×

Transcriptomic heterogeneity in cancer as a consequence of dysregulation of the gene-gene interaction network. (English) Zbl 1328.92049

Summary: Many pathways are dysregulated in cancer. Dysregulation of the regulatory network results in less control of transcript levels in the cell. Hence, dysregulation is reflected in the heterogeneity of the transcriptome: the more dysregulated the pathway, the more the transcriptomic heterogeneity. We identify four scenarios for a transcriptomic heterogeneity increase (i.e., pathway dysregulation) in cancer: (1) activation of a molecular switch, (2) a structural change in a regulator, (3) a temporal change in a regulator, and (4) weakening of gene-gene interactions. These mechanisms are statistically motivated, explored in silico, and their plausibility to occur in vivo illustrated by means of oncogenomics data of breast cancer studies.

MSC:

92D10 Genetics and epigenetics
92C37 Cell biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Band AM, Laiho M (2011) Crosstalk of tgf-\[ \beta\] β and estrogen receptor signaling in breast cancer. J. Mammary Gland Biol Neoplasia 16(2):109-115 · doi:10.1007/s10911-011-9203-7
[2] Banerji CRS, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou JX, Teschendorff AE (2013) Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci Rep 3
[3] Banerji CRS, Severini S, Caldas C, Teschendorff AE, Tanay A (2015) Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS Comput Biol 11(3):e1004,115 · doi:10.1371/journal.pcbi.1004115
[4] Berretta R, Moscato P (2010) Cancer biomarker discovery: the entropic hallmark. PLoS One 5(8):e12,262: 1-66 · doi:10.1371/journal.pone.0012262
[5] Björnström L, Sjöberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833-842 · doi:10.1210/me.2004-0486
[6] Dang CV, Resar LMS, Emisona E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K (1999) Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253(1):63-77 · doi:10.1006/excr.1999.4686
[7] Demetrius L, Gundlach VM, Ochs G (2004) Complexity and demographic stability in population models. Theor Popul Biol 65(3):211-225 · Zbl 1106.92058 · doi:10.1016/j.tpb.2003.12.002
[8] Dexter DL, Leith JT (1986) Tumor heterogeneity and drug resistance. J Clin Oncol 4(2):244-257
[9] Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4:177-183 · doi:10.1038/nrc1299
[10] Goldie JH, Coldman AJ (1978) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11-12):1727-1733
[11] Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57-70 · doi:10.1016/S0092-8674(00)81683-9
[12] Hart IR, Fidler IJ (1981) The implications of tumor heterogeneity for studies on the biology and therapy of cancer metastasis. Biochimica et Biophysica Acta 651(1):37-50 · doi:10.1016/0304-4165(81)90308-1
[13] Harville DA (2008) Matrix algebra from a statistician’s perspective. Springer, New York · Zbl 1142.15001
[14] Heppner GH, Miller BE (1983) Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 2(1):5-23 · doi:10.1007/BF00046903
[15] Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18):2291-2297 · doi:10.1093/bioinformatics/btl390
[16] Kaila VRI, Annila A (2008) Natural selection for least action. Proc R Soc A 464:3055-3070 · Zbl 1152.80303 · doi:10.1098/rspa.2008.0178
[17] Kauffman SA (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, New York
[18] Ledoit O, Wolf M (2004) A well conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88:365-411 · Zbl 1032.62050 · doi:10.1016/S0047-259X(03)00096-4
[19] Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278(5340):1059-1064 · doi:10.1126/science.278.5340.1059
[20] Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta 1805(1):105-117
[21] Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23-28 · doi:10.1126/science.959840
[22] Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) Kegg: kyoto encyclopedia of genes and genomes. Nucleic acids Res 27(1):29-34 · doi:10.1093/nar/27.1.29
[23] Peng J, Wang P, Zhou N, Zhu J (2009) Partial correlation estimation by joint sparse regression models. J Am Stat Assoc 104(486):735-746 · Zbl 1388.62046 · doi:10.1198/jasa.2009.0126
[24] Pinto CA, Widodo E, Waltham M, Thompson EW (2013) Breast cancer stem cells and epithelial mesenchymal plasticity—implications for chemoresistance. Cancer Lett 341(1):56-62 · doi:10.1016/j.canlet.2013.06.003
[25] Rajapakse I, Groudine M, Meshabi M (2011) Dynamics and control of state-dependent networks for probing genomic organization. PNAS 108(42):17257-17262 · Zbl 1256.93074 · doi:10.1073/pnas.1113249108
[26] Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141(3):259-277 · doi:10.2307/3579003
[27] Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 4, Article 32 · Zbl 1388.62046
[28] Schramm G, Kannabiran N, König R (2010) Regulation patterns in signaling networks of cancer. BMC Syst Biol 4(1):162 · doi:10.1186/1752-0509-4-162
[29] Schröder M, Haibe-Kains B, Culhane A, Sotiriou C, Bontempi G, J., (2011) Q.: breastCancerMAINZ; breastCancerTRANSBIG;breastCancerUNT; breastCancerUPP; breastCancerVDX. R packages, versions 1.0.6
[30] Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822-829 · doi:10.1016/j.cell.2009.08.017
[31] Stingl J, Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7(10):791-799 · doi:10.1038/nrc2212
[32] Tarabichi M, Antoniou A, Saiselet M, Pita JM, Andry G, Dumont JE, Detours V, Maenhaut C (2013) Systems biology of cancer: entropy, disorder, and selection-driven evolution to independence, invasion and “swarm intelligence”. Cancer Metastasis Rev 32(3-4):403-421 · doi:10.1007/s10555-013-9431-y
[33] Teschendorff AE, Severini S (2010) Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol 4(104):1-15
[34] Teschendorff AE, Sollich P, Kuehn R (2014) Signalling entropy: a novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67(3):282-293 · doi:10.1016/j.ymeth.2014.03.013
[35] Van Wieringen WN, Van der Vaart AW (2011) Statistical analysis of the cancer cell’s molecular entropy using high-throughput data. Bioinformatics 27(4):556-563 · doi:10.1093/bioinformatics/btq704
[36] Van Wieringen WN, Van de Wiel MA (2014) Penalized differential pathway analysis of integrative oncogenomics studies. Stat Appl Genet Mol Biol 13(2):141-158 · Zbl 1296.92194
[37] Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799 · doi:10.1038/nm1087
[38] Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307-310 · doi:10.1038/35042675
[39] Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high-centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21(23):4205-4208 · doi:10.1093/bioinformatics/bti688
[40] Weinberg RA (2006) The biology of cancer. Garland Science, New York
[41] West J, Bianconi G, Severini S, Teschendorff AE (2012) Differential network entropy reveals cancer system hallmarks. Sci Rep 2
[42] Zalatan JG, Coyle SM, Rajan S, Sidhu SS, Lim WA (2012) Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation. Science 337(6099):1218-1222 · doi:10.1126/science.1220683
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.