×

PFEM formulation for thermo-coupled FSI analysis. Application to nuclear core melt accident. (English) Zbl 1439.82061

Summary: The aim of this paper is to present a Lagrangian formulation for thermo-coupled fluid-structure interaction (FSI) problems and to show its applicability to the simulation of hypothetical scenarios of a nuclear core melt accident. During this emergency situation, an extremely hot and radioactive lava-like material, the corium, is generated by the melting of the fuel assembly. The corium may induce collapse of the nuclear reactor devices and, in the worst case, breach the reactor containment and escape into the environment. This work shows the capabilities of the proposed formulation to reproduce the structural failure mechanisms induced by the corium that may occur during a meltdown scenario. For this purpose, a monolithic method for FSI problems, the so-called Unified formulation, is here enhanced in order to account for the thermal field and to model phase change phenomena with the Particle Finite Element Method (PFEM). Several numerical examples are presented. First, the convergence of the thermo-coupled method and phase change algorithm is shown for two academic problems. Then, two complex simulations of hypothetical nuclear meltdown situations are studied in 2D as in 3D.

MSC:

82M10 Finite element, Galerkin and related methods applied to problems in statistical mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Software:

FEAPpv; COMET
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cheung, F. B.; Shiah, S. W.; Cho, D. H.; Tan, M. J., Modeling of heat transfer in a horizontal heat-generating layer by an effective diffusivity approach, ASME HTD, 192, 55-62 (1992)
[2] Morita, K.; Zhang, S.; Koshizuka, S.; Tobita, Y.; Yamano, H.; Shirakawa, N.; Inoue, F.; Yugo, H.; Naitoh, M.; Okada, H.; Yamamoto, Y.; Himi, M.; Hirano, E.; Shimizu, S.; Oue, M., Detailed analyses of key phenomena in core disruptive accidents of sodium-cooled fast reactors by the COMPASS code, Nucl. Eng. Des., 241 (12), 951-963 (2011)
[3] J. Katsuyama, Y. Yamaguchi, Y. Kaji, H. Yoshida, Development of failure evaluation method for BWR lower head in severe accident, 3; Creep damage evaluation based on thermal-hydraulics and structural analyses, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.; J. Katsuyama, Y. Yamaguchi, Y. Kaji, H. Yoshida, Development of failure evaluation method for BWR lower head in severe accident, 3; Creep damage evaluation based on thermal-hydraulics and structural analyses, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.
[4] T. Nagatake, H. Yoshida, K. Takase, M. Kurata, Development of popcorn code for simulating melting behavior of fuel element; fundamental validation and simulation for melting behavior of simulated fuel rod, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.; T. Nagatake, H. Yoshida, K. Takase, M. Kurata, Development of popcorn code for simulating melting behavior of fuel element; fundamental validation and simulation for melting behavior of simulated fuel rod, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.
[5] S. Yamashita, K. Takase, H. Yoshida, Development of numerical simulation method for relocation behavior of molten materials in nuclear reactors: analysis of relocation behavior for molten materials with a simulated decay heat model, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.; S. Yamashita, K. Takase, H. Yoshida, Development of numerical simulation method for relocation behavior of molten materials in nuclear reactors: analysis of relocation behavior for molten materials with a simulated decay heat model, in: Proceedings of the 2014 23rd International Conference on Nuclear Engineering, 2014.
[6] S. Yamashita, K. Tokushima, M. Kurata, K. Takase, H. Yoshida, Development of numerical simulation method for melt relocation behavior in nuclear reactors: validation of application for actual core support structures, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, 2016.; S. Yamashita, K. Tokushima, M. Kurata, K. Takase, H. Yoshida, Development of numerical simulation method for melt relocation behavior in nuclear reactors: validation of application for actual core support structures, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, 2016.
