measure for portfolio composed of stocks based on correlation models. (Chinese. English summary) Zbl 1389.91135 J. Syst. Sci. Math. Sci. 36, No. 12, 2307-2324 (2016). MSC: 91G70 91G10 PDF BibTeX XML Cite \textit{L. Feng} and \textit{J. Wu}, J. Syst. Sci. Math. Sci. 36, No. 12, 2307--2324 (2016; Zbl 1389.91135)
Ben Abid, Moez; Ben Slimane, Mourad; Ben Omrane, Ines Mixed wavelet leaders multifractal formalism for Baire generic functions in a product of intersections of Hölder spaces with non-continuous Besov spaces. (English) Zbl 1355.28012 Mediterr. J. Math. 13, No. 6, 5093-5118 (2016). Reviewer: Peter Massopust (München) MSC: 28A80 26A30 28A78 42C40 54E52 PDF BibTeX XML Cite \textit{M. Ben Abid} et al., Mediterr. J. Math. 13, No. 6, 5093--5118 (2016; Zbl 1355.28012) Full Text: DOI
Mijović, V.; Olsen, L. Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions. (English) Zbl 1366.37013 Ergodic Theory Dyn. Syst. 36, No. 6, 1922-1971 (2016). Reviewer: Katrin Gelfert (Rio de Janeiro) MSC: 37A30 37D35 37C30 28A78 37C45 PDF BibTeX XML Cite \textit{V. Mijović} and \textit{L. Olsen}, Ergodic Theory Dyn. Syst. 36, No. 6, 1922--1971 (2016; Zbl 1366.37013) Full Text: DOI arXiv
Ben Slimane, Mourad Baire typical results for mixed Hölder spectra on product of continuous Besov or oscillation spaces. (English) Zbl 1347.28006 Mediterr. J. Math. 13, No. 4, 1513-1533 (2016). MSC: 28A80 28A78 26A21 PDF BibTeX XML Cite \textit{M. Ben Slimane}, Mediterr. J. Math. 13, No. 4, 1513--1533 (2016; Zbl 1347.28006) Full Text: DOI
Denisov, D. E.; Leonenko, N. N. Multifractal scenarios for products of geometric Lévy-based stationary models. (English) Zbl 1342.60075 Stochastic Anal. Appl. 34, No. 4, 610-643 (2016). MSC: 60G57 60G10 60G17 PDF BibTeX XML Cite \textit{D. E. Denisov} and \textit{N. N. Leonenko}, Stochastic Anal. Appl. 34, No. 4, 610--643 (2016; Zbl 1342.60075) Full Text: DOI
Hitruhin, Lauri On multifractal spectrum of quasiconformal mappings. (English) Zbl 1345.30021 Ann. Acad. Sci. Fenn., Math. 41, No. 2, 503-522 (2016). Reviewer: Árpád Baricz (Dealu) MSC: 30C62 28A78 PDF BibTeX XML Cite \textit{L. Hitruhin}, Ann. Acad. Sci. Fenn., Math. 41, No. 2, 503--522 (2016; Zbl 1345.30021) Full Text: DOI
Heurteaux, Yanick An introduction to Mandelbrot cascades. (English) Zbl 1342.60076 Aldroubi, Akram (ed.) et al., New trends in applied harmonic analysis. Sparse representations, compressed sensing, and multifractal analysis. Cham: Birkhäuser/Springer (ISBN 978-3-319-27871-1/hbk; 978-3-319-27873-5/ebook). Applied and Numerical Harmonic Analysis, 67-105 (2016). MSC: 60G57 28A80 28-01 PDF BibTeX XML Cite \textit{Y. Heurteaux}, in: New trends in applied harmonic analysis. Sparse representations, compressed sensing, and multifractal analysis. Selected lecture notes from the CIMPA school held in Mar de Plata, August 5--16, 2013. Cham: Birkhäuser/Springer. 67--105 (2016; Zbl 1342.60076) Full Text: DOI arXiv
Kesseböhmer, Marc; Zhu, Sanguo On the quantization for self-affine measures on Bedford-McMullen carpets. (English) Zbl 1342.28009 Math. Z. 283, No. 1-2, 39-58 (2016). Reviewer: Boris A. Kats (Kazan) MSC: 28A75 28A80 94A15 PDF BibTeX XML Cite \textit{M. Kesseböhmer} and \textit{S. Zhu}, Math. Z. 283, No. 1--2, 39--58 (2016; Zbl 1342.28009) Full Text: DOI
