Alves, Claudianor O.; Boudjeriou, Tahir Existence of solution for a class of nonlocal problem via dynamical methods. (English) Zbl 07560191 Rend. Circ. Mat. Palermo (2) 71, No. 2, 611-632 (2022). MSC: 35K60 34B10 35J15 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{T. Boudjeriou}, Rend. Circ. Mat. Palermo (2) 71, No. 2, 611--632 (2022; Zbl 07560191) Full Text: DOI OpenURL
Pramanik, S.; Karn, B.; Padhi, S. Solutions of a Caputo type fractional differential equation of order \(\gamma\in(1, 2]-\text{II}\): Existence and multiplicity of solutions. (English) Zbl 07559322 Funct. Differ. Equ. 29, No. 1-2, 91-113 (2022). MSC: 34B08 34B18 34B15 34B10 PDF BibTeX XML Cite \textit{S. Pramanik} et al., Funct. Differ. Equ. 29, No. 1--2, 91--113 (2022; Zbl 07559322) Full Text: DOI OpenURL
Waheed, Hira; Zada, Akbar; Rizwan, Rizwan; Popa, Ioan-Lucian Hyers-Ulam stability for a coupled system of fractional differential equation with \(p\)-Laplacian operator having integral boundary conditions. (English) Zbl 07558426 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 92, 24 p. (2022). MSC: 34A08 26A33 34B10 PDF BibTeX XML Cite \textit{H. Waheed} et al., Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 92, 24 p. (2022; Zbl 07558426) Full Text: DOI OpenURL
Tebbaa, Ahmed; Aitalioubrahim, Myelkebir Boundary value problems for differential inclusions with \(\varphi\)-Laplacian. (English) Zbl 07557896 J. Dyn. Control Syst. 28, No. 3, 505-516 (2022). MSC: 34A60 34B10 34B15 PDF BibTeX XML Cite \textit{A. Tebbaa} and \textit{M. Aitalioubrahim}, J. Dyn. Control Syst. 28, No. 3, 505--516 (2022; Zbl 07557896) Full Text: DOI OpenURL
Yan, Debao Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions. (English) Zbl 07556217 Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022). MSC: 34A08 34B10 34B16 PDF BibTeX XML Cite \textit{D. Yan}, Bound. Value Probl. 2022, Paper No. 3, 16 p. (2022; Zbl 07556217) Full Text: DOI OpenURL
Ghanmi, Abdeljabbar Existence of solution for some singular Kirchhoff fractional boundary value problem. (English) Zbl 07556138 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 2, 173-194 (2022). MSC: 34A08 34B10 47H10 PDF BibTeX XML Cite \textit{A. Ghanmi}, Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 2, 173--194 (2022; Zbl 07556138) Full Text: DOI OpenURL
Eloe, Paul W.; Neugebauer, Dan A global uniqueness of solutions implies global existence for \((l+1)\)-point boundary value problems. (English) Zbl 07555149 Rocky Mt. J. Math. 52, No. 2, 483-497 (2022). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{P. W. Eloe} and \textit{D. Neugebauer}, Rocky Mt. J. Math. 52, No. 2, 483--497 (2022; Zbl 07555149) Full Text: DOI Link OpenURL
Aoun, Abdellatif Ghendir; Djebali, Smaïl Multiple solutions for a nonlocal fractional boundary value problem with fractional integral conditions on infinite interval. (English) Zbl 07545970 Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022). MSC: 34B08 34B10 34B40 PDF BibTeX XML Cite \textit{A. G. Aoun} and \textit{S. Djebali}, Asian-Eur. J. Math. 15, No. 6, Article ID 2250118, 23 p. (2022; Zbl 07545970) Full Text: DOI OpenURL
Zhang, Guowei Positive solutions to three classes of non-local fourth-order problems with derivative-dependent nonlinearities. (English) Zbl 07541796 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 11, 27 p. (2022). MSC: 34B18 34B10 34B15 PDF BibTeX XML Cite \textit{G. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 11, 27 p. (2022; Zbl 07541796) Full Text: DOI OpenURL
Kohutych, Oksana About one characteristic initial value problem with prehistory and its investigation. (English) Zbl 07541767 Miskolc Math. Notes 23, No. 1, 271-280 (2022). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{O. Kohutych}, Miskolc Math. Notes 23, No. 1, 271--280 (2022; Zbl 07541767) Full Text: DOI OpenURL
Batik, Songul; Deren, Fulya Yoruk Semipositone fractional boundary value problems with n point fractional integral boundary conditions. (English) Zbl 07541756 Miskolc Math. Notes 23, No. 1, 93-104 (2022). MSC: 34B10 34B18 39A10 PDF BibTeX XML Cite \textit{S. Batik} and \textit{F. Y. Deren}, Miskolc Math. Notes 23, No. 1, 93--104 (2022; Zbl 07541756) Full Text: DOI OpenURL
Almalahi, Mohammed A.; Panchal, Satish K.; Jarad, Fahd Multipoint BVP for the Langevin equation under \(\varphi\)-Hilfer fractional operator. (English) Zbl 07539795 J. Funct. Spaces 2022, Article ID 2798514, 14 p. (2022). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. A. Almalahi} et al., J. Funct. Spaces 2022, Article ID 2798514, 14 p. (2022; Zbl 07539795) Full Text: DOI OpenURL
Abdelli, H.; Graef, J. R.; Kadari, H.; Ouahab, A.; Oumansour, A. Existence of solutions to systems of second-order impulsive differential equations with integral boundary conditions on the half-line. (English) Zbl 07536065 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 91-109 (2022). Reviewer: Jan Tomeček (Olomouc) MSC: 34A37 34B37 34B40 47N20 34B10 PDF BibTeX XML Cite \textit{H. Abdelli} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 2, 91--109 (2022; Zbl 07536065) Full Text: Link OpenURL
