×

A posteriori error estimation for the \(p\)-curl problem. (English) Zbl 1469.65150

The authors developed a posteriori error analysis for the \(p\)-curl problem. The main results are an eror bound for the natural norm as well as an error bound for the quantity of interest. The mathematical theory is new and sound. Several numerical examples demonstrate the performance of the proposed error indicator.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K65 Degenerate parabolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
82D55 Statistical mechanics of superconductors
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs

Software:

FEniCS; CGAL
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. A. Adams and J. F. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] L. El Alaoui, A. Ern, and M. Vohralîk, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 2782-2795. · Zbl 1230.65118
[3] M. Aln\aes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes, and G. Wells, The FENICs project version 1.5, Arch. Numer., Software, 3 (2015), pp. 9-23, https://doi.org/10.11588/ans.2015.100.20553.
[4] C. Amrouche and N. E. H. Seloula, L^p-theory for vector potentials and Sobolev’s inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., 23 (2013), pp. 37-92. · Zbl 1260.35101
[5] J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal., 31 (1994), pp. 413-428, https://doi.org/10.1137/0731022. · Zbl 0805.65097
[6] J. W. Barrett and L. Prigozhin, Bean’s critical-state model as the p to \infty limit of an evolutionary p-Laplacian equation, Nonlinear Anal., 42 (2000), pp. 977-993. · Zbl 1170.82436
[7] L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation, IMA J. Numer. Anal., 32 (2012), pp. 484-510. · Zbl 1245.65156
[8] C. Carstensen, J. Hu, and A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal., 45 (2007), pp. 68-82, https://doi.org/10.1137/050628854. · Zbl 1165.65072
[9] C. Carstensen and R. Klose, A posteriori finite element error control for the p-Laplace problem, SIAM J. Sci. Comput., 25 (2003), pp. 792-814, https://doi.org/10.1137/S1064827502416617. · Zbl 1050.65101
[10] C. Carstensen, W. Liu, and N. Yan, A posteriori error estimates for finite element approximation of parabolic p-Laplacian, SIAM J. Numer. Anal., 43 (2006), pp. 2294-2319, https://doi.org/10.1137/040611008. · Zbl 1112.65107
[11] S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Rev., 42 (2000), pp. 555-598, https://doi.org/10.1137/S0036144599371913. · Zbl 0967.82014
[12] S. S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math., 54 (1989), pp. 373-393. · Zbl 0643.65058
[13] M. C. Delfour, Tangential differential calculus and functional analysis on a C^1,1 submanifold, in Differential-Geometric Methods in the Control of Partial Differential Equations, Contemp. Math. 268, R. Gulliver, W. Littman, and R. Triggiani, eds., Amer. Math. Soc., Providence, RI, 2000, pp. 83-115. · Zbl 0977.58004
[14] M. C. Delfour, Representations, composition, and decomposition of C^1,1-hypersurfaces, in Optimal Control of Coupled Systems of Partial Differential Equations, Int. Ser. Numer. Math. 158, K. Kunisch, G. Leugering, J. Sprekels, and F. Trôltzsch, eds., Birkhäuser Basel, 2009, pp. 85-104, · Zbl 1425.74290
[15] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal., 46 (2008), pp. 614-638, https://doi.org/10.1137/070681508. · Zbl 1168.65060
[16] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. · Zbl 1059.65103
[17] E. Fabes, O. Mendez, and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), pp. 323-368. · Zbl 0930.35045
[18] G. Folland, Real Analysis: Modern Techniques and Their Applications, Pure Appl. Math., Wiley-Interscience, New York, 1984. · Zbl 0549.28001
[19] D. Fujiwara and H. Morimoto, An L_r-theorem for the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), pp. 685-700. · Zbl 0386.35038
[20] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd ed., Springer, 2011. · Zbl 1245.35002
[21] J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), pp. 2147-2164. · Zbl 1195.35128