Liao, Lingmin; Rams, Michał Upper and lower fast Khintchine spectra in continued fractions. (English) Zbl 1345.28011 Monatsh. Math. 180, No. 1, 65-81 (2016). Reviewer: Enrico Zoli (Firenze) MSC: 28A78 11K50 PDF BibTeX XML Cite \textit{L. Liao} and \textit{M. Rams}, Monatsh. Math. 180, No. 1, 65--81 (2016; Zbl 1345.28011) Full Text: DOI
Ostrovsky, Dmitry On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral. (English) Zbl 1412.11097 Nonlinearity 29, No. 2, 426-464 (2016). MSC: 11M26 33B15 60E07 60G15 60G57 PDF BibTeX XML Cite \textit{D. Ostrovsky}, Nonlinearity 29, No. 2, 426--464 (2016; Zbl 1412.11097) Full Text: DOI arXiv
Buczolich, Zoltán; Seuret, Stéphane Homogeneous multifractal measures with disjoint spectrum and monohölder monotone functions. (English) Zbl 1392.28010 Real Anal. Exch. 40(2014-2015), No. 2, 277-290 (2015). Reviewer: Boris A. Kats (Kazan) MSC: 28A80 26A16 28A78 PDF BibTeX XML Cite \textit{Z. Buczolich} and \textit{S. Seuret}, Real Anal. Exch. 40, No. 2, 277--290 (2015; Zbl 1392.28010) Full Text: DOI Euclid
Barral, Julien Inverse problems in multifractal analysis. (English) Zbl 1337.28006 Bandt, Christoph (ed.) et al., Fractal geometry and stochastics V. Selected papers of the 5th conference, Tabarz, Germany, March 24–29, 2014. Cham: Springer (ISBN 978-3-319-18659-7/hbk; 978-3-319-18660-3/ebook). Progress in Probability 70, 261-278 (2015). MSC: 28A78 60F10 PDF BibTeX XML Cite \textit{J. Barral}, Prog. Probab. 70, 261--278 (2015; Zbl 1337.28006) Full Text: DOI arXiv
Durand, Arnaud Describability via ubiquity and eutaxy in Diophantine approximation. (English) Zbl 1387.11058 Ann. Math. Blaise Pascal 22, No. S2, 1-149 (2015). MSC: 11J82 28A80 60D05 60G17 60G51 PDF BibTeX XML Cite \textit{A. Durand}, Ann. Math. Blaise Pascal 22, No. S2, 1--149 (2015; Zbl 1387.11058) Full Text: DOI
Barral, Julien Inverse problems in multifractal analysis of measures. (Problèmes inverses dans l’analyse multifractale des mesures.) (English. French summary) Zbl 1334.28015 Ann. Sci. Éc. Norm. Supér. (4) 48, No. 6, 1457-1510 (2015). Reviewer: Peter Massopust (München) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{J. Barral}, Ann. Sci. Éc. Norm. Supér. (4) 48, No. 6, 1457--1510 (2015; Zbl 1334.28015) Full Text: DOI Link
Ellis, Kate E.; Lapidus, Michel L.; Mackenzie, Michael C.; Rock, John A. Partition zeta functions, multifractal spectra, and tapestries of complex dimensions. (English) Zbl 1351.28011 Frame, Michael (ed.) et al., Benoit Mandelbrot. A life in many dimensions. Hackensack, NJ: World Scientific (ISBN 978-981-4366-06-9/hbk; 978-981-4635-53-0/ebook). Fractals and Dynamics in Mathematics, Science, and the Arts: Theory an Applications 1, 267-322 (2015). Reviewer: Anna Savvopoulou (South Bend) MSC: 28A80 28A78 11M41 PDF BibTeX XML Cite \textit{K. E. Ellis} et al., in: Benoit Mandelbrot. A life in many dimensions. Hackensack, NJ: World Scientific. 267--322 (2015; Zbl 1351.28011) Full Text: DOI arXiv
Zhao, Yuxin; Chang, Shuai; Liu, Chang Multifractal theory with its applications in data management. (English) Zbl 1406.91301 Ann. Oper. Res. 234, 133-150 (2015). MSC: 91B82 91G80 28A80 86A25 62P20 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Ann. Oper. Res. 234, 133--150 (2015; Zbl 1406.91301) Full Text: DOI
Mytnik, Leonid; Wachtel, Vitali Multifractal analysis of superprocesses with stable branching in dimension one. (English) Zbl 1332.60122 Ann. Probab. 43, No. 5, 2763-2809 (2015). Reviewer: Weiping Li (Stillwater) MSC: 60J68 60J80 60G57 60G52 28A80 PDF BibTeX XML Cite \textit{L. Mytnik} and \textit{V. Wachtel}, Ann. Probab. 43, No. 5, 2763--2809 (2015; Zbl 1332.60122) Full Text: DOI Euclid arXiv