Goodrich, Christopher S. Nonexistence and parameter range estimates for convolution differential equations. (English) Zbl 07535611 Proc. Am. Math. Soc., Ser. B 9, 254-265 (2022). MSC: 33B15 34B10 34B18 42A85 44A35 26A33 47H30 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Proc. Am. Math. Soc., Ser. B 9, 254--265 (2022; Zbl 07535611) Full Text: DOI OpenURL
Ashrafova, Yegana R. Optimization of source parameters in non-local boundary conditions of a large system of ODE. (English) Zbl 1487.34066 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 150-163 (2022). MSC: 34B10 49M05 PDF BibTeX XML Cite \textit{Y. R. Ashrafova}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 150--163 (2022; Zbl 1487.34066) Full Text: DOI OpenURL
Wei, Yongfang; Shang, Suiming; Bai, Zhanbing Applications of variational methods to some three-point boundary value problems with instantaneous and noninstantaneous impulses. (English) Zbl 07534407 Nonlinear Anal., Model. Control 27, No. 3, 466-478 (2022). MSC: 34B37 34B10 58E50 PDF BibTeX XML Cite \textit{Y. Wei} et al., Nonlinear Anal., Model. Control 27, No. 3, 466--478 (2022; Zbl 07534407) Full Text: DOI OpenURL
Messina, Eleonora; Raffoul, Youssef; Vecchio, Antonia Qualitative analysis of dynamic equations on time scales using Lyapunov functions. (English) Zbl 07531687 Differ. Equ. Appl. 14, No. 2, 215-226 (2022). MSC: 34B10 39A10 PDF BibTeX XML Cite \textit{E. Messina} et al., Differ. Equ. Appl. 14, No. 2, 215--226 (2022; Zbl 07531687) Full Text: DOI OpenURL
Victor, D. William John; Khuddush, Mahammad Existence of solutions for \(n\)-dimensional fractional order BVP with \(\infty\)-point boundary conditions via the concept of measure of noncompactness. (English) Zbl 1487.34046 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 19-37 (2022). MSC: 34A08 34B15 47H09 47H10 34B10 45G15 PDF BibTeX XML Cite \textit{D. W. J. Victor} and \textit{M. Khuddush}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 19--37 (2022; Zbl 1487.34046) Full Text: DOI OpenURL
Kassymov, Aidyn; Tokmagambetov, Niyaz; Torebek, Berikbol Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents. (English) Zbl 07523938 Publ. Math. Debr. 100, No. 3-4, 295-321 (2022). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35R11 34B10 35R03 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Publ. Math. Debr. 100, No. 3--4, 295--321 (2022; Zbl 07523938) Full Text: DOI OpenURL
Soenjaya, Agus L. Fractional differential equations with nonlocal boundary conditions. (English) Zbl 07523396 Commun. Korean Math. Soc. 37, No. 2, 497-502 (2022). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. L. Soenjaya}, Commun. Korean Math. Soc. 37, No. 2, 497--502 (2022; Zbl 07523396) Full Text: DOI OpenURL
Hilal, Khalid; Kajouni, Ahmed; Lmou, Hamid Boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative. (English) Zbl 07518436 Int. J. Differ. Equ. 2022, Article ID 3386198, 12 p. (2022). MSC: 34A08 34B10 34A60 26A33 47N20 PDF BibTeX XML Cite \textit{K. Hilal} et al., Int. J. Differ. Equ. 2022, Article ID 3386198, 12 p. (2022; Zbl 07518436) Full Text: DOI OpenURL
Hu, Bing; Xu, Minbo; Wang, Zhizhi; Lin, Jiahui; Zhu, Luyao; Wang, Dingjiang Existence of solutions of an impulsive integro-differential equation with a general boundary value condition. (English) Zbl 07513346 Math. Biosci. Eng. 19, No. 4, 4166-4177 (2022). MSC: 45J05 34B10 34K10 PDF BibTeX XML Cite \textit{B. Hu} et al., Math. Biosci. Eng. 19, No. 4, 4166--4177 (2022; Zbl 07513346) Full Text: DOI OpenURL
Manigandan, M.; Muthaiah, Subramanian; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. (English) Zbl 1485.34046 AIMS Math. 7, No. 1, 723-755 (2022). MSC: 34A08 34A60 34B10 PDF BibTeX XML Cite \textit{M. Manigandan} et al., AIMS Math. 7, No. 1, 723--755 (2022; Zbl 1485.34046) Full Text: DOI OpenURL
Wu, Shaofei; Sharaf, Sanaa; Xu, Wei User-oriented intelligence mining under the existence of solutions to integral boundary value problems for fuzzy partial fractional differential equations. (English) Zbl 07507547 Fractals 30, No. 2, Article ID 2240063, 11 p. (2022). MSC: 34A07 34A08 34B10 PDF BibTeX XML Cite \textit{S. Wu} et al., Fractals 30, No. 2, Article ID 2240063, 11 p. (2022; Zbl 07507547) Full Text: DOI OpenURL
Yang, You-yuan; Wang, Qi-ru Erratum to: “Multiple positive solutions for one dimensional third order \(p\)-Laplacian equations with integral boundary conditions”. (English) Zbl 07507386 Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 512 (2022). MSC: 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{Y.-y. Yang} and \textit{Q.-r. Wang}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 512 (2022; Zbl 07507386) Full Text: DOI OpenURL
