×

zbMATH — the first resource for mathematics

Oscillations and bistability in the stochastic model of p53 regulation. (English) Zbl 1400.92200
Summary: The p53 regulatory pathway controls cell responses, which include cell cycle arrest, DNA repair, apoptosis and cellular senescence. We propose a stochastic model of p53 regulation, which is based on two feedback loops: the negative, coupling p53 with its immediate downregulator Mdm2, and the positive, which involves PTEN, PIP3 and Akt. Existence of the negative feedback assures homeostasis of healthy cells and oscillatory responses of DNA-damaged cells, which are persistent when DNA repair is inefficient and the positive feedback loop is broken. The positive feedback destroys the negative coupling between Mdm2 and p53 by sequestering most of Mdm2 in cytoplasm, so it may no longer prime the nuclear p53 for degradation. It works as a clock, giving the cell some time for DNA repair. However, when DNA repair is inefficient, the active p53 rises to a high level and triggers transcription of proapoptotic genes. As a result, small DNA damage may be repaired and the cell may return to its initial “healthy” state, while the extended damage results in apoptosis. The stochasticity of p53 regulation, introduced at the levels of gene expression, DNA damage and repair, leads to high heterogeneity of cell responses and causes cell population split after irradiation into subpopulations of apoptotic and surviving cells, with fraction of apoptotic cells growing with the irradiation dose.
Reviewer: Reviewer (Berlin)

MSC:
92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Appella, E.; Anderson, C.W., Post-translational modifications and activation of p53 by genotoxic stresses, Eur. J. biochem., 268, 2764-2772, (2001)
[2] Bakkenist, C.J.; Kastan, M.B., DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, 421, 499-506, (2003)
[3] Bar-Or, R.; Maya, R.; Segel, L.A.; Alon, U.; Levine, A.J.; Oren, M., Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study, Proc. natl. acad. sci. USA, 97, 11250-11255, (2000)
[4] Barak, Y.; Juven, T.; Haffner, R.; Oren, M., Mdm2 expression is induced by wild type p53 activity, Embo j., 12, 461-468, (1993)
[5] Batchelor, E., Mock, C.S., Bhan, I., Loewer, A., Lahav, G., 2008. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage, Mol. Cell 30, 277-289.
[6] Blanco-Aparicio, C.; Renner, O.; Leal, J.F.M.; Carnero, A., PTEN, more than the AKT pathway, Carcinogenesis, 28, 1379-1386, (2007)
[7] Bode, A.M.; Dong, Z., Post-translational modification of p53 in tumorigenesis, Nat. rev. cancer, 4, 793-805, (2004)
[8] Brooks, C.L.; Gu, W., Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation, Curr. opinion cell biol., 15, 164-171, (2003)
[9] Cantley, L.C.; Neel, B.G., New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc. natl. acad. sci. USA, 96, 4240-4245, (1999)
[10] Chang, C.-J.; Freeman, D.J.; Wu, H., PTEN regulates mdm2 expression though the P1 promoter, J. biol. chem., 279, 29841-29848, (2004)
[11] Ciliberto, A.; Novak, B.; Tyson, J.J., Steady states and oscillations in the p53-mdm2 network, Cell cycle, 4, 488-493, (2005)
[12] Cully, M.; You, H.; Levine, A.J.; Mak, T.W., Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis, Nature, 6, 184-192, (2006)
[13] Datta, S.R.; Anne Brunet, A.; Greenberg, M.E., Cellular survival: a play in three akts, Genes dev., 13, 2905-2927, (1999)
[14] Essmann, F.; Engels, I.H.; Totzke, G.; Schulze-Osthoff, K.; Janicke, R.U., Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event, Cancer res., 64, 7065-7072, (2004)
[15] Fei, P.; El-Deiry, W.S., P53 and radiation responses, Oncogene, 22, 5774-5783, (2003)
[16] Femino, A.M.; Fay, F.S.; Fogary, K.; Singer, R.H., Visualization of single RNA transcripts in situ, Science, 280, 585-590, (1998)
[17] Franke, T.F.; Hornik, C.P.; Segev, L.; Shostak, G.A.; Sugimoto, C., PI3K/akt and apoptosis: size matters, Oncogene, 22, 8983-8998, (2003)
[18] Freeman, D.J.; Li, A.G.; Wei, G.; Li, H.-H.; Kertesz, N.; Lesche, R.; Whale, A.D.; Martinez-Diaz, H.; Rozengurt, N.; Cardiff, R.D.; Liu, X.; Wu, H., PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms, Cancer cell, 3, 117-130, (2003)
[19] García, J.M.; Silva, J.; Peña, C.; Garcia, V.; Rodriguez, R.; Cruz, M.A.; Cantos, B.; Provencio, M.; España, P.; Bonilla, F., Promoter methylation of the PTEN gene is a common molecular change in breast cancer, Genes chromosomes cancer, 41, 117-124, (2004)
[20] Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S. Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U., 2006. Oscillations and variability in the p53 system. Mol. Sys. Biol. 2 (2006), 0033.
