×

A multiscale projection method for the analysis of carbon nanotubes. (English) Zbl 1079.74595

Summary: The main objective of this paper is to develop a multiscale method for the analysis of carbon nanotube systems. The multiscale coupled governing equations are first derived based on a multiscale partition, which consists of a coarse scale component represented by meshfree approximation, and a fine scale component to be resolved from molecular dynamics. It is noted that the coarse scale representation is present in the entire domain of the problem, and coexists with the fine scale representation in the enriched region. Using the projection properties of the partition, the decoupled non-linear set of equations are obtained and solved iteratively using Newton’s method. In this multiscale analysis, a virtual atom cluster (VAC) model is also proposed in the coarse scale treatment. This model does not involve a stress update scheme employing the Cauchy-Born hypothesis, which has been widely used in the crystal elasticity theory. Finally, to approximate a curved surface at the nanoscale, meshfree approximations are introduced to interpolate a single layer of atoms. Unlike traditional shell or continuum elements, the geometric constraint is only imposed in two dimensions. The high order continuity property of the meshfree shape functions guarantees an accurate description of the geometry and thus the energy of the atomic bond. The accuracy and efficiency of the method are illustrated in the post-buckling analysis of carbon nanotube structures. To our knowledge, this is the first multiscale post-buckling analysis presented for such a nanoscale system.

MSC:

74M25 Micromechanics of solids

Software:

L-BFGS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, F. F.; Broughton, J. Q.; Bernstein, N.; Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. Lett., 44, 6, 783-787 (1998)
[2] Arroyo, M.; Belytschko, T., An atomistic-based membrane for crystalline films one atom thick, J. Mech. Phys. Solids, 50, 1941-1977 (2002) · Zbl 1006.74061
[3] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons, LTD · Zbl 0959.74001
[4] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices (1954), Oxford University Press: Oxford University Press Oxford · Zbl 0057.44601
[5] Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films, Phys. Rev. B, 42, 15, 9458-9471 (1990)
[6] Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: Methodology and application, Phys. Rev. B, 60, 4, 2391-2403 (1999)
[7] Brugger, K., Thermodynamic definition of higher order elastic coefficients, Phys. Rev., 133, 6A, A1611 (1964) · Zbl 0126.20002
[8] J.S. Chen, W.K. Liu (Eds.), Computational Mechanics, Vol. 25, Springer-Verlag, 2000; J.S. Chen, W.K. Liu (Eds.), Computational Mechanics, Vol. 25, Springer-Verlag, 2000
[9] Dolbow, J.; Belytschko, T., An introduction to programming the meshless Element Free Galerkin method, Arch. Comput. Methods Engrg., 5, 3, 207-241 (1998)
[10] Hao, S.; Liu, W. K.; Qian, D., Localization-induced band and cohesive model, J. Appl. Mech.–Trans. ASME, 67, 4, 803-812 (2000) · Zbl 1110.74469
[11] Harik, V. M., Mechanics of carbon nanotubes: applicability of the continuum-beam models, Comput. Mater. Sci., 24, 3, 328-342 (2002)
[12] Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 6348, 56-58 (1991)
[13] Keating, P. N., Effect of invariance requirements on elastic strain energy of crystals with application to diamond structure, Phys. Rev., 145, 2, 637-645 (1966)
[14] Keating, P. N., Theory of 3rd-order elastic constants of diamond-like crystals, Phys. Rev., 149, 2, 674-679 (1966)
[15] Keating, P. N., On sufficiency of Born-Huang relations, Phys. Lett. A, A25, 7, 496-497 (1967)
[16] Keating, P. N., Relationship between macroscopic and microscopic theory of crystal elasticity. 2. Nonprimitive crystals, Phys. Rev., 169, 3, 758-766 (1968)
[17] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 9, 1899-1923 (2001) · Zbl 1002.74008
[18] Li, S.; Hao, W.; Liu, W. K., Numerical simulations of large deformation of thin shell structures using meshfree methods, Comput. Mech., 25, 2-3, 102-116 (2000) · Zbl 0978.74087
[19] Li, S. F.; Liu, W. K., Meshfree and particle methods, Appl. Mech. Rev., 55, 1, 1-34 (2002)
[20] Liu, W. K.; Chen, Y. J., Wavelet and multiple scale reproducing kernel methods, Int. J. Numer. Methods Fluids, 21, 10, 901-931 (1995) · Zbl 0885.76078
[21] Liu, W. K.; Jun, S.; Li, S. F.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Engrg., 38, 10, 1655-1679 (1995) · Zbl 0840.73078
[22] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[23] Liu, W. K.; Chen, Y.; Chang, C. T.; Belytschko, T., Advances in multiple scale kernel particle methods, Comput. Mech., 18, 2, 73-111 (1996) · Zbl 0868.73091
[24] Liu, W. K.; Chen, Y. J.; Uras, R. A.; Chang, C. T., Generalized multiple scale reproducing kernel particle methods, Comput. Methods Appl. Mech. Engrg., 139, 1-4, 91-157 (1996) · Zbl 0896.76069
[25] Liu, W. K.; Jun, S.; Sihling, D. T.; Chen, Y. J.; Hao, W., Multiresolution reproducing kernel particle method for computational fluid dynamics, Int. J. Numer. Methods Fluids, 24, 12, 1391-1415 (1997) · Zbl 0880.76057
[26] Liu, W. K.; Li, S. F.; Belytschko, T., Moving least-square reproducing kernel methods. 1. Methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 1-2, 113-154 (1997) · Zbl 0883.65088
[27] Liu, W. K.; Uras, R. A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. Appl. Mech.–Trans. ASME, 64, 4, 861-870 (1997) · Zbl 0920.73366
[28] W.K. Liu, E.G. Karpov, L. Zhang, H. Park, An introduction to computational nano mechanics and materials, Comput. Methods Appl. Mech. Engrg., in press; W.K. Liu, E.G. Karpov, L. Zhang, H. Park, An introduction to computational nano mechanics and materials, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1079.74506
[29] W.K. Liu, T. Belytshko, J.T. Oden (Eds.), Computer Methods in Applied Mechanics and Engineering, Vol. 139, Amsterdam: North-Holland, Amsterdam, 1996; W.K. Liu, T. Belytshko, J.T. Oden (Eds.), Computer Methods in Applied Mechanics and Engineering, Vol. 139, Amsterdam: North-Holland, Amsterdam, 1996
[30] Martin, J. W., Many-body forces in metals and Brugger elastic-constants, J. Phys. C: Solid State Phys., 8, 18, 2837-2857 (1975)
[31] Martin, J. W., Many-body forces in solids and Brugger elastic-constants. 2. inner elastic-constants, J. Phys. C: Solid State Phys., 8, 18, 2858-2868 (1975)
[32] Martin, J. W., Many-body forces in solids-elastic-constants of diamond-type crystals, J. Phys. C: Solid State Phys., 8, 18, 2869-2888 (1975)
[33] Miller, R.; Ortiz, M.; Phillips, R.; Shenoy, V.; Tadmor, E. B., Quasicontinuum models of fracture and plasticity, Engrg. Fract. Mech., 61, 3-4, 427-444 (1998)
[34] Miller, R.; Tadmor, E. B.; Phillips, R.; Ortiz, M., Quasicontinuum simulation of fracture at the atomic scale, Modell. Simulat. Mater. Sci. Engrg., 6, 5, 607-638 (1998)
