×

zbMATH — the first resource for mathematics

Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. (English) Zbl 1327.74016
Summary: In this paper, we deal with the theoretical framework for a single-walled carbon nanotube serving as a virus or bacterium sensor, with the complicating influences of non-locality and surface effects taken into account. It is demonstrated that these effects are not negligible as is often assumed in the literature; they may greatly influence both the vibration behaviour as well as the identification process of the virus or bacterium.

MSC:
74A60 Micromechanical theories
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lu, P; Lee, HP; Lu, C; Zhang, PQ: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys., 99, 073510, (2006) · doi:10.1063/1.2189213
[2] Lu, P; Lee, HP; Lu, C; Zhang, PQ: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct., 44, 5289-5300, (2007) · Zbl 1124.74029 · doi:10.1016/j.ijsolstr.2006.12.034
[3] Lee, HL; Chang, WJ: Surface effects on the frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys., 108, 093503, (2010) · doi:10.1063/1.3503853
[4] Lei, XW; Natsuki, T; Shi, J; Ni, QQ: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Composites B: Eng., 43, 64-69, (2012) · doi:10.1016/j.compositesb.2011.04.032
[5] Ansari, R; Sahmani, S: Bending behaviour and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci., 49, 1244-1255, (2011) · Zbl 06923510 · doi:10.1016/j.ijengsci.2011.01.007
[6] Challamel, N; Elishakoff, I: Surface elasticity effects can apparently be explained via their non-conservativeness. ASME J. Nanotechnol. Eng. Med., 2, 031008, (2011) · doi:10.1115/1.4005486
[7] Wang, CM; Tan, VBC; Zhang, YY: Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib., 294, 1060-1072, (2006) · doi:10.1016/j.jsv.2006.01.005
[8] Elishakoff, I; Pentaras, D: Natural frequencies of carbon nanotubes based on simplified Bresse-Timoshenko theory. J. Comput. Theor. Nanosci., 6, 1527-1531, (2009) · doi:10.1166/jctn.2009.1206
[9] Kucuk, I; Sadek, IS; Adali, S: Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory. J. Nanomater., 2010, 461252, (2010) · doi:10.1155/2010/461252
[10] Adali, S: Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams. J. Theor. Appl. Mech., 50, 321-333, (2012)
[11] Claverie, JM; Abergel, C: Mimivirus and its virophage. Annu. Rev. Genet., 43, 8-13, (2009) · doi:10.1146/annurev-genet-102108-134255
[12] Van Etten, JL: Giant viruses. Am. Sci., 99, 304-311, (2011) · doi:10.1511/2011.91.304
[13] Challamel, N; Rakotomanana, L; Le Marrec, L: A dispersive wave equation using non-local elasticity. C. R. Mécanique, 337, 591-595, (2009) · doi:10.1016/j.crme.2009.06.028
[14] Challamel, N; Elishakoff, I: Surface stress effects may induce softening: Euler-Bernoulli and Timoshenko buckling solutions. Physica E, 44, 1862-1867, (2012) · doi:10.1016/j.physe.2012.05.019
[15] Liu, C; Rajapakse, RKND: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol., 9, 422-431, (2010) · doi:10.1109/TNANO.2009.2034142
[16] Liu, C; Rajapakse, RKND; Phani, AS: Finite element modelling of beams with surface energy effects. J. Appl. Mech., 78, 031014, (2011) · doi:10.1115/1.4003363
[17] Elishakoff, I; Versaci, C; Muscolino, G: Clamped-free double walled carbon nanotube-based mass sensor. Acta Mech., 219, 29-43, (2011) · Zbl 1381.74102 · doi:10.1007/s00707-010-0435-1
[18] Elishakoff, I; Ghyselinck, G; Bucas, S: Virus sensor based on a single-walled carbon nanotube treated as Bresse-Timoshenko beam. J. Appl. Mech., 79, 064502, (2012) · doi:10.1115/1.4006492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.