Shen, Shuang Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen’s \(b\) and \(B\) functions. (English) Zbl 1325.28012 J. Stat. Phys. 159, No. 5, 1216-1235 (2015). MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{S. Shen}, J. Stat. Phys. 159, No. 5, 1216--1235 (2015; Zbl 1325.28012) Full Text: DOI arXiv
Bomfim, Thiago; Varandas, Paulo Multifractal analysis of the irregular set for almost-additive sequences via large deviations. (English) Zbl 1352.37087 Nonlinearity 28, No. 10, 3563-3585 (2015). MSC: 37D35 37A35 37C30 37C40 60F10 37C45 PDF BibTeX XML Cite \textit{T. Bomfim} and \textit{P. Varandas}, Nonlinearity 28, No. 10, 3563--3585 (2015; Zbl 1352.37087) Full Text: DOI arXiv
Neunhäuserer, J. Multifractality of overlapping non-uniform self-similar measures. (English) Zbl 1329.28018 Monatsh. Math. 177, No. 3, 461-469 (2015). Reviewer: Peter Massopust (München) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{J. Neunhäuserer}, Monatsh. Math. 177, No. 3, 461--469 (2015; Zbl 1329.28018) Full Text: DOI
Jordan, Thomas; Rams, Michał Packing spectra for Bernoulli measures supported on Bedford-McMullen carpets. (English) Zbl 1318.28012 Fundam. Math. 229, No. 2, 171-196 (2015). MSC: 28A78 37C45 PDF BibTeX XML Cite \textit{T. Jordan} and \textit{M. Rams}, Fundam. Math. 229, No. 2, 171--196 (2015; Zbl 1318.28012) Full Text: DOI arXiv
Fan, Ai-Hua; Jordan, Thomas; Liao, Lingmin; Rams, Michał Multifractal analysis for expanding interval maps with infinitely many branches. (English) Zbl 1317.28013 Trans. Am. Math. Soc. 367, No. 3, 1847-1870 (2015). Reviewer: Grzegorz Świątek (Warszawa) MSC: 28A80 37D35 37E05 28A78 PDF BibTeX XML Cite \textit{A.-H. Fan} et al., Trans. Am. Math. Soc. 367, No. 3, 1847--1870 (2015; Zbl 1317.28013) Full Text: DOI
Xiao, Di; Wang, Jun Graph based and multifractal analysis of financial time series model by continuum percolation. (English) Zbl 1401.91568 Int. J. Nonlinear Sci. Numer. Simul. 15, No. 5, 265-277 (2014). MSC: 91G70 91B84 91B69 91-08 05C82 PDF BibTeX XML Cite \textit{D. Xiao} and \textit{J. Wang}, Int. J. Nonlinear Sci. Numer. Simul. 15, No. 5, 265--277 (2014; Zbl 1401.91568) Full Text: DOI
Fan, Ai-Hua Some aspects of multifractal analysis. (English) Zbl 1371.37039 Feng, De-Jun (ed.) et al., Geometry and analysis of fractals. Based on the international conference on advances of fractals and related topics, Hong Kong, China, December 10–14, 2012. Berlin: Springer (ISBN 978-3-662-43919-7/hbk; 978-3-662-43920-3/ebook). Springer Proceedings in Mathematics & Statistics 88, 115-145 (2014). MSC: 37C45 37A25 37H15 28A78 PDF BibTeX XML Cite \textit{A.-H. Fan}, in: Geometry and analysis of fractals. Based on the international conference on advances of fractals and related topics, Hong Kong, China, December 10--14, 2012. Berlin: Springer. 115--145 (2014; Zbl 1371.37039) Full Text: DOI