Alves, Claudianor O.; Prado, Humberto; Reyes, Enrique G. Existence of smooth solutions for a class of Euclidean bosonic equations. (English) Zbl 07506030 J. Differ. Equations 323, 229-252 (2022). MSC: 81T30 35Q55 83F05 35J05 34B10 46E35 35D35 PDF BibTeX XML Cite \textit{C. O. Alves} et al., J. Differ. Equations 323, 229--252 (2022; Zbl 07506030) Full Text: DOI OpenURL
Boichuk, A. A.; Chuiko, S. M. On the approximate solution of weakly nonlinear boundary-value problems by the Newton-Kantorovich method. (English. Russian original) Zbl 07504066 J. Math. Sci., New York 261, No. 2, 228-240 (2022); translation from Neliniĭni Kolyvannya 23, No. 3, 321-331 (2020). MSC: 34B10 34E10 34A45 PDF BibTeX XML Cite \textit{A. A. Boichuk} and \textit{S. M. Chuiko}, J. Math. Sci., New York 261, No. 2, 228--240 (2022; Zbl 07504066); translation from Neliniĭni Kolyvannya 23, No. 3, 321--331 (2020) Full Text: DOI OpenURL
Pang, Huihui; Zhu, Yuke; Cui, Mengyan The method of upper and lower solutions to impulsive differential equation with Sturm-Liouville integral boundary conditions. (English) Zbl 07502787 Differ. Equ. Dyn. Syst. 30, No. 2, 335-351 (2022). Reviewer: Hanying Feng (Shijiazhuang) MSC: 34B10 34B37 34A45 47N20 PDF BibTeX XML Cite \textit{H. Pang} et al., Differ. Equ. Dyn. Syst. 30, No. 2, 335--351 (2022; Zbl 07502787) Full Text: DOI OpenURL
Afrouzi, Ghasem A.; Moradi, Shahin; Caristi, Giuseppe Infinitely many solutions for impulsive nonlocal elastic beam equations. (English) Zbl 07502784 Differ. Equ. Dyn. Syst. 30, No. 2, 287-300 (2022). Reviewer: Jan Tomeček (Olomouc) MSC: 34B10 34B37 58E50 PDF BibTeX XML Cite \textit{G. A. Afrouzi} et al., Differ. Equ. Dyn. Syst. 30, No. 2, 287--300 (2022; Zbl 07502784) Full Text: DOI OpenURL
Heredia, Carlos; Kolář, Ivan; Llosa, Josep; Maldonado Torralba, Francisco José; Mazumdar, Anupam Infinite-derivative linearized gravity in convolutional form. (English) Zbl 07502317 Classical Quantum Gravity 39, No. 8, Article ID 085001, 26 p. (2022). MSC: 83C40 46G05 42A38 44A35 35P20 70S05 34B10 PDF BibTeX XML Cite \textit{C. Heredia} et al., Classical Quantum Gravity 39, No. 8, Article ID 085001, 26 p. (2022; Zbl 07502317) Full Text: DOI OpenURL
Almalahi, Mohammed A.; Panchal, Satish K.; Abdo, Mohammed S.; Jarad, Fahd On Atangana-Baleanu-type nonlocal boundary fractional differential equations. (English) Zbl 07500973 J. Funct. Spaces 2022, Article ID 1812445, 17 p. (2022). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. A. Almalahi} et al., J. Funct. Spaces 2022, Article ID 1812445, 17 p. (2022; Zbl 07500973) Full Text: DOI OpenURL
Gou, Haide Existence of mild solutions for Hilfer fractional evolution equations in Banach space. (English) Zbl 07499458 Ann. Pol. Math. 128, No. 1, 15-38 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34G20 34B10 47N20 PDF BibTeX XML Cite \textit{H. Gou}, Ann. Pol. Math. 128, No. 1, 15--38 (2022; Zbl 07499458) Full Text: DOI OpenURL
He, Zhiqian; Miao, Liangying S-shaped connected component of positive solutions for a Minkowski-curvature Dirichlet problem with indefinite weight. (English) Zbl 1483.34054 Bull. Iran. Math. Soc. 48, No. 1, 213-225 (2022). MSC: 34C23 34B10 34B18 PDF BibTeX XML Cite \textit{Z. He} and \textit{L. Miao}, Bull. Iran. Math. Soc. 48, No. 1, 213--225 (2022; Zbl 1483.34054) Full Text: DOI OpenURL
Verma, Amit K.; Urus, Nazia Well ordered monotone iterative technique for nonlinear second order four point Dirichlet BVPs. (English) Zbl 1483.34036 Math. Model. Anal. 27, No. 1, 59-77 (2022). MSC: 34B05 34B10 34B15 PDF BibTeX XML Cite \textit{A. K. Verma} and \textit{N. Urus}, Math. Model. Anal. 27, No. 1, 59--77 (2022; Zbl 1483.34036) Full Text: DOI OpenURL
Aoki, Sinya; Yazaki, Koichi Derivative expansion in the HAL QCD method for a separable potential. (English) Zbl 1487.81103 PTEP, Prog. Theor. Exper. Phys. 2022, No. 3, Article ID 033B04, 16 p. (2022). MSC: 81Q80 03C15 34B10 81Q05 35Q41 35P10 65L12 82B26 PDF BibTeX XML Cite \textit{S. Aoki} and \textit{K. Yazaki}, PTEP, Prog. Theor. Exper. Phys. 2022, No. 3, Article ID 033B04, 16 p. (2022; Zbl 1487.81103) Full Text: DOI arXiv OpenURL
Nguyen Van Loi; Mai Quoc Vu Uniqueness and Hyers-Ulam stability results for differential variational inequalities with nonlocal conditions. (English) Zbl 07491023 Differ. Equ. Dyn. Syst. 30, No. 1, 113-130 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G20 47J20 34B10 34D10 PDF BibTeX XML Cite \textit{Nguyen Van Loi} and \textit{Mai Quoc Vu}, Differ. Equ. Dyn. Syst. 30, No. 1, 113--130 (2022; Zbl 07491023) Full Text: DOI OpenURL
Yang, You-yuan; Wang, Qi-ru Multiple positive solutions for one dimensional third order \(p\)-Laplacian equations with integral boundary conditions. (English) Zbl 07490422 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 116-127 (2022); erratum ibid. 38, No. 2, 512 (2022). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{Y.-y. Yang} and \textit{Q.-r. Wang}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 116--127 (2022; Zbl 07490422) Full Text: DOI OpenURL
