zbMATH — the first resource for mathematics

Indirect effects of primary prey population dynamics on alternative prey. (English) Zbl 1342.92157
Summary: We develop a theory of generalist predation showing how alternative prey species are affected by changes in both mean abundance and variability (coefficient of variation) of their predator’s primary prey. The theory is motivated by the indirect effects of cyclic rodent populations on ground-breeding birds, and developed through progressive analytic simplifications of an empirically-based model. It applies nonetheless to many other systems where primary prey have fast life-histories and can become superabundant, thus facilitating impact on alternative prey species and generating highly asymmetric interactions. Our results suggest that predator effects on alternative prey should generally decrease with mean primary prey abundance, and increase with primary prey variability (low to high CV) – unless predators have strong aggregative responses, in which case these results can be reversed. Approximations of models including predator dynamics (general numerical response with possible delays) confirm these results but further suggest that negative temporal correlation between predator and primary prey is harmful to alternative prey. Finally, we find that measurements of predator numerical responses are crucial to predict-even qualitatively-the response of ecosystems to changes in the dynamics of outbreaking prey species.
92D25 Population dynamics (general)
Full Text: DOI
[1] Abrams, P.; Holt, R.; Roth, J., Apparent competition or apparent mutualism? shared predation when populations cycle, Ecology, 79, 1, 201-212, (1998)
[2] Angelstam, P.; Lindström, E.; Widen, P., Role of predation in short-term population fluctuations of some birds and mammals in fennoscandia, Oecologia, 62, 2, 199-208, (1984)
[3] Angerbjörn, A.; Tannerfeldt, M.; Lundberg, H., Geographical and temporal patterns of lemming population dynamics in fennoscandia, Ecography, 24, 3, 298-308, (2001)
[4] Arthur, S. M.; Prugh, L. R., Predator-mediated indirect effects of snowshoe hares on dall’s sheep in alaska, J. Wildl. Manage., 74, 8, 1709-1721, (2010)
[5] Aufderheide, H.; Rudolf, L.; Gross, T.; Lafferty, K. D., How to predict community responses to perturbations in the face of imperfect knowledge and network complexity, Proc. R. Soc. B, 280, 1773, 20132355, (2013)
[6] Barraquand, F.; Høye, T. T.; Henden, J.-A.; Yoccoz, N. G.; Gilg, O.; Schmidt, N. M.; Sittler, B.; Ims, R. A., Demographic responses of a site-faithful and territorial predator to its fluctuating prey: long-tailed skuas and arctic lemmings, J. Anim. Ecol., 83, 375-387, (2014)
[7] Barraquand, F.; Husek, J., Covariation between mean vole density and variability drives the numerical response of storks to vole prey, Popul. Ecol., 56, 551-553, (2014)
[8] Barraquand, F.; Murrell, D., Scaling up predator-prey dynamics using spatial moment equations, Methods Ecol. Evol., 4, 3, 276-289, (2013)
[9] Barraquand, F.; Yoccoz, N. G., When can environmental variability benefit population growth? counterintuitive effects of nonlinearities in vital rates, Theor. Popul. Biol., 89, 1-11, (2013) · Zbl 1302.92139
[10] Benaïm, M.; Schreiber, S., Persistence of structured populations in random environments, Theor. Popul. Biol., 76, 1, 19-34, (2009) · Zbl 1213.92057
[11] Berec, L.; Křivan, V., A mechanistic model for partial preferences, Theor. Popul. Biol., 58, 4, 279-289, (2000) · Zbl 1037.92048
[12] Bergström, U.; Englund, G.; Leonardsson, K., Plugging space into predator-prey models: an empirical approach, Am. Nat., 167, 246-259, (2006)
[13] Bêty, J.; Gauthier, G.; Korpimäki, E.; Giroux, J., Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese, J. Anim. Ecol., 71, 1, 88-98, (2002)