[35] Nakano, A.; Bachlechner, M. E.; Kalia, R. K.; Lidorikis, E.; Vashishta, P.; Voyiadjis, G. Z.; Campbell, T. J.; Ogata, S.; Shimojo, F., Multiscale simulation of nanosystems, Comput. Sci. Engrg., 3, 4, 56-66 (2001)
[36] Nocedal, J., Updating quasi-newton matrices with limited storage, Math. Comput., 35, 151, 773-782 (1980) · Zbl 0464.65037
[37] Overney, G.; Zhong, W.; Tomanek, D., Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Z. Phys. D: Atom Mol. Clust., 27, 1, 93-96 (1993)
[38] H. Park, E.G. Eduard, W.K. Liu, A temperature equation for coupled atomistic/continuum simulations, Comput. Methods Appl. Mech. Engrg., in press; H. Park, E.G. Eduard, W.K. Liu, A temperature equation for coupled atomistic/continuum simulations, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1079.74507
[39] H. Park, E.G. Karpov, P.A. Klein, W.K. Liu, The bridging scale for two-dimensional atomistic/continuum coupling, Philos. Mag. A, accepted for publication; H. Park, E.G. Karpov, P.A. Klein, W.K. Liu, The bridging scale for two-dimensional atomistic/continuum coupling, Philos. Mag. A, accepted for publication
[40] H. Park, W.K. Liu, An introduction and tutorial on multiple scale analysis in solids, Comput. Methods Appl. Mech. Engrg., in press; H. Park, W.K. Liu, An introduction and tutorial on multiple scale analysis in solids, Comput. Methods Appl. Mech. Engrg., in press · Zbl 1079.74508
[41] Qian, D.; Liu, W. K.; Ruoff, R. S., Mechanics of \(C_{60}\) in nanotubes, J. Phys. Chem. B, 105, 10753-10758 (2001)
[42] Qian, D.; Wagner, G. J.; Liu, W. K.; Yu, M. F.; Ruoff, R. S., Mechanics of carbon nanotubes, Appl. Mech. Rev., 55, 6, 495-533 (2002)
[43] D. Qian, E.G. Karpov, W.K. Liu, Interfacial boundary conditions in multiscale simulation of nanostructures, in preparation; D. Qian, E.G. Karpov, W.K. Liu, Interfacial boundary conditions in multiscale simulation of nanostructures, in preparation
[44] Qian, D.; Liu, W. K.; Ruoff, R. S., Load transfer mechanism in carbon nanotube ropes, Compos. Sci. Technol., 63, 11, 1561-1569 (2003)
[45] Qian, D.; Liu, W. K.; Subramoney, S.; Ruoff, R. S., Effect of interlayer interaction on the mechanical deformation of multiwalled carbon nanotube, J. Nanosci. Nanotechnol., 3, 1, 185-191 (2003)
[46] Robertson, D. H.; Brenner, D. W.; Mintmire, J. W., Energetics of nanoscale graphitic tubules, Phys. Rev. B, 45, 21, 12592-12595 (1992)
[47] Rodney, D.; Phillips, R., Structure and strength of dislocation junctions: An atomic level analysis, Phys. Rev. Lett., 82, 8, 1704-1707 (1999)
[48] Ru, C. Q., Elastic buckling of single-walled carbon nanotube ropes under high pressure, Phys. Rev. B, 62, 15, 10405-10408 (2000)
[49] Ru, C. Q., Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Phys. Rev. B, 62, 24, 16962-16967 (2000)
[50] Ruoff, R. S.; Lorents, D. C., Mechanical and thermal-properties of carbon nanotubes, Carbon, 33, 7, 925-930 (1995)
[51] Shenoy, V. B.; Miller, R.; Tadmor, E. B.; Phillips, R.; Ortiz, M., Quasicontinuum models of interfacial structure and deformation, Phys. Rev. Lett., 80, 4, 742-745 (1998)
[52] Shenoy, V. B.; Miller, R.; Tadmor, E. B.; Rodney, D.; Phillips, R.; Ortiz, M., An adaptive finite element approach to atomic-scale mechanics-the quasicontinuum method, J. Mech. Phys. Solids, 47, 3, 611-642 (1999) · Zbl 0982.74071
[53] Shin, C. S.; Fivel, M. C.; Rodney, D.; Phillips, R.; Shenoy, V. B.; Dupuy, L., Formation and strength of dislocation junctions in FCC metals: A study by dislocation dynamics and atomistic simulations, J. Phys. IV, 11, PR5, 19-26 (2001)
[54] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 6, 1529-1563 (1996)
[55] Tadmor, E. B.; Phillips, R.; Ortiz, M., Mixed atomistic and continuum models of deformation in solids, Langmuir, 12, 19, 4529-4534 (1996)
[56] Tadmor, E. B.; Miller, R.; Phillips, R.; Ortiz, M., Nanoindentation and incipient plasticity, J. Mater. Res., 14, 6, 2233-2250 (1999)
[57] Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline ropes of metallic carbon nanotubes, Science, 273, 5274, 483-487 (1996)
[58] Tibbetts, G. G., Why are carbon filaments tubular, J. Cryst. Growth, 66, 3, 632-638 (1984)
[59] Wagner, G. J.; Liu, W. K., Hierarchical enrichment for bridging scales and mesh-free boundary conditions, Int. J. Numer. Methods Engrg., 50, 3, 507-524 (2001) · Zbl 1006.76073
[60] Wagner, G. J.; Moes, N.; Liu, W. K.; Belytschko, T., The extended finite element method for rigid particles in Stokes flow, Int. J. Numer. Methods Engrg., 51, 3, 293-313 (2001) · Zbl 0998.76054
[61] G.J. Wagner, E.G. Karpov, W.K. Liu, Molecular dynamics boundary conditions for periodically repeating atomic lattices, Comput. Methods Appl. Mech. Engrg., in press; G.J. Wagner, E.G. Karpov, W.K. Liu, Molecular dynamics boundary conditions for periodically repeating atomic lattices, Comput. Methods Appl. Mech. Engrg., in press
[62] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[63] Yakobson, B. I.; Brabec, C. J.; Bernholc, J., Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., 76, 14, 2511-2514 (1996)
[64] Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 5453, 637-640 (2000)
[65] Zhang, P.; Huang, Y.; Geubelle, P. H.; Klein, P.; Hwang, K. C., The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials, Int. J. Solids Struct., 39, 13-14, 3893-3906 (2002) · Zbl 1049.74753
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.