Xu, Simin; Zhang, Guowei Positive solutions for a second-order nonlinear coupled system with derivative dependence subject to coupled Stieltjes integral boundary conditions. (English) Zbl 07488606 Mediterr. J. Math. 19, No. 2, Paper No. 50, 23 p. (2022). Reviewer: Rodica Luca (Iaşi) MSC: 34B18 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{S. Xu} and \textit{G. Zhang}, Mediterr. J. Math. 19, No. 2, Paper No. 50, 23 p. (2022; Zbl 07488606) Full Text: DOI OpenURL
Glushak, A. V. Uniqueness criterion for solutions of nonlocal problems on a finite interval for abstract singular equations. (English. Russian original) Zbl 07488476 Math. Notes 111, No. 1, 20-32 (2022); translation from Mat. Zametki 111, No. 1, 24-39 (2022). Reviewer: Nikita V. Artamonov (Moskva) MSC: 34G10 34B10 34B16 PDF BibTeX XML Cite \textit{A. V. Glushak}, Math. Notes 111, No. 1, 20--32 (2022; Zbl 07488476); translation from Mat. Zametki 111, No. 1, 24--39 (2022) Full Text: DOI OpenURL
Ghergu, Marius; Miyamoto, Yasuhito Radial single point rupture solutions for a general MEMS model. (English) Zbl 07488384 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 47, 29 p. (2022). MSC: 34A12 34B10 35J62 PDF BibTeX XML Cite \textit{M. Ghergu} and \textit{Y. Miyamoto}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 47, 29 p. (2022; Zbl 07488384) Full Text: DOI arXiv OpenURL
Ma, Xinxin; Kuang, Yonghui Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. (English. Russian original) Zbl 1486.81097 Theor. Math. Phys. 210, No. 1, 31-45 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 38-53 (2022). MSC: 81Q05 35Q55 34B10 81U40 35Q15 PDF BibTeX XML Cite \textit{X. Ma} and \textit{Y. Kuang}, Theor. Math. Phys. 210, No. 1, 31--45 (2022; Zbl 1486.81097); translation from Teor. Mat. Fiz. 210, No. 1, 38--53 (2022) Full Text: DOI OpenURL
Goodrich, Christopher; Lizama, Carlos Existence and monotonicity of nonlocal boundary value problems: the one-dimensional case. (English) Zbl 07483484 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 1-27 (2022). MSC: 34B10 34C11 35B09 42A85 44A35 26A33 26A48 34A08 34B27 PDF BibTeX XML Cite \textit{C. Goodrich} and \textit{C. Lizama}, Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 1--27 (2022; Zbl 07483484) Full Text: DOI OpenURL
Balakin, Alexander B.; Ilin, Alexei S. Nonlocal extension of causal thermodynamics of the isotropic cosmic fluid. (English) Zbl 1486.83055 Phys. Lett., B 826, Article ID 136912, 8 p. (2022). MSC: 83C55 76F05 80A10 34B10 83F05 81S22 76A10 PDF BibTeX XML Cite \textit{A. B. Balakin} and \textit{A. S. Ilin}, Phys. Lett., B 826, Article ID 136912, 8 p. (2022; Zbl 1486.83055) Full Text: DOI arXiv OpenURL
Acunzo, Adriano; Bajardi, Francesco; Capozziello, Salvatore Non-local curvature gravity cosmology via Noether symmetries. (English) Zbl 1486.83007 Phys. Lett., B 826, Article ID 136907, 11 p. (2022). MSC: 83C15 34B10 83F05 70H33 46S60 PDF BibTeX XML Cite \textit{A. Acunzo} et al., Phys. Lett., B 826, Article ID 136907, 11 p. (2022; Zbl 1486.83007) Full Text: DOI arXiv OpenURL
Harrison, Alan K. A realistic theory of quantum measurement. (English) Zbl 1485.81010 Found. Phys. 52, No. 1, Paper No. 22, 32 p. (2022). MSC: 81P15 81Q70 47G20 58J47 34B10 70H05 35G20 81P16 60K35 00A79 PDF BibTeX XML Cite \textit{A. K. Harrison}, Found. Phys. 52, No. 1, Paper No. 22, 32 p. (2022; Zbl 1485.81010) Full Text: DOI OpenURL
Alsadi, Wadhah Ahmed Existence and stability of the solution to a coupled system of fractional-order differential with a \(p\)-Laplacian operator under boundary conditions. (English) Zbl 07472891 Tamkang J. Math. 53, No. 1, 37-58 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{W. A. Alsadi}, Tamkang J. Math. 53, No. 1, 37--58 (2022; Zbl 07472891) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and Ulam stability for nonlinear Caputo-Hadamard fractional differential equations with three-point boundary conditions. (English) Zbl 07471126 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63-76 (2022). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B10 34D10 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 63--76 (2022; Zbl 07471126) Full Text: Link OpenURL
Wang, Shuyi The Ulam stability of fractional differential equation with the Caputo-Fabrizio derivative. (English) Zbl 07466794 J. Funct. Spaces 2022, Article ID 7268518, 9 p. (2022). Reviewer: Xiangcheng Zheng (Beijing) MSC: 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{S. Wang}, J. Funct. Spaces 2022, Article ID 7268518, 9 p. (2022; Zbl 07466794) Full Text: DOI OpenURL
Alsaedi, Ahmed; Ahmad, Bashir; Alblewi, Manal; Ntouyas, Sotiris K. Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems. (English) Zbl 07543273 AIMS Math. 6, No. 4, 3319-3338 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., AIMS Math. 6, No. 4, 3319--3338 (2021; Zbl 07543273) Full Text: DOI OpenURL