[14] Blomqvist, S.; Holmgren, N.; Åkesson, S.; Hedenström, A.; Pettersson, J., Indirect effects of lemming cycles on sandpiper dynamics: 50 years of counts from southern Sweden, Oecologia, 133, 2, 146-158, (2002)
[15] Brassil, C., Can environmental variation generate positive indirect effects in a model of shared predation?, Am. Nat., 167, 1, 43-54, (2006)
[16] Brassil, C.; Abrams, P., The prevalence of asymmetrical indirect effects in two-host-one-parasitoid systems, Theor. Popul. Biol., 66, 1, 71-82, (2004) · Zbl 1111.92054
[17] Carslake, D.; Cornulier, T.; Inchausti, P.; Bretagnolle, V., Spatio-temporal covariation in abundance between the cyclic common vole microtus arvalis and other small mammal prey species, Ecography, 34, 2, 327-335, (2011)
[18] Charnov, E., Optimal foraging: attack strategy of a mantid, Am. Nat., 110, 971, 141-151, (1976)
[19] Chesson, P., Making sense of spatial models in ecology, (Bascompte, J.; Solé, R., Modeling Spatiotemporal Dynamics in Ecology, (1998), Springer-Verlag/Landes Bioscience), 151-166
[20] Chesson, P., Scale transition theory with special reference to species coexistence in a variable environment, J. Biol. Dyn., 3, 2-3, 149-163, (2009) · Zbl 1342.92162
[21] Cornulier, T.; Yoccoz, N. G.; Bretagnolle, V.; Brommer, J. E.; Butet, A.; Ecke, F.; Elston, D. A.; Framstad, E.; Henttonen, H.; Hörnfeldt, B., Europe-wide dampening of population cycles in keystone herbivores, Science, 340, 6128, 63-66, (2013)
[22] Cury, P.; Bakun, A.; Crawford, R.; Jarre, A.; Quiñones, R.; Shannon, L.; Verheye, H., Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems, ICES J. Mar. Sci., 57, 3, 603-618, (2000)
[23] DeCesare, N.; Hebblewhite, M.; Robinson, H.; Musiani, M., Endangered, apparently: the role of apparent competition in endangered species conservation, Anim. Conserv., 13, 4, 353-362, (2010)
[24] Emlen, J., The role of time and energy in food preference, Am. Nat., 100, 611-617, (1966)
[25] Estay, S. A.; Lima, M.; Bozinovic, F., The role of temperature variability on insect performance and population dynamics in a warming world, Oikos, 123, 2, 131-140, (2014)
[26] Fryxell, J.; Lundberg, P., Individual behavior and community dynamics, (1998), Chapman & Hall New York, USA
[27] Gilg, O.; Hanski, I.; Sittler, B., Cyclic dynamics in a simple vertebrate predator-prey community, Science, 301, 5646, 866-868, (2003)
[28] Gilg, O.; Sittler, B.; Sabard, B.; Hurstel, A.; Sané, R.; Delattre, P.; Hanski, I., Functional and numerical responses of four lemming predators in high arctic greenland, Oikos, 113, 2, 193-216, (2006)
[29] Gilg, O.; Yoccoz, N. G., Explaining bird migration, Science, 327, 5963, 276, (2010)
[30] Hanski, I.; Henttonen, H., Predation on competing rodent species: a simple explanation of complex patterns, J. Anim. Ecol., 65, 2, 220-232, (1996)
[31] Hilborn, R.; Mangel, M., The ecological detective: confronting models with data. vol. 28, (1997), Princeton Univ. Press
[32] Holt, R., Predation, apparent competition, and the structure of prey communities, Theor. Popul. Biol., 12, 2, 197-229, (1977)
[33] Holt, R., Community modules, (Multitrophic Interactions in Terrestrial Ecosystems, 36th Symposium of the British Ecological Society, (1997), Blackwell Science Oxford), 333-349
[34] Holt, R., Theoretical perspectives on resource pulses, Ecology, 89, 3, 671-681, (2008)
[35] Holt, R., Apparent competition, (Hastings, A.; Gross, L., Encyclopedia of Theoretical Ecology, (2012), Univ. of California Press), 45-52
[36] Holt, R.; Hochberg, Indirect interactions, community modules and biological control: a theoretical perspective, (Wajnberg, E.; Scott, J.; Quimby, P., Evaluating Indirect Ecological Effects of Biological Control. Key Papers from the Symposium “Indirect Ecological Effects in Biological Control”, Montpellier, France, 17-20 October 1999, (2001), CABI Publishing), 13-37