Falconer, Kenneth Generalized energy inequalities and higher multifractal moments. (English) Zbl 1318.28023 Feng, De-Jun (ed.) et al., Geometry and analysis of fractals. Based on the international conference on advances of fractals and related topics, Hong Kong, China, December 10–14, 2012. Berlin: Springer (ISBN 978-3-662-43919-7/hbk; 978-3-662-43920-3/ebook). Springer Proceedings in Mathematics & Statistics 88, 97-113 (2014). MSC: 28A80 PDF BibTeX XML Cite \textit{K. Falconer}, in: Geometry and analysis of fractals. Based on the international conference on advances of fractals and related topics, Hong Kong, China, December 10--14, 2012. Berlin: Springer. 97--113 (2014; Zbl 1318.28023) Full Text: DOI
Bayart, Frédéric; Heurteaux, Yanick Multifractal analysis of the divergence of Fourier series: the extreme cases. (English) Zbl 1307.42003 J. Anal. Math. 124, 387-408 (2014). MSC: 42A20 28A80 28A78 PDF BibTeX XML Cite \textit{F. Bayart} and \textit{Y. Heurteaux}, J. Anal. Math. 124, 387--408 (2014; Zbl 1307.42003) Full Text: DOI arXiv
Heurteaux, Yanick; Stos, Andrzej On measures driven by Markov chains. (English) Zbl 1329.60255 J. Stat. Phys. 157, No. 6, 1046-1061 (2014). MSC: 60J10 28A80 28D05 PDF BibTeX XML Cite \textit{Y. Heurteaux} and \textit{A. Stos}, J. Stat. Phys. 157, No. 6, 1046--1061 (2014; Zbl 1329.60255) Full Text: DOI arXiv
Buczolich, Zoltán; Seuret, Stéphane Measures and functions with prescribed homogeneous multifractal spectrum. (English) Zbl 1305.28017 J. Fractal Geom. 1, No. 3, 295-333 (2014). Reviewer: Boris A. Kats (Kazan) MSC: 28A80 26A16 28C15 28A78 42C40 PDF BibTeX XML Cite \textit{Z. Buczolich} and \textit{S. Seuret}, J. Fractal Geom. 1, No. 3, 295--333 (2014; Zbl 1305.28017) Full Text: DOI arXiv
Rhodes, Rémi; Vargas, Vincent Gaussian multiplicative chaos and applications: a review. (English) Zbl 1316.60073 Probab. Surv. 11, 315-392 (2014). Reviewer: Jacques Franchi (Strasbourg) MSC: 60G57 60G15 60G60 28A80 60-02 PDF BibTeX XML Cite \textit{R. Rhodes} and \textit{V. Vargas}, Probab. Surv. 11, 315--392 (2014; Zbl 1316.60073) Full Text: DOI Euclid arXiv
Bayart, Frédéric How do the typical \(L^q\)-dimensions of measures behave? (English) Zbl 1314.28005 Indiana Univ. Math. J. 63, No. 3, 687-726 (2014). Reviewer: Dumitrŭ Popa (Constanţa) MSC: 28A78 PDF BibTeX XML Cite \textit{F. Bayart}, Indiana Univ. Math. J. 63, No. 3, 687--726 (2014; Zbl 1314.28005) Full Text: DOI Link
Liao, Lingmin; Rams, Michał Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents. (English) Zbl 1323.28015 Real Anal. Exch. 39(2013-2014), No. 1, 1-14 (2014). Reviewer: Boris A. Kats (Kazan) MSC: 28A80 37C45 28A78 PDF BibTeX XML Cite \textit{L. Liao} and \textit{M. Rams}, Real Anal. Exch. 39, No. 1, 1--14 (2014; Zbl 1323.28015) Full Text: DOI Euclid
Rhodes, Rémi; Sohier, Julien; Vargas, Vincent Levy multiplicative chaos and star scale invariant random measures. (English) Zbl 1295.60064 Ann. Probab. 42, No. 2, 689-724 (2014). Reviewer: Sophia L. Kalpazidou (Thessaloniki) MSC: 60G57 28A80 60H25 60G15 60G18 PDF BibTeX XML Cite \textit{R. Rhodes} et al., Ann. Probab. 42, No. 2, 689--724 (2014; Zbl 1295.60064) Full Text: DOI Euclid arXiv
Troscheit, Sascha Hölder differentiability of self-conformal devil’s staircases. (English) Zbl 1291.28005 Math. Proc. Camb. Philos. Soc. 156, No. 2, 295-311 (2014). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{S. Troscheit}, Math. Proc. Camb. Philos. Soc. 156, No. 2, 295--311 (2014; Zbl 1291.28005) Full Text: DOI arXiv
Ludeña, Carenne; Soulier, Philippe Estimating the scaling function of multifractal measures and multifractal random walks using ratios. (English) Zbl 1398.60059 Bernoulli 20, No. 1, 334-376 (2014). MSC: 60G22 60F05 60G57 62G05 PDF BibTeX XML Cite \textit{C. Ludeña} and \textit{P. Soulier}, Bernoulli 20, No. 1, 334--376 (2014; Zbl 1398.60059) Full Text: DOI Euclid arXiv