Yu, Yang-Yang; Ma, Zhong-Xin Global solvability for nonlinear nonautonomous evolution inclusions of Volterra-type and its applications. (English) Zbl 07543111 J. Integral Equations Appl. 33, No. 3, 381-401 (2021). MSC: 34G25 34B10 47N20 PDF BibTeX XML Cite \textit{Y.-Y. Yu} and \textit{Z.-X. Ma}, J. Integral Equations Appl. 33, No. 3, 381--401 (2021; Zbl 07543111) Full Text: DOI OpenURL
Johansyah, Muhamad Deni; Supriatna, Asep K.; Rusyaman, Endang; Saputra, Jumadil Application of fractional differential equation in economic growth model: a systematic review approach. (English) Zbl 07536330 AIMS Math. 6, No. 9, 10266-10280 (2021). MSC: 26A33 34A08 34A34 34B10 PDF BibTeX XML Cite \textit{M. D. Johansyah} et al., AIMS Math. 6, No. 9, 10266--10280 (2021; Zbl 07536330) Full Text: DOI OpenURL
Sudsutad, Weerawat; Ntouyas, Sotiris K.; Thaiprayoon, Chatthai Nonlocal coupled system for \(\psi\)-Hilfer fractional order Langevin equations. (English) Zbl 07536302 AIMS Math. 6, No. 9, 9731-9756 (2021). MSC: 26A33 34A08 34B10 PDF BibTeX XML Cite \textit{W. Sudsutad} et al., AIMS Math. 6, No. 9, 9731--9756 (2021; Zbl 07536302) Full Text: DOI OpenURL
Mary, S. Joe Christin; Tamilselvan, Ayyadurai Numerical method for a non-local boundary value problem with Caputo fractional order. (English) Zbl 1487.65095 J. Appl. Math. Comput. 67, No. 1-2, 671-687 (2021). MSC: 65L12 34A08 34B10 PDF BibTeX XML Cite \textit{S. J. C. Mary} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 67, No. 1--2, 671--687 (2021; Zbl 1487.65095) Full Text: DOI OpenURL
Jong, KumSong; Choi, HuiChol; Kim, MunChol; Kim, KwangHyok; Jo, SinHyok; Ri, Ok On the solvability and approximate solution of a one-dimensional singular problem for a \(p\)-Laplacian fractional differential equation. (English) Zbl 1486.34028 Chaos Solitons Fractals 147, Article ID 110948, 18 p. (2021). MSC: 34A08 34B10 65L10 PDF BibTeX XML Cite \textit{K. Jong} et al., Chaos Solitons Fractals 147, Article ID 110948, 18 p. (2021; Zbl 1486.34028) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Najla; Alsaedi, Ahmed; Ntouyas, Sotiris K. Boundary value problems for nonlocal multi-point and multi-term fractional differential inclusions. (English) Zbl 1486.34010 Appl. Anal. Optim. 5, No. 2, 123-144 (2021). MSC: 34A08 34A60 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Appl. Anal. Optim. 5, No. 2, 123--144 (2021; Zbl 1486.34010) Full Text: Link OpenURL
Izadi, Mohammad; Cattani, Carlo Solution of nonlocal fractional-order boundary value problems by an effective accurate approximation method. (English) Zbl 1486.65086 Appl. Anal. Optim. 5, No. 1, 29-44 (2021). MSC: 65L60 34A08 34B10 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{C. Cattani}, Appl. Anal. Optim. 5, No. 1, 29--44 (2021; Zbl 1486.65086) Full Text: Link OpenURL
Azizbayov, Elvin I. The unique solvability of a nonlocal inverse boundary-value problem for the pseudo-hyperbolic equation of fourth order. (English) Zbl 07527519 Adv. Differ. Equ. Control Process. 24, No. 1, 79-100 (2021). MSC: 34B10 35R30 35K70 35A01 35A02 35A09 PDF BibTeX XML Cite \textit{E. I. Azizbayov}, Adv. Differ. Equ. Control Process. 24, No. 1, 79--100 (2021; Zbl 07527519) Full Text: DOI OpenURL
Abdo, Mohammed S.; Abdeljawad, Thabet; Kucche, Kishor D.; Alqudah, Manar A.; Ali, Saeed M.; Jeelani, Mdi Begum On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative. (English) Zbl 1487.34146 Adv. Difference Equ. 2021, Paper No. 65, 17 p. (2021). MSC: 34K37 34B10 34K20 PDF BibTeX XML Cite \textit{M. S. Abdo} et al., Adv. Difference Equ. 2021, Paper No. 65, 17 p. (2021; Zbl 1487.34146) Full Text: DOI OpenURL
Zhao, Kaihong; Deng, Shoukai Existence and Ulam-Hyers stability of a kind of fractional-order multiple point BVP involving noninstantaneous impulses and abstract bounded operator. (English) Zbl 1487.34050 Adv. Difference Equ. 2021, Paper No. 44, 20 p. (2021). MSC: 34A08 34B10 34A37 26A33 PDF BibTeX XML Cite \textit{K. Zhao} and \textit{S. Deng}, Adv. Difference Equ. 2021, Paper No. 44, 20 p. (2021; Zbl 1487.34050) Full Text: DOI OpenURL
Luca, Rodica On a system of fractional differential equations with \(p\)-Laplacian operators and integral boundary conditions. (English) Zbl 07523918 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 749-766 (2021). MSC: 34A08 34B15 34B10 34B18 45G15 PDF BibTeX XML Cite \textit{R. Luca}, Rev. Roum. Math. Pures Appl. 66, No. 3--4, 749--766 (2021; Zbl 07523918) OpenURL
Ahmad, Bashir; Hamdan, Soha; Alsaedi, Ahmed; Ntouyas, Sotiris K. On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions. (English) Zbl 1484.34009 AIMS Math. 6, No. 6, 5801-5816 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., AIMS Math. 6, No. 6, 5801--5816 (2021; Zbl 1484.34009) Full Text: DOI OpenURL
Boutiara, Abdelatif; Abdo, Mohammed S.; Alqudah, Manar A.; Abdeljawad, Thabet On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. (English) Zbl 1484.34017 AIMS Math. 6, No. 6, 5518-5534 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{A. Boutiara} et al., AIMS Math. 6, No. 6, 5518--5534 (2021; Zbl 1484.34017) Full Text: DOI OpenURL