[37] Holt, R.; Kotler, B., Short-term apparent competition, Am. Nat., 130, 3, 412-430, (1987)
[38] Holt, R.; Lawton, J., The ecological consequences of shared natural enemies, Annu. Rev. Ecol. Syst., 495-520, (1994)
[39] Ims, R.; Henden, J.; Killengreen, S., Collapsing population cycles, Trends Ecol. Evol., 23, 2, 79-86, (2008)
[40] Kausrud, K. L.; Mysterud, A.; Steen, H.; Vik, J. O.; Østbye, E.; Cazelles, B.; Framstad, E.; Eikeset, A. M.; Mysterud, I.; Solhøy, T., Linking climate change to lemming cycles, Nature, 456, 7218, 93-97, (2008)
[41] King, A.; Schaffer, W., The geometry of a population cycle: a mechanistic model of snowshoe hare demography, Ecology, 82, 3, 814-830, (2001)
[42] Korpimäki, E.; Norrdahl, K.; Huitu, O.; Klemola, T., Predator-induced synchrony in population oscillations of coexisting small mammal species, Proc. R. Soc. B, 272, 1559, 193, (2005)
[43] Krebs, C. J., Of lemmings and snowshoe hares: the ecology of northern Canada, Proc. R. Soc. B, 278, 1705, 481-489, (2011)
[44] Krebs, C.; Boonstra, R.; Boutin, S.; Sinclair, A., What drives the 10-year cycle of snowshoe hares?, BioScience, 51, 1, 25-35, (2001)
[45] Krivan, V., Optimal foraging and predator-prey dynamics, Theor. Popul. Biol., 49, 3, 265-290, (1996) · Zbl 0870.92019
[46] Krivan, V.; Sikder, A., Optimal foraging and predator prey dynamics, II, Theor. Popul. Biol., 55, 2, 111-126, (1999) · Zbl 0920.92031
[47] Lack, D., Competition for food by birds of prey, J. Anim. Ecol., 123-129, (1946)
[48] Matthiopoulos, J.; Graham, K.; Smout, S.; Asseburg, C.; Redpath, S.; Thirgood, S.; Hudson, P.; Harwood, J., Sensitivity to assumptions in models of generalist predation on a cyclic prey, Ecology, 88, 10, 2576-2586, (2007)
[49] Matthiopoulos, J.; Smout, S.; Winship, A.; Thompson, D.; Boyd, I.; Harwood, J., Getting beneath the surface of marine mammal-fisheries competition, Mammal Rev., 38, 2-3, 167-188, (2008)
[50] Maynard Smith, J.; Slatkin, M., The stability of predator-prey systems, Ecology, 54, 2, 384-391, (1973)
[51] McKinnon, L.; Berteaux, D.; Gauthier, G.; Bêty, J., Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra, Oikos, 122, 7, 1042-1048, (2013)
[52] Melbourne, B.; Chesson, P., The scale transition: scaling up population dynamics with field data, Ecology, 87, 6, 1478-1488, (2006)
[53] Murdoch, W. W., Switching in general predators: experiments on predator specificity and stability of prey populations, Ecol. Monogr., 39, 4, 335-354, (1969)
[54] New, L.; Buckland, S.; Redpath, S.; Matthiopoulos, J., Hen harrier management: insights from demographic models fitted to population data, J. Appl. Ecol., 48, 5, 1187-1194, (2011)
[55] New, L.; Buckland, S.; Redpath, S.; Matthiopoulos, J., Modelling the impact of hen harrier management measures on a red grouse population in the UK, Oikos, 121, 7, 1061-1072, (2012)
[56] Nolet, B. A.; Bauer, S.; Feige, N.; Kokorev, Y. I.; Popov, I. Y.; Ebbinge, B. S., Faltering lemming cycles reduce productivity and population size of a migratory arctic goose species, J. Anim. Ecol., 82, 4, 804-813, (2013)
[57] Oaten, A.; Murdoch, W., Switching, functional response, and stability in predator-prey systems, Am. Nat., 299-318, (1975)
[58] O’Donoghue, M.; Boutin, S.; Krebs, C.; Hofer, E., Numerical responses of coyotes and lynx to the snowshoe hare cycle, Oikos, 80, 1, 150-162, (1997)
[59] O’Donoghue, M.; Boutin, S.; Krebs, C.; Murray, D.; Hofer, E., Behavioural responses of coyotes and lynx to the snowshoe hare cycle, Oikos, 82, 1, 169-183, (1998)
[60] O’Donoghue, M.; Boutin, S.; Krebs, C.; Zuleta, G.; Murray, D.; Hofer, E., Functional responses of coyotes and lynx to the snowshoe hare cycle, Ecology, 79, 4, 1193-1208, (1998)