Munday, Sara On the derivative of the \(\alpha\)-Farey-Minkowski function. (English) Zbl 1282.26005 Discrete Contin. Dyn. Syst. 34, No. 2, 709-732 (2014). Reviewer: Peter Massopust (München) MSC: 26A30 28A78 37C45 PDF BibTeX XML Cite \textit{S. Munday}, Discrete Contin. Dyn. Syst. 34, No. 2, 709--732 (2014; Zbl 1282.26005) Full Text: DOI arXiv
Calvet, Laurent E.; Fisher, Adlai J. Extreme risk and fractal regularity in finance. (English) Zbl 1321.91119 Carfì, David (ed.) et al., Fractal geometry and dynamical systems in pure and applied mathematics II: Fractals in applied mathematics. Selected papers based on three conferences following the passing of Benoît Mandelbrot in October 2010. 1st PISRS 2011 international conference on analysis, fractal geometry, dynamical systems and economics, Messina, Italy, November 8–12, 2011, AMS special session on fractal geometry in pure and applied mathematics, in memory of Benoît Mandelbrot, Boston, MA, USA, January 2012, AMS special session on geometry and analysis on fractal spaces, Honolulu, HI, USA, March 2012. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9148-3/pbk; 978-1-4704-1083-4/ebook). Contemporary Mathematics 601, 65-94 (2013). MSC: 91G80 91B30 91G70 60G18 60G22 62M05 62M20 28A80 PDF BibTeX XML Cite \textit{L. E. Calvet} and \textit{A. J. Fisher}, Contemp. Math. 601, 65--94 (2013; Zbl 1321.91119) Full Text: DOI
Barral, Julien; Durand, Arnaud; Jaffard, Stéphane; Seuret, Stéphane Local multifractal analysis. (English) Zbl 1321.28013 Carfì, David (ed.) et al., Fractal geometry and dynamical systems in pure and applied mathematics II: Fractals in applied mathematics. Selected papers based on three conferences following the passing of Benoît Mandelbrot in October 2010. 1st PISRS 2011 international conference on analysis, fractal geometry, dynamical systems and economics, Messina, Italy, November 8–12, 2011, AMS special session on fractal geometry in pure and applied mathematics, in memory of Benoît Mandelbrot, Boston, MA, USA, January 2012, AMS special session on geometry and analysis on fractal spaces, Honolulu, HI, USA, March 2012. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9148-3/pbk; 978-1-4704-1083-4/ebook). Contemporary Mathematics 601, 31-64 (2013). MSC: 28A80 60G17 37C40 42C40 60G60 60J75 PDF BibTeX XML Cite \textit{J. Barral} et al., Contemp. Math. 601, 31--64 (2013; Zbl 1321.28013) Full Text: DOI arXiv
Huang, Jingjing; Shang, Pengjian; Wang, Aiwen Stock volatility analysis in financial markets based on diffusion entropy. (Chinese. English summary) Zbl 1313.91202 Math. Pract. Theory 43, No. 23, 67-73 (2013). MSC: 91G80 94A17 PDF BibTeX XML Cite \textit{J. Huang} et al., Math. Pract. Theory 43, No. 23, 67--73 (2013; Zbl 1313.91202)
Käenmäki, Antti; Rajala, Tapio; Suomala, Ville Local multifractal analysis in metric spaces. (English) Zbl 1275.28010 Nonlinearity 26, No. 8, 2157-2173 (2013). MSC: 28A80 28D20 54E50 PDF BibTeX XML Cite \textit{A. Käenmäki} et al., Nonlinearity 26, No. 8, 2157--2173 (2013; Zbl 1275.28010) Full Text: DOI arXiv