Nabil, Tamer Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. (English) Zbl 1484.34036 AIMS Math. 6, No. 5, 5088-5105 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{T. Nabil}, AIMS Math. 6, No. 5, 5088--5105 (2021; Zbl 1484.34036) Full Text: DOI OpenURL
Infante, Gennaro; Matucci, Serena Positive solutions of BVPs on the half-line involving functional BCs. (English) Zbl 1484.34085 AIMS Math. 6, No. 5, 4860-4872 (2021). MSC: 34B18 34B40 34B10 PDF BibTeX XML Cite \textit{G. Infante} and \textit{S. Matucci}, AIMS Math. 6, No. 5, 4860--4872 (2021; Zbl 1484.34085) Full Text: DOI OpenURL
Muthaiah, Subramanian; Baleanu, Dumitru; Thangaraj, Nandha Gopal Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. (English) Zbl 1484.34035 AIMS Math. 6, No. 1, 168-194 (2021). MSC: 34A08 34B10 34B15 PDF BibTeX XML Cite \textit{S. Muthaiah} et al., AIMS Math. 6, No. 1, 168--194 (2021; Zbl 1484.34035) Full Text: DOI OpenURL
Guida, Karim; Ibnelazyz, Lahcen; Hilal, Khalid; Melliani, Said Existence and uniqueness results for sequential \(\psi\)-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. (English) Zbl 1485.34036 AIMS Math. 6, No. 8, 8239-8255 (2021). MSC: 34A08 34B10 34A12 34B15 PDF BibTeX XML Cite \textit{K. Guida} et al., AIMS Math. 6, No. 8, 8239--8255 (2021; Zbl 1485.34036) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Alsaedi, Ahmed; Ntouyas, Sotiris K. Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. (English) Zbl 1484.34171 AIMS Math. 6, No. 7, 7093-7110 (2021). MSC: 34K37 34B10 34K09 34K10 45J05 PDF BibTeX XML Cite \textit{B. Ahmad} et al., AIMS Math. 6, No. 7, 7093--7110 (2021; Zbl 1484.34171) Full Text: DOI OpenURL
Seemab, Arjumand; ur Rehman, Mujeeb; Alzabut, Jehad; Adjabi, Yassine; Abdo, Mohammed S. Langevin equation with nonlocal boundary conditions involving a \(\psi\)-Caputo fractional operators of different orders. (English) Zbl 1484.34040 AIMS Math. 6, No. 7, 6749-6780 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{A. Seemab} et al., AIMS Math. 6, No. 7, 6749--6780 (2021; Zbl 1484.34040) Full Text: DOI OpenURL
Alnahdi, Abeer S.; Jeelani, Mdi Begum; Abdo, Mohammed S.; Ali, Saeed M.; Saleh, S. On a nonlocal implicit problem under Atangana-Baleanu-Caputo fractional derivative. (English) Zbl 07509948 Bound. Value Probl. 2021, Paper No. 104, 18 p. (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. S. Alnahdi} et al., Bound. Value Probl. 2021, Paper No. 104, 18 p. (2021; Zbl 07509948) Full Text: DOI OpenURL
Lin, Longfei; Liu, Yansheng; Zhao, Daliang Multiple solutions for singular semipositone boundary value problems of fourth-order differential systems with parameters. (English) Zbl 07509923 Bound. Value Probl. 2021, Paper No. 79, 15 p. (2021). MSC: 47N20 34B18 34B10 34B15 34A08 PDF BibTeX XML Cite \textit{L. Lin} et al., Bound. Value Probl. 2021, Paper No. 79, 15 p. (2021; Zbl 07509923) Full Text: DOI OpenURL
Alam, Mehboob; Zada, Akbar; Popa, Ioan-Lucian; Kheiryan, Alireza; Rezapour, Shahram; Kaabar, Mohammed K. A. A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers-Ulam stability. (English) Zbl 07509917 Bound. Value Probl. 2021, Paper No. 73, 18 p. (2021). MSC: 34A08 34B10 34A38 34A60 34D10 47N20 PDF BibTeX XML Cite \textit{M. Alam} et al., Bound. Value Probl. 2021, Paper No. 73, 18 p. (2021; Zbl 07509917) Full Text: DOI OpenURL
Almalahi, Mohammed A.; Panchal, Satish K. Some properties of implicit impulsive coupled system via \(\varphi \)-Hilfer fractional operator. (English) Zbl 07509911 Bound. Value Probl. 2021, Paper No. 67, 22 p. (2021). MSC: 34A08 34A09 34B37 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{M. A. Almalahi} and \textit{S. K. Panchal}, Bound. Value Probl. 2021, Paper No. 67, 22 p. (2021; Zbl 07509911) Full Text: DOI OpenURL
Cabada, Alberto; Iglesias, Javier Nonlinear differential equations with perturbed Dirichlet integral boundary conditions. (English) Zbl 07509910 Bound. Value Probl. 2021, Paper No. 66, 19 p. (2021). Reviewer: Rui Yang (Changsha) MSC: 34B18 34B10 34B27 34B08 47N20 PDF BibTeX XML Cite \textit{A. Cabada} and \textit{J. Iglesias}, Bound. Value Probl. 2021, Paper No. 66, 19 p. (2021; Zbl 07509910) Full Text: DOI OpenURL
Nuchpong, Cholticha; Ntouyas, Sotiris K.; Vivek, Devaraj; Tariboon, Jessada Nonlocal boundary value problems for \(\psi\)-Hilfer fractional-order Langevin equations. (English) Zbl 07509878 Bound. Value Probl. 2021, Paper No. 34, 12 p. (2021). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{C. Nuchpong} et al., Bound. Value Probl. 2021, Paper No. 34, 12 p. (2021; Zbl 07509878) Full Text: DOI OpenURL
Frigon, Marlène; Tella, Marcos; Tojo, F. Adrián F. First order differential systems with a nonlinear boundary condition via the method of solution-regions. (English) Zbl 07509863 Bound. Value Probl. 2021, Paper No. 19, 18 p. (2021). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{M. Frigon} et al., Bound. Value Probl. 2021, Paper No. 19, 18 p. (2021; Zbl 07509863) Full Text: DOI OpenURL