[61] Pikovsky, A.; Rosenblum, M., Synchronization, Scholarpedia, 2, 12, 1459, (2007), URL: http://www.scholarpedia.org/article/Synchronization
[62] Pimm, S. L., Food webs, (1982), Springer
[63] Power, M. E.; Tilman, D.; Estes, J. A.; Menge, B. A.; Bond, W. J.; Mills, L. S.; Daily, G.; Castilla, J. C.; Lubchenco, J.; Paine, R. T., Challenges in the quest for keystones, BioScience, 46, 8, 609-620, (1996)
[64] Pulliam, H., On the theory of optimal diets, Am. Nat., 108, 59-74, (1974)
[65] Pyke, G.; Pulliam, H.; Charnov, E., Optimal foraging: a selective review of theory and tests, Q. Rev. Biol., 52, 2, 137-154, (1977)
[66] Redpath, S.; Thirgood, S.; Clarke, R., Field vole microtus agrestis abundance and hen harrier circus cyaneus diet and breeding in Scotland, Ibis, 144, 1, E33-E38, (2002)
[67] Redpath, S.; Thirgood, S.; Leckie, F., Does supplementary feeding reduce predation of red grouse by hen harriers?, J. Appl. Ecol., 38, 6, 1157-1168, (2001)
[68] Royama, T., Analytical population dynamics, (Population and Community Biology Series, vol. 10, (1992), Chapman and Hall London, UK)
[69] Sæther, B.-E.; Engen, S.; Matthysen, E., Demographic characteristics and population dynamical patterns of solitary birds, Science, 295, 5562, 2070-2073, (2002)
[70] Schmidt, N. M.; Ims, R. A.; Høye, T. T.; Gilg, O.; Hansen, L. H.; Hansen, J.; Lund, M.; Fuglei, E.; Forchhammer, M. C.; Sittler, B., Response of an arctic predator guild to collapsing lemming cycles, Proc. R. Soc. B, 279, 1746, 4417-4422, (2012)
[71] Schmidt, K.; Ostfeld, R., Numerical and behavioral effects within a pulse-driven system: consequences for shared prey, Ecology, 89, 3, 635-646, (2008)
[72] Schoener, T., Theory of feeding strategies, Annu. Rev. Ecol. Syst., 2, 1, 369-404, (1971)
[73] Sinclair, A., Mammal population regulation, keystone processes and ecosystem dynamics, Philos. Trans. R. Soc. B, 358, 1438, 1729-1740, (2003)
[74] Smout, S.; Asseburg, C.; Matthiopoulos, J.; Fernández, C.; Redpath, S.; Thirgood, S.; Harwood, J., The functional response of a generalist predator, PLoS One, 5, 5, e10761, (2010)
[75] Stenseth, N. C., Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world, Oikos, 87, 3, 427-461, (1999)
[76] Stephens, D.; Krebs, J., Foraging theory, (1986), Princeton University Press
[77] Stouffer, D. B.; Sales-Pardo, M.; Sirer, M. I.; Bascompte, J., Evolutionary conservation of species’ roles in food webs, Science, 335, 6075, 1489-1492, (2012) · Zbl 1355.92079
[78] Summers, R. W.; Underhill, L. G.; Syroechkovski, E. E., The breeding productivity of dark-bellied brent geese and curlew sandpipers in relation to changes in the numbers of arctic foxes and lemmings on the taimyr peninsula, siberia, Ecography, 21, 6, 573-580, (1998)
[79] Thirgood, S.; Redpath, S., Hen harriers and red grouse: science, politics and human-wildlife conflict, J. Appl. Ecol., 45, 5, 1550-1554, (2008)
[80] Turchin, P., Complex population dynamics: A theoretical/empirical synthesis (MPB-35), (2003), Princeton University Press Princeton, USA
[81] Turchin, P.; Hanski, I., An empirically based model for latitudinal gradient in vole population dynamics, Am. Nat., 149, 5, 842-874, (1997)
[82] Valkama, J.; Korpimäki, E.; Arroyo, B.; Beja, P.; Bretagnolle, V.; Bro, E.; Kenward, R.; Manosa, S.; Redpath, S.; Thirgood, S., Birds of prey as limiting factors of gamebird populations in Europe: a review, Biol. Rev., 80, 02, 171-203, (2005)
[83] Wilson, D.; Bromley, R., Functional and numerical responses of predators to cyclic lemming abundance: effects on loss of goose nests, Can. J. Zool., 79, 3, 525-532, (2001)
[84] Wittmer, H. U.; Serrouya, R.; Elbroch, L.; Marshall, A. J., Conservation strategies for species affected by apparent competition, Conserv. Biol., 27, 2, 254-260, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.