Rashid, Saima; Abouelmagd, Elbaz I.; Sultana, Sobia; Chu, Yu-Ming New developments in weighted \(n\)-fold type inequalities via discrete generalized \(\hat{\hbar}\)-proportional fractional operators. (English) Zbl 07507540 Fractals 30, No. 2, Article ID 2240056, 16 p. (2022). MSC: 26Axx 39Axx 26Dxx PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 2, Article ID 2240056, 16 p. (2022; Zbl 07507540) Full Text: DOI OpenURL
Rashid, Saima; Sultana, Sobia; Karaca, Yeliz; Khalid, Aasma; Chu, Yu-Ming Some further extensions considering discrete proportional fractional operators. (English) Zbl 07490662 Fractals 30, No. 1, Article ID 2240026, 12 p. (2022). MSC: 26Axx 39Axx 26Dxx PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 1, Article ID 2240026, 12 p. (2022; Zbl 07490662) Full Text: DOI OpenURL
Barriga-Acosta, Hector A.; Gartside, Paul M. Monotone normality and nabla products. (English) Zbl 07419454 Fundam. Math. 254, No. 1, 99-120 (2021). MSC: 03E75 54A35 54B10 54D15 54D20 54A25 54B99 54G20 54G99 PDF BibTeX XML Cite \textit{H. A. Barriga-Acosta} and \textit{P. M. Gartside}, Fundam. Math. 254, No. 1, 99--120 (2021; Zbl 07419454) Full Text: DOI arXiv OpenURL
Chen, Churong; Mert, Raziye; Jia, Baoguo; Erbe, Lynn; Peterson, Allan Gronwall’s inequality for a nabla fractional difference system with a retarded argument and an application. (English) Zbl 1429.39004 J. Difference Equ. Appl. 25, No. 6, 855-868 (2019). Reviewer: P. K. Banerji (Jodhpur) MSC: 39A12 39A13 39A70 26A33 26D15 PDF BibTeX XML Cite \textit{C. Chen} et al., J. Difference Equ. Appl. 25, No. 6, 855--868 (2019; Zbl 1429.39004) Full Text: DOI OpenURL
Goodrich, Christopher S. Sharp monotonicity results for fractional nabla sequential differences. (English) Zbl 1422.39022 J. Difference Equ. Appl. 25, No. 6, 801-814 (2019). MSC: 39A12 26A33 26A48 39A70 39B62 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Difference Equ. Appl. 25, No. 6, 801--814 (2019; Zbl 1422.39022) Full Text: DOI OpenURL
Khan, Zareen A. On some explicit bounds of integral inequalities related to time scales. (English) Zbl 1439.26043 Adv. Difference Equ. 2019, Paper No. 243, 15 p. (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D15 26D20 26E70 39A12 PDF BibTeX XML Cite \textit{Z. A. Khan}, Adv. Difference Equ. 2019, Paper No. 243, 15 p. (2019; Zbl 1439.26043) Full Text: DOI OpenURL
Asliyüce, Serkan; Güvenilir, Feza Chebyshev type inequality on nabla discrete fractional calculus. (English) Zbl 1424.26043 Fract. Differ. Calc. 6, No. 2, 275-280 (2016). MSC: 26D15 26A33 39A12 26D10 PDF BibTeX XML Cite \textit{S. Asliyüce} and \textit{F. Güvenilir}, Fract. Differ. Calc. 6, No. 2, 275--280 (2016; Zbl 1424.26043) Full Text: DOI OpenURL
Güvenilir, A. Feza; Kaymakçalan, Billur; Peterson, Allan C.; Taş, Kenan Nabla discrete fractional Grüss type inequality. (English) Zbl 1372.39010 J. Inequal. Appl. 2014, Paper No. 86, 9 p. (2014). MSC: 39A12 34A25 26A33 26D15 26D20 PDF BibTeX XML Cite \textit{A. F. Güvenilir} et al., J. Inequal. Appl. 2014, Paper No. 86, 9 p. (2014; Zbl 1372.39010) Full Text: DOI OpenURL
Anastassiou, George A. Nabla fractional calculus on time scales and inequalities. (English) Zbl 1312.26011 J. Concr. Appl. Math. 11, No. 1, 96-111 (2013). MSC: 26A33 26D15 39A12 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, J. Concr. Appl. Math. 11, No. 1, 96--111 (2013; Zbl 1312.26011) OpenURL
Anastassiou, George A. Landau type inequalities on time scales. (English) Zbl 1256.26020 J. Comput. Anal. Appl. 14, No. 6, 1130-1138 (2012). MSC: 26E70 26D10 39A12 93C70 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, J. Comput. Anal. Appl. 14, No. 6, 1130--1138 (2012; Zbl 1256.26020) OpenURL
Anastassiou, George A. Duality principle of time scales and inequalities. (English) Zbl 1205.26029 Appl. Anal. 89, No. 12, 1837-1854 (2010). MSC: 26D15 26E70 39A12 93C70 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Appl. Anal. 89, No. 12, 1837--1854 (2010; Zbl 1205.26029) Full Text: DOI OpenURL
Anastassiou, George A. Nabla discrete fractional calculus and nabla inequalities. (English) Zbl 1190.26001 Math. Comput. Modelling 51, No. 5-6, 562-571 (2010). MSC: 26A33 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Math. Comput. Modelling 51, No. 5--6, 562--571 (2010; Zbl 1190.26001) Full Text: DOI arXiv Link OpenURL
Guseinov, G. Sh.; Kaymakçalan, B. Basics of Riemann delta and nabla integration on time scales. (English) Zbl 1023.39009 J. Difference Equ. Appl. 8, No. 11, 1001-1017 (2002). Reviewer: Xianhua Tang (Changsha) MSC: 39A12 26A24 26A42 39B05 PDF BibTeX XML Cite \textit{G. Sh. Guseinov} and \textit{B. Kaymakçalan}, J. Difference Equ. Appl. 8, No. 11, 1001--1017 (2002; Zbl 1023.39009) Full Text: DOI OpenURL
Malykhin, D. V. A countably compact \(\nabla\)-normal space has countable character. (English. Russian original) Zbl 0910.54024 Mosc. Univ. Math. Bull. 52, No. 5, 35-37 (1997); translation from Vestn. Mosk. Univ., Ser. I 1997, No. 5, 31-33 (1997). Reviewer: Julia A.Martynyuk (Kyïv) MSC: 54D15 54A25 54D20 PDF BibTeX XML Cite \textit{D. V. Malykhin}, Mosc. Univ. Math. Bull. 52, No. 5, 31--33 (1997; Zbl 0910.54024); translation from Vestn. Mosk. Univ., Ser. I 1997, No. 5, 31--33 (1997) OpenURL
Williams, Scott W. Box products. (English) Zbl 0565.54007 Handbook of set-theoretic topology, 169-200 (1984). Reviewer: R.A.McCoy MSC: 54B10 54D20 54A35 54A25 PDF BibTeX XML OpenURL