Matyjasik, Marek; Szymańska-Dȩbowska, Katarzyna Solvability for nonlocal boundary value problems with generalized \(p\)-Laplacian on an unbounded domain. (English) Zbl 07502421 Forum Math. 33, No. 5, 1321-1330 (2021). MSC: 34B10 34B15 34B40 47N20 PDF BibTeX XML Cite \textit{M. Matyjasik} and \textit{K. Szymańska-Dȩbowska}, Forum Math. 33, No. 5, 1321--1330 (2021; Zbl 07502421) Full Text: DOI OpenURL
Ali, Amjad; Khan, Nabeela; Israr, Seema On establishing qualitative theory to nonlinear boundary value problem of fractional differential equations. (English) Zbl 1486.34012 Math. Sci., Springer 15, No. 4, 395-403 (2021). MSC: 34A08 26A33 34B10 35A08 45G10 47H10 PDF BibTeX XML Cite \textit{A. Ali} et al., Math. Sci., Springer 15, No. 4, 395--403 (2021; Zbl 1486.34012) Full Text: DOI OpenURL
Mitrokhin, Sergeĭ Ivanovich On the asymptotics of spectrum of an even-order differential operator with a delta-function potential. (Russian. English summary) Zbl 07499965 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 4, 634-662 (2021). MSC: 34B10 47E05 PDF BibTeX XML Cite \textit{S. I. Mitrokhin}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 4, 634--662 (2021; Zbl 07499965) Full Text: DOI MNR OpenURL
de Sousa, Robert; Minhós, Feliz; Fialho, João On coupled systems of Lidstone-type boundary value problems. (English) Zbl 1483.34023 Math. Model. Anal. 26, No. 3, 358-371 (2021). MSC: 34A34 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{R. de Sousa} et al., Math. Model. Anal. 26, No. 3, 358--371 (2021; Zbl 1483.34023) Full Text: DOI OpenURL
Gupta, Vijay The convergence of exponential operators connected with \(x^3\) on functions of bounded variation. (English) Zbl 07493437 Miskolc Math. Notes 22, No. 2, 681-686 (2021). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{V. Gupta}, Miskolc Math. Notes 22, No. 2, 681--686 (2021; Zbl 07493437) Full Text: DOI OpenURL
Turab, Ali; Sintunavarat, Wutiphol On the solvability of a nonlinear Langevin equation involving two fractional orders in different intervals. (English) Zbl 07487965 Nonlinear Funct. Anal. Appl. 26, No. 5, 1021-1034 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, Nonlinear Funct. Anal. Appl. 26, No. 5, 1021--1034 (2021; Zbl 07487965) Full Text: Link OpenURL
Ahmad, Bashir; Ntouyas, Sotiris K.; Alsaedi, Ahmed; Albideewi, Amjad F. A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions. (English) Zbl 1485.34020 Adv. Difference Equ. 2021, Paper No. 33, 16 p. (2021). MSC: 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Adv. Difference Equ. 2021, Paper No. 33, 16 p. (2021; Zbl 1485.34020) Full Text: DOI OpenURL
Imanbaev, Nurlan Saĭramovich On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment. (English) Zbl 07482120 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 186-193 (2021). MSC: 34B09 34B10 34L15 34L20 PDF BibTeX XML Cite \textit{N. S. Imanbaev}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 186--193 (2021; Zbl 07482120) Full Text: DOI MNR OpenURL
Baranetskij, Ya. O.; Demkiv, I. I.; Solomko, A. V.; Sus’, O. M. Nonlocal multipoint problem for a differential equation of \(2n\)-th order with operator coefficients. (English) Zbl 1480.34085 Carpathian Math. Publ. 13, No. 2, 501-514 (2021). MSC: 34G10 34K10 34K30 34L10 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} et al., Carpathian Math. Publ. 13, No. 2, 501--514 (2021; Zbl 1480.34085) Full Text: DOI OpenURL
Imaga, O. F.; Iyase, S. A.; Odekina, O. G. Resonant mixed fractional-order \(p\)-Laplacian boundary value problem on the half-line. (English) Zbl 07481836 Nonauton. Dyn. Syst. 8, 328-339 (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34B10 34B40 34A08 47N20 PDF BibTeX XML Cite \textit{O. F. Imaga} et al., Nonauton. Dyn. Syst. 8, 328--339 (2021; Zbl 07481836) Full Text: DOI OpenURL
Chen, Zhong; Jiang, Wei; Du, Hong A new reproducing kernel method for Duffing equations. (English) Zbl 1480.65178 Int. J. Comput. Math. 98, No. 11, 2341-2354 (2021). MSC: 65L10 34B10 PDF BibTeX XML Cite \textit{Z. Chen} et al., Int. J. Comput. Math. 98, No. 11, 2341--2354 (2021; Zbl 1480.65178) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Gouri, Nesrine; Khelil, Kamel Ali Existence results for higher order fractional differential equations with integral boundary conditions via Kuratowski measure of noncompactnes. (English) Zbl 07478721 Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 289-302 (2021). Reviewer: Bashir Ahmad (Jeddah) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 289--302 (2021; Zbl 07478721) Full Text: DOI OpenURL
Fazli, Hossein; Sun, HongGuang; Aghchi, Sima Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions. (English) Zbl 07476572 Int. J. Comput. Math. 98, No. 1, 1-10 (2021). MSC: 34A08 34B08 34B10 34A45 PDF BibTeX XML Cite \textit{H. Fazli} et al., Int. J. Comput. Math. 98, No. 1, 1--10 (2021; Zbl 07476572) Full Text: DOI OpenURL
