Zhou, Jun Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay. (English) Zbl 1439.35255 J. Korean Math. Soc. 57, No. 1, 249-281 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 35K55 35Q92 92C15 92C40 PDF BibTeX XML Cite \textit{J. Zhou}, J. Korean Math. Soc. 57, No. 1, 249--281 (2020; Zbl 1439.35255) Full Text: DOI
Zhang, Fengrong; Zhang, Xinhong; Li, Yan; Li, Changpin Hopf bifurcation of a delayed predator-prey model with nonconstant death rate and constant-rate prey harvesting. (English) Zbl 1416.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1850179, 17 p. (2018). MSC: 34K60 92D25 34K13 34K20 34K18 34K17 34K19 PDF BibTeX XML Cite \textit{F. Zhang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1850179, 17 p. (2018; Zbl 1416.34074) Full Text: DOI
Chang, Xiaoyuan; Wei, Junjie Bifurcation analysis in an \(n\)-dimensional diffusive competitive Lotka-Volterra system with time delay. (English) Zbl 1317.35005 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 6, Article ID 1550089, 23 p. (2015). MSC: 35B32 35R10 92D25 35B35 35B10 PDF BibTeX XML Cite \textit{X. Chang} and \textit{J. Wei}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 6, Article ID 1550089, 23 p. (2015; Zbl 1317.35005) Full Text: DOI
Bianca, Carlo; Guerrini, Luca On the Dalgaard-Strulik model with logistic population growth rate and delayed-carrying capacity. (English) Zbl 1283.91124 Acta Appl. Math. 128, No. 1, 39-48 (2013). Reviewer: Marian Matłoka (Poznań) MSC: 91B62 91B38 91B55 PDF BibTeX XML Cite \textit{C. Bianca} and \textit{L. Guerrini}, Acta Appl. Math. 128, No. 1, 39--48 (2013; Zbl 1283.91124) Full Text: DOI
Rebenda, J. Asymptotic behaviour of solutions of real two-dimensional differential system with nonconstant delay. (English) Zbl 1212.34235 Arch. Math., Brno 45, No. 3, 223-236 (2009). MSC: 34K25 34K20 34K12 PDF BibTeX XML Cite \textit{J. Rebenda}, Arch. Math., Brno 45, No. 3, 223--236 (2009; Zbl 1212.34235) Full Text: EuDML EMIS
Gui, Zhanji; Ge, Weigao Global asymptotical stability of periodic solution of multispecies nonautonomous models with time delay. (English) Zbl 1078.34051 Int. J. Pure Appl. Math. 20, No. 3, 337-347 (2005). Reviewer: Sergiy Yanchuk (Berlin) MSC: 34K20 34K13 92D25 PDF BibTeX XML Cite \textit{Z. Gui} and \textit{W. Ge}, Int. J. Pure Appl. Math. 20, No. 3, 337--347 (2005; Zbl 1078.34051)
Naulin, Raúl On the instability of linear nonautonomous delay systems. (English) Zbl 1080.34543 Czech. Math. J. 53, No. 3, 497-514 (2003). MSC: 34D20 34D05 PDF BibTeX XML Cite \textit{R. Naulin}, Czech. Math. J. 53, No. 3, 497--514 (2003; Zbl 1080.34543) Full Text: DOI EuDML
Adimy, Mostafa; Pujo-Menjouet, Laurent A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. (English) Zbl 1036.35053 Electron. J. Differ. Equ. 2003, Paper No. 107, 14 p. (2003). MSC: 35F25 35L60 92C37 92D25 35R10 PDF BibTeX XML Cite \textit{M. Adimy} and \textit{L. Pujo-Menjouet}, Electron. J. Differ. Equ. 2003, Paper No. 107, 14 p. (2003; Zbl 1036.35053) Full Text: EuDML EMIS
Diblík, Josef Bounded solutions of second order differential equation with constant delay. (English) Zbl 0939.34069 Marušiak, Pavol (ed.) et al., Proceedings of the international scientific conference of mathematics, Žilina, Slovakia, June 30-July 3, 1998. Vol. I. Žilina: EDIS, Žilina University Publisher. 33-40 (1999). Reviewer: Jan Cermak (Brno) MSC: 34K25 34K12 PDF BibTeX XML Cite \textit{J. Diblík}, in: Proceedings of the international scientific conference of mathematics, Žilina, Slovakia, June 30--July 3, 1998. Vol. I. Žilina: EDIS, Žilina University Publisher. 33--40 (1999; Zbl 0939.34069)
Wu, Jiongyu The existence of a nonconstant periodic solution for an ecology system with infinite delay. (Chinese. English summary) Zbl 0733.34075 J. Sichuan Univ., Nat. Sci. Ed. 28, No. 1, 26-35 (1991). MSC: 34K99 92D40 34C25 PDF BibTeX XML Cite \textit{J. Wu}, J. Sichuan Univ., Nat. Sci. Ed. 28, No. 1, 26--35 (1991; Zbl 0733.34075)
Táboas, Plácido Periodic solutions of a planar delay equation. (English) Zbl 0719.34125 Proc. R. Soc. Edinb., Sect. A 116, No. 1-2, 85-101 (1990). Reviewer: S.G.Zhuravlev (Moskva) MSC: 34K99 34C25 47H10 PDF BibTeX XML Cite \textit{P. Táboas}, Proc. R. Soc. Edinb., Sect. A, Math. 116, No. 1--2, 85--101 (1990; Zbl 0719.34125) Full Text: DOI
Cao, Xiantong Nonconstant periodic solutions in predator-prey systems with stronger continuous time delay. (Chinese. English summary) Zbl 0703.92019 J. Biomath. 5, No. 1, 73-79 (1990). MSC: 92D25 45M15 45J05 PDF BibTeX XML Cite \textit{X. Cao}, J. Biomath. 5, No. 1, 73--79 (1990; Zbl 0703.92019)
Györi, I. Oscillation and comparison results in neutral differential equations and their applications to the delay logistic equation. (English) Zbl 0697.92023 Comput. Math. Appl. 18, No. 10-11, 893-906 (1989). Reviewer: O.Arino MSC: 92D25 34K99 PDF BibTeX XML Cite \textit{I. Györi}, Comput. Math. Appl. 18, No. 10--11, 893--906 (1989; Zbl 0697.92023) Full Text: DOI
Gopalsamy, K. Oscillations in a delay-logistic equation. (English) Zbl 0631.34077 Q. Appl. Math. 44, 447-461 (1986). Reviewer: R.S.Dahiya MSC: 34K99 34C11 PDF BibTeX XML Cite \textit{K. Gopalsamy}, Q. Appl. Math. 44, 447--461 (1986; Zbl 0631.34077) Full Text: DOI
Cahlon, Baruch; Nachman, Louis J.; Schmidt, Darrell Numerical solution of Volterra integral equations with delay arguments. (English) Zbl 0578.65142 J. Integral Equations 7, 191-208 (1984). Reviewer: Z.Jackiewicz MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{B. Cahlon} et al., J. Integral Equations 7, 191--208 (1984; Zbl 0578.65142)
Dai, Lo Sheng Nonconstant periodic solutions in predator-prey systems with continuous time delay. (English) Zbl 0456.92018 Math. Biosci. 53, 149-157 (1981). MSC: 92D25 45J05 45H05 45M10 34K99 34C30 37G99 PDF BibTeX XML Cite \textit{L. S. Dai}, Math. Biosci. 53, 149--157 (1981; Zbl 0456.92018) Full Text: DOI