×

A parallel dynamic asynchronous framework for uncertainty quantification by hierarchical Monte Carlo algorithms. (English) Zbl 07408883

Summary: The necessity of dealing with uncertainties is growing in many different fields of science and engineering. Due to the constant development of computational capabilities, current solvers must satisfy both statistical accuracy and computational efficiency. The aim of this work is to introduce an asynchronous framework for Monte Carlo and Multilevel Monte Carlo methods to achieve such a result. The proposed approach presents the same reliability of state of the art techniques, and aims at improving the computational efficiency by adding a new level of parallelism with respect to existing algorithms: between batches, where each batch owns its hierarchy and is independent from the others. Two different numerical problems are considered and solved in a supercomputer to show the behavior of the proposed approach.

MSC:

65C05 Monte Carlo methods
68W15 Distributed algorithms
65Y05 Parallel numerical computation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, B.M., Eldred, M.S., Geraci, G., Hooper R.W., Jakeman, J.D., Maupin, K.A., Monschke, J.A., Rushdi, A.A., Wildey, J.A.S., Swiler, L.P., M.T.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.10 user’s manual. Tech. rep., SAND2014-4633 Unlimited Release, July 2014. Updated May 15, 2019 (2014)
[2] Amela, R.; Ramon-Cortes, C.; Ejarque, J.; Conejero, J.; Badia, RM, Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs, Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles, 73, 47 (2018) · doi:10.2516/ogst/2018047
[3] Amela, R., Ayoul-Guilmard, Q., Badia, R.M., Ganesh, S., Nobile, F., Rossi, R., Tosi, R.: ExaQUte XMC (2019). doi:10.5281/zenodo.3235833
[4] Andre, M.S.: Aeroelastic modeling and simulation for the assessment of wind effects on a parabolic trough solar collector. Ph.D. thesis, Technische Universität München (2018)
[5] Angelino, E., Kohler, E., Waterland, A., Seltzer, M., Adams, R.P.: Accelerating MCMC via parallel predictive prefetching. In: Uncertainty in Artificial Intelligence—Proceedings of the 30th Conference, UAI 2014 (2014)
[6] Bennett, J., Grout, R., Pébay, P., Roe, D., Thompson, D.: Numerically stable, single-pass, parallel statistics algorithms. In: Proceedings—IEEE International Conference on Cluster Computing, ICCC (2009). doi:10.1109/CLUSTR.2009.5289161
[7] Blondeel, P., Robbe, P., Van hoorickx, C., Lombaert, G., Vandewalle, S.: Multilevel Monte Carlo for uncertainty quantification in structural engineering. arXiv e-prints p. arXiv:1808.10680 (2018)
[8] Brockwell, AE, Parallel Markov Chain Monte Carlo simulation by pre-fetching, J. Comput. Graph. Stat. (2006) · doi:10.1198/106186006X100579
[9] Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating formulae and a pairwise algorithm for computing sample variances. In: Caussinus, H., Ettinger, P., Tomassone, R. (eds.) COMPSTAT 1982 5th Symposium held at Toulouse 1982, pp. 30-41. Physica-Verlag HD, Heidelberg (1982) · Zbl 0491.65071
[10] Chan, TF; Golub, GH; Leveque, RJ, Statistical computing: algorithms for computing the sample variance: analysis and recommendations, Am. Stat., 37, 3, 242-247 (1983) · Zbl 0521.65098 · doi:10.1080/00031305.1983.10483115
[11] Cliffe, KA; Giles, MB; Scheichl, R.; Teckentrup, AL, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14, 3-15 (2011) · Zbl 1241.65012 · doi:10.1007/s00791-011-0160-x
[12] Collier, N.; Haji-Ali, AL; Nobile, F.; von Schwerin, E.; Tempone, R., A continuation multilevel Monte Carlo algorithm, BIT Numer. Math., 55, 2, 399-432 (2015) · Zbl 1317.65030 · doi:10.1007/s10543-014-0511-3
[13] Dadvand, P.; Rossi, R.; Gil, M.; Martorell, X.; Cotela, J.; Juanpere, E.; Idelsohn, SR; Oñate, E., Migration of a generic multi-physics framework to HPC environments, Comput. Fluids, 80, 1, 301-309 (2013) · Zbl 1426.76644 · doi:10.1016/j.compfluid.2012.02.004
[14] Dadvand, P.; Rossi, R.; Oñate, E., An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch. Comput. Methods Eng., 17, 3, 253-297 (2010) · Zbl 1360.76130 · doi:10.1007/s11831-010-9045-2