Olsen, Lars Multifractal tubes. (English) Zbl 1268.28020 Barral, Julien (ed.) et al., Further developments in fractals and related fields. Mathematical foundations and connections. Outgrowth of the 2nd international conference on fractals and related fields, Porquerolles Island, France, June 2011. New York, NY: Birkhäuser/Springer (ISBN 978-0-8176-8399-3/hbk; 978-0-8176-8400-6/ebook). Trends in Mathematics, 161-191 (2013). MSC: 28A80 28A75 PDF BibTeX XML Cite \textit{L. Olsen}, in: Further developments in fractals and related fields. Mathematical foundations and connections. Outgrowth of the 2nd international conference on fractals and related fields, Porquerolles Island, France, June 2011. New York, NY: Birkhäuser/Springer. 161--191 (2013; Zbl 1268.28020) Full Text: DOI arXiv
Bayart, Frédéric Multifractal spectra of typical and prevalent measures. (English) Zbl 1276.28014 Nonlinearity 26, No. 2, 353-367 (2013). Reviewer: Lingmin Liao (Créteil) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{F. Bayart}, Nonlinearity 26, No. 2, 353--367 (2013; Zbl 1276.28014) Full Text: DOI arXiv
Allez, Romain; Rhodes, Rémi; Vargas, Vincent Lognormal \(\star\)-scale invariant random measures. (English) Zbl 1278.60083 Probab. Theory Relat. Fields 155, No. 3-4, 751-788 (2013). Reviewer: Elisa Alòs (Barcelona) MSC: 60G57 60H25 60G15 PDF BibTeX XML Cite \textit{R. Allez} et al., Probab. Theory Relat. Fields 155, No. 3--4, 751--788 (2013; Zbl 1278.60083) Full Text: DOI arXiv
Hirayama, Michihiro; Sumi, Naoya Hyperbolic measures with transverse intersections of stable and unstable manifolds. (English) Zbl 1281.37008 Discrete Contin. Dyn. Syst. 33, No. 4, 1451-1476 (2013). Reviewer: Yun Zhao (Suzhou) MSC: 37A50 37C40 37C45 37D25 PDF BibTeX XML Cite \textit{M. Hirayama} and \textit{N. Sumi}, Discrete Contin. Dyn. Syst. 33, No. 4, 1451--1476 (2013; Zbl 1281.37008) Full Text: DOI
Rhodes, Rémi; Vargas, Vincent Optimal transportation for multifractal random measures and applications. (English. French summary) Zbl 1296.60130 Ann. Inst. Henri Poincaré, Probab. Stat. 49, No. 1, 119-137 (2013). Reviewer: Nikolai N. Leonenko (Cardiff) MSC: 60G57 28A80 28A75 60G18 60E07 PDF BibTeX XML Cite \textit{R. Rhodes} and \textit{V. Vargas}, Ann. Inst. Henri Poincaré, Probab. Stat. 49, No. 1, 119--137 (2013; Zbl 1296.60130) Full Text: DOI Euclid
Ben Nasr, Fathi; Peyrière, Jacques Revisiting the multifractal analysis of measures. (English) Zbl 1273.28008 Rev. Mat. Iberoam. 29, No. 1, 315-328 (2013). Reviewer: Nicolae-Adrian Secelean (Sibiu) MSC: 28A80 28A78 28A12 11K55 PDF BibTeX XML Cite \textit{F. Ben Nasr} and \textit{J. Peyrière}, Rev. Mat. Iberoam. 29, No. 1, 315--328 (2013; Zbl 1273.28008) Full Text: DOI
Dai, Meifeng; Wang, Xiaoli; Chen, Dandan Mixed quantization dimensions of self-similar measures. (English) Zbl 1272.28003 Chaos Solitons Fractals 45, No. 2, 137-140 (2012). MSC: 28A80 PDF BibTeX XML Cite \textit{M. Dai} et al., Chaos Solitons Fractals 45, No. 2, 137--140 (2012; Zbl 1272.28003) Full Text: DOI Link
Peres, Yuval; Solomyak, Boris Dimension spectrum for a nonconventional ergodic average. (English) Zbl 1287.37015 Real Anal. Exch. 37(2011-2012), No. 2, 375-388 (2012). Reviewer: Katrin Gelfert (Rio de Janeiro) MSC: 37C45 28A80 28A78 37B10 PDF BibTeX XML Cite \textit{Y. Peres} and \textit{B. Solomyak}, Real Anal. Exch. 37, No. 2, 375--388 (2012; Zbl 1287.37015) Full Text: DOI Euclid arXiv