Bantaojai, Thanatporn; Borisut, Piyachat Implicit fractional differential equation with nonlocal fractional integral conditions. (English) Zbl 07475080 Thai J. Math. 19, No. 3, 993-1003 (2021). MSC: 34A08 34A09 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{T. Bantaojai} and \textit{P. Borisut}, Thai J. Math. 19, No. 3, 993--1003 (2021; Zbl 07475080) Full Text: Link OpenURL
Sintunavarat, Wutiphol; Turab, Ali On the novel existence results of solutions for fractional Langevin equation associating with nonlinear fractional orders. (English) Zbl 07475067 Thai J. Math. 19, No. 3, 827-841 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Thai J. Math. 19, No. 3, 827--841 (2021; Zbl 07475067) Full Text: Link OpenURL
Feng, Hanying; Zhang, Xiaofeng Existence of solutions for a coupled system of nonlinear fractional differential equations at resonance. (English) Zbl 07474120 Topol. Methods Nonlinear Anal. 58, No. 2, 389-401 (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{H. Feng} and \textit{X. Zhang}, Topol. Methods Nonlinear Anal. 58, No. 2, 389--401 (2021; Zbl 07474120) Full Text: DOI OpenURL
Štikonas, Artūras; Şen, Erdoğan Asymptotic analysis of Sturm-Liouville problem with nonlocal integral-type boundary condition. (English) Zbl 07473964 Nonlinear Anal., Model. Control 26, No. 5, 969-991 (2021). Reviewer: Fatma Hıra (Atakum) MSC: 34B24 34B10 34L15 34L20 PDF BibTeX XML Cite \textit{A. Štikonas} and \textit{E. Şen}, Nonlinear Anal., Model. Control 26, No. 5, 969--991 (2021; Zbl 07473964) Full Text: DOI OpenURL
Smirnov, Sergey Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type. (English) Zbl 07473961 Nonlinear Anal., Model. Control 26, No. 5, 914-927 (2021). Reviewer: Daniel Franco Leis (Madrid) MSC: 34B10 47N20 PDF BibTeX XML Cite \textit{S. Smirnov}, Nonlinear Anal., Model. Control 26, No. 5, 914--927 (2021; Zbl 07473961) Full Text: DOI OpenURL
Kumar, K. Sravan; Maheshwari, Shubham; Mazumdar, Anupam; Peng, Jun An anisotropic bouncing universe in non-local gravity. (English) Zbl 1485.83155 J. Cosmol. Astropart. Phys. 2021, No. 7, Paper No. 25, 19 p. (2021). MSC: 83F05 83C15 83E05 74E10 53C30 83C55 76E05 34B10 PDF BibTeX XML Cite \textit{K. S. Kumar} et al., J. Cosmol. Astropart. Phys. 2021, No. 7, Paper No. 25, 19 p. (2021; Zbl 1485.83155) Full Text: DOI arXiv OpenURL
Temar, Bahia; Saif, Ouiza; Djebali, Smaïl A system of nonlinear fractional BVPs with \(\varphi\)-Laplacian operators and nonlocal conditions. (English) Zbl 1478.34012 Proyecciones 40, No. 2, 447-479 (2021). MSC: 34A08 34B10 34B18 PDF BibTeX XML Cite \textit{B. Temar} et al., Proyecciones 40, No. 2, 447--479 (2021; Zbl 1478.34012) Full Text: DOI OpenURL
Mehmood, Nayyar; Abbas, Ahsan; Abdeljawad, Thabet; Akgül, Ali Existence results for ABC-fractional differential equations with non-separated and integral type of boundary conditions. (English) Zbl 1487.34030 Fractals 29, No. 5, Article ID 2140016, 16 p. (2021). MSC: 34A08 26A33 34B10 47N20 PDF BibTeX XML Cite \textit{N. Mehmood} et al., Fractals 29, No. 5, Article ID 2140016, 16 p. (2021; Zbl 1487.34030) Full Text: DOI OpenURL
Wang, Youyu; Wu, Yuhan; Cao, Zheng Lyapunov-type inequalities for differential equation with Caputo-Hadamard fractional derivative under multipoint boundary conditions. (English) Zbl 07465056 J. Inequal. Appl. 2021, Paper No. 77, 12 p. (2021). MSC: 34A08 34A40 26A33 34B05 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Inequal. Appl. 2021, Paper No. 77, 12 p. (2021; Zbl 07465056) Full Text: DOI OpenURL
Smirnov, Sergey Existence and multiplicity of positive solutions for a third-order two-point boundary value problem. (English) Zbl 07460184 Tatra Mt. Math. Publ. 79, 199-212 (2021). Reviewer: Daniel Franco Leis (Madrid) MSC: 34B18 34B15 34B27 47N20 34B10 PDF BibTeX XML Cite \textit{S. Smirnov}, Tatra Mt. Math. Publ. 79, 199--212 (2021; Zbl 07460184) Full Text: DOI OpenURL
Chalishajar, Dimplekumar N.; Karthikeyan, Kulandhivel; Tamizharasan, Dhachinamoorthi Controllability of nonlocal impulsive functional differential equations with measure of noncompactness in Banach spaces. (English) Zbl 1486.34118 Tatra Mt. Math. Publ. 79, 59-80 (2021). MSC: 34H05 34B10 34A37 34G20 93B05 47N20 PDF BibTeX XML Cite \textit{D. N. Chalishajar} et al., Tatra Mt. Math. Publ. 79, 59--80 (2021; Zbl 1486.34118) Full Text: DOI OpenURL
Beklaryan, L. A.; Beklaryan, A. L. Existence of bounded soliton solutions in the problem of longitudinal vibrations of an infinite elastic rod in a field with a strongly nonlinear potential. (English. Russian original) Zbl 07457143 Comput. Math. Math. Phys. 61, No. 12, 1980-1994 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2024-2039 (2021). MSC: 34A33 34B10 34K10 PDF BibTeX XML Cite \textit{L. A. Beklaryan} and \textit{A. L. Beklaryan}, Comput. Math. Math. Phys. 61, No. 12, 1980--1994 (2021; Zbl 07457143); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2024--2039 (2021) Full Text: DOI OpenURL