[21] Gottlieb, M.T.; Leal, J.F.M.; Seger, R.; Taya, Y.; Oren, M., Cross-talk between akt, p53 and mdm2: possible implications for the regulation of apoptosis, Oncogene, 21, 1299-1303, (2002)
[22] Gottschalk, A.R.; Doan, A.; Nakamura, J.L.; Stokoe, D.; Haas-Kogan, D.A., Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism, Int. J. radiat. oncol. biol. phys., 63, 1221-1227, (2005)
[23] Hamstra, D.A.; Bhojani, M.S.; Griffin, L.B.; Laxman, B.; Ross, B.D.; Rehemtulla, A., Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging, Cancer res., 66, 7482-7489, (2006)
[24] Harris, S.L.; Levine, A.J., The p53 pathway: positive and negative feedback loops, Oncogene, 24, 2899-2908, (2005)
[25] Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M., Mdm2 promotes the rapid degradation of p53, Nature, 387, 296-299, (1997)
[26] Joo, J.; Plimpton, S.; Martin, S.; Swiler, L.; Faulon, J.L., Sensitivity analysis of a computational model of the IKK-NF-\(\kappa\)B- I\(\kappa\)B-A20 signal transduction network, Ann. NY acad. sci., 1115, 221-239, (2007)
[27] Kærn, M.; Elston, T.C.; Blake, W.J.; Collins, J.J., Stochasticity in gene expression from theories to phenotypes, Nat. rev. genet., 6, 451-464, (2005)
[28] Kepler, T.B.; Elston, T.C., Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations, Biophys. J., 81, 3116-3136, (2001)
[29] Ko, M.S.H., Stochastic model for gene induction, J. theor. biol., 53, 181-194, (1991)
[30] Kohn, K.W.; Pommier, Y., Molecular interaction map of the p53 and mdm2 logic elements, which control the off – on switch of p53 in response to DNA damage, Biochem. biophys. res. commun., 331, 816-827, (2005)
[31] Krawczyk, B.; Rudnicka, K.; Fabianowska-Majewska, K., The effects of nucleoside analogues on promoter methylation of selected tumor suppressor genes in MCF-7 and MDA-MB-231 breast cancer cell lines, Nucleosides nucleotides nucleic acids, 26, 1043-1046, (2007)
[32] Kubbutat, M.H.G.; Jones, S.N.; Vousden, K.H., Regulation of p53 stability by mdm2, Nature, 387, 299-303, (1997)
[33] Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B.; Alon, U., Dynamics of the p53|mdm2 feedback loop in individual cells, Nat. genet., 36, 147-150, (2004)
[34] Levine, A.J.; Hu, W.; Feng, Z., The P53 pathway: what questions remain to be explored?, Cell death differ., 13, 1027-1036, (2006)
[35] Li, L.; Ross, A.H., Why is PTEN an important tumor suppressor?, J. cell. biochem., 102, 1368-1374, (2007)
[36] Lipniacki, T.; Paszek, P.; Marciniak-Czochra, A.; Brasier, A.R.; Kimmel, M., Transcriptional stochasticity in gene expression, J. theor. biol., 238, 348-367, (2006)
[37] Lipniacki, T.; Puszynski, K.; Paszek, P.; Brasier, A.R.; Kimmel, M., Single TNF\(\alpha\) trimers mediating NF-\(\kappa\)B activation: stochastic robustness of NF-\(\kappa\)B signaling, BMC bioinform., 8, 376, (2007)
[38] Lobrich, M.; Rydberg, B.; Cooper, P.K., Repair of x-ray-induced DNA double-strand breaks in specific not I restriction fragments in human fibroblasts: joining of correct and incorrect ends, Proc. natl. acad. sci. USA, 92, 12050-12054, (1995)
[39] Ma, L.; Wagner, J.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., A plausible model for the digital response of p53 to DNA damage, Proc. natl. acad. sci. USA, 102, 14266-14271, (2005)
[40] Mayo, L.D.; Donner, D.B., A phosphatidylinositol 3-kinase/akt pathway promotes translocation of mdm2 from the cytoplasm to the nucleus, Proc. natl. acad. sci. USA, 98, 11598-11603, (2001)
[41] Mayo, L.D.; Donner, D.B., The PTEN, mdm2, p53 tumor suppressor—oncoprotein network, Trends biochem. sci., 27, 462-467, (2002)
[42] Mayo, L.D.; Dixon, J.E.; Durden, D.L.; Tonks, N.K.; Donner, D.B., PTEN protects p53 from mdm2 and sensitizes cancer cells to chemotherapy, J. biol. chem., 277, 5484-5489, (2002)