Duchon, Jean; Robert, Raoul; Vargas, Vincent Forecasting volatility with the multifractal random walk model. (English) Zbl 1279.60051 Math. Finance 22, No. 1, 83-108 (2012). MSC: 60G25 60G15 60G22 60G57 62M20 91B70 PDF BibTeX XML Cite \textit{J. Duchon} et al., Math. Finance 22, No. 1, 83--108 (2012; Zbl 1279.60051) Full Text: DOI
Andreoli, Alessandro; Caravenna, Francesco; Dai Pra, Paolo; Posta, Gustavo Scaling and multiscaling in financial series: a simple model. (English) Zbl 1271.91054 Adv. Appl. Probab. 44, No. 4, 1018-1051 (2012). Reviewer: Christos E. Kountzakis (Karlovassi) MSC: 91B25 91G70 60H30 91B82 91B84 PDF BibTeX XML Cite \textit{A. Andreoli} et al., Adv. Appl. Probab. 44, No. 4, 1018--1051 (2012; Zbl 1271.91054) Full Text: DOI Euclid arXiv
Zong, Zhixiong; Xiao, Jiaqing A new sufficient condition about the validity of the multifractal formalism. (English) Zbl 1265.28015 J. Math., Wuhan Univ. 32, No. 4, 612-616 (2012). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{Z. Zong} and \textit{J. Xiao}, J. Math., Wuhan Univ. 32, No. 4, 612--616 (2012; Zbl 1265.28015)
Bayart, Frédéric The multifractal box dimensions of typical measures. (English) Zbl 1271.28003 Fundam. Math. 219, No. 2, 145-162 (2012). Reviewer: Boris A. Kats (Kazan) MSC: 28A80 PDF BibTeX XML Cite \textit{F. Bayart}, Fundam. Math. 219, No. 2, 145--162 (2012; Zbl 1271.28003) Full Text: DOI arXiv
Barreira, Luis; Valls, Claudia Hausdorff dimension and nonlinear relations between frequencies of digits. (English) Zbl 1268.37020 Open Syst. Inf. Dyn. 19, No. 3, 1250018, 22 p. (2012). MSC: 37C45 37B15 28A78 PDF BibTeX XML Cite \textit{L. Barreira} and \textit{C. Valls}, Open Syst. Inf. Dyn. 19, No. 3, 1250018, 22 p. (2012; Zbl 1268.37020) Full Text: DOI
Durand, Arnaud; Jaffard, Stéphane Multifractal analysis of Lévy fields. (English) Zbl 1247.60066 Probab. Theory Relat. Fields 153, No. 1-2, 45-96 (2012). MSC: 60G51 60G60 60G17 60D05 28A78 28A80 PDF BibTeX XML Cite \textit{A. Durand} and \textit{S. Jaffard}, Probab. Theory Relat. Fields 153, No. 1--2, 45--96 (2012; Zbl 1247.60066) Full Text: DOI
Barral, Julien; Feng, De-Jun Weighted thermodynamic formalism on subshifts and applications. (English) Zbl 1261.37016 Asian J. Math. 16, No. 2, 319-352 (2012). Reviewer: Yan-Hui Qu (Beijing) MSC: 37D35 37B10 37A35 28A78 PDF BibTeX XML Cite \textit{J. Barral} and \textit{D.-J. Feng}, Asian J. Math. 16, No. 2, 319--352 (2012; Zbl 1261.37016) Full Text: DOI Euclid arXiv
Gruslys, V.; Jonušas, J.; Mijović, V.; Ng, O.; Olsen, L.; Petrykiewicz, I. Dimensions of prevalent continuous functions. (English) Zbl 1251.28005 Monatsh. Math. 166, No. 2, 153-180 (2012). Reviewer: Zu-Guo Yu (Xiangtan) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{V. Gruslys} et al., Monatsh. Math. 166, No. 2, 153--180 (2012; Zbl 1251.28005) Full Text: DOI
Feng, De-Jun Multifractal analysis of Bernoulli convolutions associated with Salem numbers. (English) Zbl 1244.28003 Adv. Math. 229, No. 5, 3052-3077 (2012). Reviewer: Zu-Guo Yu (Xiangtan) MSC: 28A78 28A80 11K16 PDF BibTeX XML Cite \textit{D.-J. Feng}, Adv. Math. 229, No. 5, 3052--3077 (2012; Zbl 1244.28003) Full Text: DOI arXiv
Rhodes, Rémi; Vargas, Vincent KPZ formula for log-infinitely divisible multifractal random measures. (English) Zbl 1268.60070 ESAIM, Probab. Stat. 15, 358-371 (2011). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 60G57 28A78 28A80 PDF BibTeX XML Cite \textit{R. Rhodes} and \textit{V. Vargas}, ESAIM, Probab. Stat. 15, 358--371 (2011; Zbl 1268.60070) Full Text: DOI