[15] Davari, M.; Rossi, R.; Dadvand, P.; López, I.; Wüchner, R., A cut finite element method for the solution of the full-potential equation with an embedded wake, Comput. Mech., 63, 5, 821-833 (2019) · Zbl 1468.76039 · doi:10.1007/s00466-018-1624-3
[16] Drzisga, D.; Gmeiner, B.; Rüde, U.; Scheichl, R.; Wohlmuth, B., Scheduling massively parallel multigrid for multilevel Monte Carlo methods, SIAM J. Sci. Comput., 39, 5, S873-S897 (2017) · Zbl 1422.65016 · doi:10.1137/16m1083591
[17] Eller, D., Fast, unstructured-mesh finite-element method for nonlinear subsonic flow, J. Aircr. (2012) · doi:10.2514/1.C031738
[18] Ellingwood, BR; Kinali, K., Quantifying and communicating uncertainty in seismic risk assessment, Struct. Saf., 31, 2, 179-187 (2009) · doi:10.1016/j.strusafe.2008.06.001
[19] Ghanem, RG; Spanos, PD, Stochastic Finite Elements: A Spectral Approach (2011), New York: Springer, New York · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[20] Giles, MB, Multilevel Monte Carlo path simulation, Oper. Res., 56, 3, 607-617 (2008) · Zbl 1167.65316 · doi:10.1287/opre.1070.0496
[21] Giles, MB, Multilevel Monte Carlo methods, Acta Numer., 24, May, 259-328 (2015) · Zbl 1316.65010 · doi:10.1017/S096249291500001X
[22] Giles, M., Kuo, F.Y., Sloan, I.H., Waterhouse, B.J.: Quasi-Monte Carlo for finance applications. ANZIAM J. 50, 308 (2008). doi:10.21914/anziamj.v50i0.1440 · Zbl 1360.91150
[23] Halmos, PR, The theory of unbiased estimation, Ann. Math. Stat., 17, 1, 34-43 (2007) · Zbl 0063.01891 · doi:10.1214/aoms/1177731020
[24] Lord, GJ; Powell, CE; Shardlow, T., An Introduction to Computational Stochastic PDEs (2014), New York: Cambridge University Press, New York · Zbl 1327.60011 · doi:10.1017/CBO9781139017329
[25] Lordan, F.; Tejedor, E.; Ejarque, J.; Rafanell, R.; Álvarez, J.; Marozzo, F.; Lezzi, D.; Sirvent, R.; Talia, D.; Badia, RM, ServiceSs: an interoperable programming framework for the cloud, J. Grid Comput., 12, 1, 67-91 (2014) · doi:10.1007/s10723-013-9272-5
[26] Mathelin, L.; Hussaini, MY; Zang, TA, Stochastic approaches to uncertainty quantification in CFD simulations, Numer. Algorithms, 38, 209-236 (2005) · Zbl 1130.76062 · doi:10.1007/s11075-004-2866-z
[27] Mishra, S.; Schwab, C., Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comput. (2012) · Zbl 1271.65018 · doi:10.1090/s0025-5718-2012-02574-9
[28] Mishra, S.; Schwab, C.; Šukys, J., Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, J. Comput. Phys. (2012) · Zbl 1402.76083 · doi:10.1016/j.jcp.2012.01.011
[29] Mishra, S.; Schwab, C.; Šukys, J., Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions, SIAM J. Sci. Comput., 34, 6, B761-B784 (2012) · Zbl 1263.76045 · doi:10.1137/110857295
[30] Pébay, P.; Terriberry, TB; Kolla, H.; Bennett, J., Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights, Comput. Stat., 31, 4, 1305-1325 (2016) · Zbl 1348.65039 · doi:10.1007/s00180-015-0637-z
[31] Pisaroni, M.; Krumscheid, S.; Nobile, F., Quantifying uncertain system outputs via the multilevel Monte Carlo method—Part I: central moment estimation, J. Comput. Phys. (2020) · Zbl 1440.65008 · doi:10.1016/j.jcp.2020.109466
[32] Pisaroni, M.; Nobile, F.; Leyland, P., A continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics, Comput. Methods Appl. Mech. Eng., 326, 20-50 (2017) · Zbl 1439.76135 · doi:10.1016/j.cma.2017.07.030
[33] Pope, S.B.: Turbulent Flows. Cambridge University Press (2000). doi:10.1017/CBO9780511840531. https://www.cambridge.org/core/product/identifier/9780511840531/type/book · Zbl 0966.76002
[34] Tejedor, E.; Becerra, Y.; Alomar, G.; Queralt, A.; Badia, RM; Torres, J.; Cortes, T.; Labarta, J., PyCOMPSs: parallel computational workflows in Python, Int. J. High Perform. Comput. Appl., 31, 1, 66-82 (2017) · doi:10.1177/1094342015594678
[35] Tyrrell Rockafellar, R.; Royset, JO, Engineering decisions under risk averseness, ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., 1, 2, 04015003 (2015) · doi:10.1061/ajrua6.0000816
[36] Walters, R.W., Huyse, L.: Uncertainty Analysis for Fluid Mechanics with Applications. Tech. rep. (2002). NASA CR-2002-211449
[37] Xiu, D.; Karniadakis, GE, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2003) · Zbl 1014.65004 · doi:10.1137/s1064827501387826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.