Yang, Zhongzhi; Sadati, Hassan; Sedghi, Shaban; Shobe, Nabi Common fixed point theorems for non-compatible self-maps in \(b\)-metric spaces. (English) Zbl 1437.54075 J. Nonlinear Sci. Appl. 8, No. 6, 1022-1031 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Nonlinear Sci. Appl. 8, No. 6, 1022--1031 (2015; Zbl 1437.54075) Full Text: DOI Link OpenURL
Chauhan, Sunny; Imdad, Mohammad; Kadelburg, Zoran; Vetro, Calogero Coincidence and common fixed points of weakly reciprocally continuous and compatible hybrid mappings via an implicit relation and an application. (English) Zbl 1325.54025 Sarajevo J. Math. 11(23), No. 1, 73-84 (2015). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{S. Chauhan} et al., Sarajevo J. Math. 11(23), No. 1, 73--84 (2015; Zbl 1325.54025) Full Text: DOI OpenURL
Yang, Zhongzhi Common fixed point theorems for non-compatible self-maps in generalized metric spaces. (English) Zbl 1469.54205 J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Z. Yang}, J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014; Zbl 1469.54205) Full Text: DOI OpenURL
Kang, Shin Min; Kumar, Sanjay; Gupta, Vishal; Singh, Balbir Some common fixed point theorems for weakly reciprocally continuous mappings in a fuzzy metric space. (English) Zbl 1309.54018 Int. J. Pure Appl. Math. 93, No. 2, 261-274 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Int. J. Pure Appl. Math. 93, No. 2, 261--274 (2014; Zbl 1309.54018) Full Text: DOI Link OpenURL
Zhang, Dan Common fixed point theorems for six self-mappings with (Ag)-type-weak commuting conditions. (Chinese. English summary) Zbl 1289.54172 J. Nanchang Univ., Nat. Sci. 37, No. 2, 123-126, 139 (2013). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Zhang}, J. Nanchang Univ., Nat. Sci. 37, No. 2, 123--126, 139 (2013; Zbl 1289.54172) OpenURL
Sharma, Sushil; Deshpande, Bhavna; Chouhan, Suresh Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on noncomplete metric spaces. (English) Zbl 1265.54193 Southeast Asian Bull. Math. 35, No. 5, 851-858 (2011). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Sharma} et al., Southeast Asian Bull. Math. 35, No. 5, 851--858 (2011; Zbl 1265.54193) OpenURL
Chouhan, Virendra Singh; Badshah, V. H.; Chauhan, M. S. Fixed points in fuzzy metric spaces for weakly compatible maps. (English) Zbl 1195.54072 Int. J. Contemp. Math. Sci. 5, No. 1-4, 145-151 (2010). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{V. S. Chouhan} et al., Int. J. Contemp. Math. Sci. 5, No. 1--4, 145--151 (2010; Zbl 1195.54072) Full Text: Link OpenURL
Muralisankar, S.; Kalpana, G. Common fixed point theorem in intuitionistic fuzzy metric space using general contractive condition of integral type. (English) Zbl 1189.47083 Int. J. Contemp. Math. Sci. 4, No. 9-12, 505-518 (2009). Reviewer: Salvatore Sessa (Napoli) MSC: 47S40 47H10 54H25 PDF BibTeX XML Cite \textit{S. Muralisankar} and \textit{G. Kalpana}, Int. J. Contemp. Math. Sci. 4, No. 9--12, 505--518 (2009; Zbl 1189.47083) Full Text: Link OpenURL
Singh, S. L.; Hashim, Amal M. New coincidence and fixed point theorems for strictly contractive hybrid maps. (English) Zbl 1111.54034 Aust. J. Math. Anal. Appl. 2, No. 1, Article 12, 7 p. (2005). Reviewer: Zvonko Čerin (Zagreb) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{A. M. Hashim}, Aust. J. Math. Anal. Appl. 2, No. 1, Article 12, 7 p. (2005; Zbl 1111.54034) OpenURL
Singh, S. L.; Kumar, Ashish Fixed point theorems for Lipschitz type maps. (English) Zbl 1069.54028 Riv. Mat. Univ. Parma (7) 3, 25-34 (2004). Reviewer: S. L. Singh (Rishikesh) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{A. Kumar}, Riv. Mat. Univ. Parma (7) 3, 25--34 (2004; Zbl 1069.54028) OpenURL