Aouidi, Jamil; Ben Mabrouk, Anouar Multifractal analysis of some weighted quasi-self-similar functions. (English) Zbl 1244.28006 Int. J. Wavelets Multiresolut. Inf. Process. 9, No. 6, 965-987 (2011). MSC: 28A80 42C40 76M55 PDF BibTeX XML Cite \textit{J. Aouidi} and \textit{A. Ben Mabrouk}, Int. J. Wavelets Multiresolut. Inf. Process. 9, No. 6, 965--987 (2011; Zbl 1244.28006) Full Text: DOI
Das, Manav Besicovitch-Eggleston function. (English) Zbl 1250.28002 Adv. Pure Math. 1, No. 5, 274-275 (2011). MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{M. Das}, Adv. Pure Math. 1, No. 5, 274--275 (2011; Zbl 1250.28002) Full Text: DOI
Mukhamedin, S. M. Information entropy analysis of the degree of structure self-organization. (English. Russian original) Zbl 1251.76019 Russ. Phys. J. 54, No. 1, 28-31 (2011); translation from Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 26-29 (2011). MSC: 76F20 28A80 76F05 94A17 PDF BibTeX XML Cite \textit{S. M. Mukhamedin}, Russ. Phys. J. 54, No. 1, 28--31 (2011; Zbl 1251.76019); translation from Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 26--29 (2011) Full Text: DOI
Yan, Zhenzhen; Chen, Ercai; Li, Lei Upper estimate on multifractal spectrum of local dimension for recurrence time. (Chinese. English summary) Zbl 1240.28015 J. Nanjing Norm. Univ., Nat. Sci. Ed. 34, No. 1, 29-34 (2011). MSC: 28A78 28A80 37C45 PDF BibTeX XML Cite \textit{Z. Yan} et al., J. Nanjing Norm. Univ., Nat. Sci. Ed. 34, No. 1, 29--34 (2011; Zbl 1240.28015)
Zhao, Xiaojun; Shang, Pengjian; Jin, Qiuyue Multifractal detrended cross-correlation analysis of Chinese stock markets based on time delay. (English) Zbl 1225.91069 Fractals 19, No. 3, 329-338 (2011). MSC: 91G70 62H20 91B80 PDF BibTeX XML Cite \textit{X. Zhao} et al., Fractals 19, No. 3, 329--338 (2011; Zbl 1225.91069) Full Text: DOI
Jordan, Thomas; Shmerkin, Pablo; Solomyak, Boris Multifractal structure of Bernoulli convolutions. (English) Zbl 1248.11054 Math. Proc. Camb. Philos. Soc. 151, No. 3, 521-539 (2011). Reviewer: Bernd O. Stratmann (Bremen) MSC: 11K55 28A80 28A78 37C45 PDF BibTeX XML Cite \textit{T. Jordan} et al., Math. Proc. Camb. Philos. Soc. 151, No. 3, 521--539 (2011; Zbl 1248.11054) Full Text: DOI arXiv
Buczolich, Zoltán; Seuret, Stéphane Multifractal spectrum and generic properties of functions monotone in several variables. (English) Zbl 1231.28009 J. Math. Anal. Appl. 382, No. 1, 110-126 (2011). Reviewer: Bernd O. Stratmann (Bremen) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{Z. Buczolich} and \textit{S. Seuret}, J. Math. Anal. Appl. 382, No. 1, 110--126 (2011; Zbl 1231.28009) Full Text: DOI
Fong, Victor Pok-Wai; Hare, Kathryn E.; Johnstone, Daniel L. Multifractal analysis for convolutions of overlapping Cantor measures. (English) Zbl 1232.28010 Asian J. Math. 15, No. 1, 53-70 (2011). Reviewer: Dorin Dutkay (Orlando) MSC: 28A80 28A78 PDF BibTeX XML Cite \textit{V. P. W. Fong} et al., Asian J. Math. 15, No. 1, 53--70 (2011; Zbl 1232.28010) Full Text: DOI Euclid
Batakis, Athanasios; Testud, Benoît Multifractal analysis of inhomogeneous Bernoulli products. (English) Zbl 1222.28009 J. Stat. Phys. 142, No. 5, 1105-1120 (2011). Reviewer: Václav Burjan (Praha) MSC: 28A78 28A35 PDF BibTeX XML Cite \textit{A. Batakis} and \textit{B. Testud}, J. Stat. Phys. 142, No. 5, 1105--1120 (2011; Zbl 1222.28009) Full Text: DOI arXiv