[22] F. Grilli, E. Pardo, A. Stenvall, D. N. Nguyen, W. Yuan, and F. Gömöry, Computation of losses in HTS under the action of varying magnetic fields and currents, IEEE Trans. Appl. Supercond., 24 (2014), 8200433.
[23] E. Janíková and M. Slodic̆ka, Convergence of the backwards Euler method for type-II superconductors, J. Math. Anal. Appl., 342 (2008), pp. 1026-1037. · Zbl 1142.82032
[24] E. Janíková and M. Slodic̆ka, Fully discrete linear approximation scheme for electric field diffusion in type-II superconductors, J. Comput. Appl. Math., 234 (2010), pp. 2054-2061. · Zbl 1195.82105
[25] D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), pp. 161-219. · Zbl 0832.35034
[26] Lawrence Livermore National Laboratory, SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, http://computation.llnl.gov/casc/sundials/main.html, 2002.
[27] W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian, SIAM J. Numer. Anal., 39 (2001), pp. 100-127, https://doi.org/10.1137/S0036142999351613. · Zbl 1001.65119
[28] G. P. Mikitik, Y. Mawatari, A. T. S. Wan, and F. Sirois, Analytical methods and formulas for modeling high temperature superconductors, IEEE Trans. Appl. Supercond., 23 (2013), 8001920.
[29] F. Miranda, J.-F. Rodrigues, and L. Santos, On a p-curl system arising in electromagnetism, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), pp. 605-629. · Zbl 1252.35257
[30] M. Mitrea, Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds, Duke Math. J., 125 (2004), pp. 467-547. · Zbl 1073.31006
[31] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, 2003. · Zbl 1024.78009
[32] J.-C. Nédélec, Mixed finite elements in R^3, Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[33] S. Oudot, L. Rineau, and M. Yvinec, Meshing volumes bounded by smooth surfaces, in Proceedings of the 14th International Meshing Roundtable, B. W. Hanks, ed., Springer, Berlin, 2005, pp. 203-219.
[34] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77 (2008), pp. 633-649. · Zbl 1136.78016
[35] C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in L^q-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equations, Ser. Adv. Math. Appl. Sci. 11, G. P. Galdi, ed., World Scientific, Singapore, 1992, pp. 1-35. · Zbl 0791.35096
[36] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Res. Notes Math. Ser. 360, Longman, Harlow, 1996. · Zbl 0868.35001
[37] F. Sirois, F. Roy, and B. Dutoit, Assessment of the computational performances of the semi-analytical method (SAM) for computing 2-D current distributions in superconductors, IEEE Trans. Appl. Supercond., 19 (2009), pp. 3600-3604.
[38] M. Slodic̆ka, Nonlinear diffusion in type-II superconductors, J. Comput. Appl. Math., 215 (2008), pp. 568-576. · Zbl 1145.82031
[39] D. Talmor, Well-Spaced Points for Numerical Methods, Ph.D. thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1997.
[40] The CGAL Project, CGAL User and Reference Manual, CGAL Editorial Board, 4.9.1 ed., 2017, http://doc.cgal.org/4.9.1/Manual/packages.html.
[41] R. Verfürth, A posteriori error estimates for nonlinear problems: L^r(0,T;W^1,rho(Omega))-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations, 14 (1998), pp. 487-518. · Zbl 0974.65087
[42] A. T. S. Wan, Adaptive Space-Time Finite Element Method in High Temperature Superconductivity, Ph.D. thesis, École Polytechnique de Montréal, Montréal, 2014.
[43] H. Weyl, The method of orthogonal projection in potential theory, Duke Math, 7 (1940), pp. 411-444. · JFM 66.0444.01
[44] H.-M. Yin, On a singular limit problem for nonlinear Maxwell’s equations, J. Differential Equations, 156 (1999), pp. 355-375. · Zbl 0938.78007
[45] H. M. Yin, Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields, Comm. Pure Appl. Anal., 1 (2002), pp. 127-134. · Zbl 1010.35038
[46] H. M. Yin, B. Li, and J. Zou, A degenerate evolution system modeling Bean’s critical-state type-II superconductors, Discrete Contin. Dyn. Syst., 8 (2002), pp. 781-794. · Zbl 1006.35091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.