[43] Meek, D.W., Multisite phosphorylation and the integration of stress signals at p53, Cell. signal., 10, 159-166, (1998)
[44] Meek, D.W.; Milne, D.M., Analysis of multisite phosphorylation of the p53 tumor-suppressor protein by tryptic phosphopeptide mapping, Methods mol. biol., 99, 447-463, (2000)
[45] Meulmeester, E.; Pereg, Y.; Shiloh, Y.; Jochemsen, A.G., ATM-mediated phosphorylations inhibit mdmx/mdm2 stabilization by HAUSP in favor of p53 activation, Cell cycle, 4, 1166-1170, (2005)
[46] Michael, D.; Oren, M., The p53-mdm2 module and the ubiquitin system, Semin. cancer biol., 13, 49-58, (2003)
[47] Nicholls, C.D.; McLure, K.G.; Shields, M.A.; Lee, P.W.K., Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers, J. biol. chem., 277, 12937-12945, (2002)
[48] Paszek, P., Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function, Bull. math. biol., 69, 1567-1601, (2007) · Zbl 1298.92068
[49] Rai, A.; Peskin, C.S.; Tranchina, D.; Vargas, D.Y.; Tyagi, S., Stochastic mrna synthesis in Mammalian cells, Plos biol., 4, 309, (2006)
[50] Rateitschak, K.; Wolkenhauer, O., Intracellular delay limits cyclic changes in gene expression, Math. biosci., 205, 163-179, (2007) · Zbl 1109.92014
[51] Rothkamm, K.; Lobrich, M., Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses, Proc. natl. acad. sci. USA, 100, 5057-5062, (2003)
[52] Simpson, L.; Parsons, R., PTEN: life as a tumor suppressor, Exp. cell res., 264, 29-41, (2001)
[53] Singh, B.; Reddy, P.G.; Goberdhan, A.; Walsh, C.; Dao, S.; Ngai, I.; Chou, T.C.; O-charoenrat, P.; Levine, A.J.; Rao, P.H.; Stoffel, A., P53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas, Genes dev., 16, 984-993, (2002)
[54] Stambolic, V.; MacPherson, D.; Sas, D.; Lin, Y.; Snow, B.; Jang, Y.; Benchimol, S.; Mak, T.W., Regulation of PTEN transcription by p53, Mol. cell, 8, 317-325, (2001)
[55] Stommel, J.M.; Wahl, G.M., Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation, Embo j., 23, 1547-1556, (2004)
[56] Stommel, J.M.; Wahl, G.M., A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation, Cell cycle, 4, 411-417, (2005)
[57] Tyson, J.J., 2006. Another turn for p53. Mol. Sys. Biol. 2 (2006), 0032.
[58] Volgenstein, B.; Lane, D.; Levine, A.J., Surfing the p53 network, Nature, 408, 307-310, (2000)
[59] Vousden, K.H.; Lane, D.P., P53 in health and disease, Nat. rev. mol. cell. biol., 8, 275-283, (2007)
[60] Wagner, J.; Ma, L.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., P53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, IEE proc.—syst. biol., 152, 109-118, (2005)
[61] Walters, M.C.; Fiering, S.; Eidemiller, J.; Magis, W.; Groudine, M.; Martin, D.I.K., Enhancers increase the probability but not the level of gene expression, Proc. natl. acad. sci. USA, 92, 7125-7129, (1995)
[62] Wee, K.B.; Aguda, B.A., Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death, Biophys. J., 91, 857-865, (2006)
[63] Weinberg, R.L.; Veprintsev, D.B.; Fersht, A.R., Cooperative binding of tetrameric p53 to DNA, J. mol. biol., 341, 1145-1159, (2004)
[64] Weng, L.-P.; Smith, W.M.; Dahia, P.L.M.; Ziebold, U.; Gil, E.; Lees, J.A.; Eng, C., PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death, Cancer res., 59, 5808-5814, (1999)
[65] Zhang, T.; Brazhnik, P.; Tyson, J.J., Exploring mechanisms of the DNA-damage response p53 pulses and their possible relevance to apoptosis, Cell cycle, 6, 85-94, (2007)
[66] Zhou, B.P.; Liao, Y.; Xia, W.; Zou, Y.; SSpohn, B.; Hung, M.C., HER-2/neu induces p53 ubiquitination via akt-mediated MDM2 phosphorylation, Nat. cell. biol., 3, 973-982, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.