[7] Hirt, C. W.; Nichols, B. D., Volume of fluid (vof) method for the dynamics of free boundaries., Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[8] Chen, R.; Oka, Y., Numerical analysis of freezing controlled penetration behavior of the molten core debris in an instrument tube with MPS, Ann. Nucl. Energy, 71, 322-332 (2014)
[9] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 3, 421-434 (1996)
[10] R. Chen, L. Chen, W. Tian, G. Su, S. Qiu, Numerical analysis of the corium behavior within the fuel support piece by MPS, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, 2016.; R. Chen, L. Chen, W. Tian, G. Su, S. Qiu, Numerical analysis of the corium behavior within the fuel support piece by MPS, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, 2016.
[11] Li, X.; Oka, Y., Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method, Ann. Nucl. Energy, 73, 46-52 (2014)
[12] Yamaji, A.; Li, X., Development of MPS method for analyzing melt spreading behavior and MCCI in severe accidents, J. Phys. Conf. Ser., 739, 012002 (2016)
[13] MAAP webpage, http://www.fauske.com/nuclear/maap-modular-accident-analysis-program; MAAP webpage, http://www.fauske.com/nuclear/maap-modular-accident-analysis-program
[14] Ujita, H.; Satoh, N.; Naitoh, M.; Hikada, M.; Shirakawa, N.; Yamagishi, M., Development of severe accident analysis code SAMPSON in IMPACT project, J. Nucl. Sci. Technol., 36, 11, 1076-1088 (1999)
[15] Satoh, N.; Ujita, H.; Miyagi, K.; Shirakawa, N.; Horie, H.; Nakahara, K.; Sasakawa, H., Development of molten core relocation analysis module MCRA in the severe accident analysis code SAMPSON, J. Nucl. Sci. Technol., 37, 225-236 (2000)
[16] Laboratories, Sandia National, MELCOR Computer Code Manuals, Vol. 1: Primer and Users Guide, Version 2.1.6840, Sandia Report, SAND 2015-6691 (2015)
[17] Laboratories, Sandia National, Fukushima Daiichi Unit 1 Accident Progression Uncertainty Analysis and Implications for Decommissioning of Fukushima Reactors Volume I, Sandia Report, SAND 2016-0232 (2016)
[18] Franci, A.; Oñate, E.; Carbonell, J. M., Unified Lagrangian formulation for solid and fluid mechanics and FSI problems, Comput. Methods Appl. Mech. Engrg., 298, 520-547 (2016) · Zbl 1423.76230
[19] Idelsohn, S. R.; Marti, J.; Limache, A.; Oñate, E., Unified lagrangian formulation for elastic solids and incompressible fluids: Applications to fluid-structure interaction problems via the PFEM, Comput. Methods Appl. Mech. Engrg., 197, 1762-1776 (2008) · Zbl 1194.74415
[20] Idelsohn, S. R.; Oñate, E.; Del Pin, F., The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves, Internat. J. Numer. Methods Engrg., 61, 964-989 (2004) · Zbl 1075.76576
[21] Idelsohn, S. R.; Oñate, E.; Del Pin, F.; Calvo, N., Fluid-structure interaction using the particle finite element method, Comput. Methods Appl. Mech. Engrg., 195, 2100-2113 (2006) · Zbl 1178.76230
[22] Oñate, E.; Idelsohn, S. R.; Del Pin, F.; Aubry, R., The particle finite element method. An overview, Int. J. Comput. Methods, 1, 267-307 (2004) · Zbl 1182.76901
[23] Franci, A.; Oñate, E.; Carbonell, J. M., Velocity-based formulations for standard and quasi-incompressible hypoelastic-plastic solids, Internat. J. Numer. Methods Engrg., 107 (11), 970-990 (2016) · Zbl 1352.74068
[24] Ryzhakov, P.; Oñate, E.; Idelsohn, S. R., Improving mass conservation in simulation of incompressible flows, Internat. J. Numer. Methods Engrg., 90, 1435-1451 (2012) · Zbl 1246.76059
[25] Agelet de Saracibar, C.; Cervera, M.; Chiumenti, M., On the formulation of coupled thermoplastic problems with phase-change, Int. J. Plast., 15, 1-34 (1999) · Zbl 1054.74035
[26] Cervera, M.; Agelet de Saracibar, C.; Chiumenti, M., Thermo-mechanical analysis of industrial solidification processes, Internat. J. Numer. Methods Engrg., 46, 1575-1591 (1999) · Zbl 0974.74056
[27] Chiumenti, M.; Cervera, M.; Salmi, A.; Agelet de Saracibar, C.; Dialami, N.; Matsui, K., Finite element modeling of multi-pass welding and shaped metal deposition processes, Comput. Methods Appl. Mech. Engrg., 199, 2343-2359 (2010) · Zbl 1231.76139
[28] Chiumenti, M.; Cervera, M.; Dialami, N.; Wu, B.; Jinwei, L.; Agelet de Saracibar, C., Numerical modeling of the electron beam welding and its experimental validation, Finite Elem. Anal. Des., 121, 118-133 (2016)
[29] Chiumenti, M.; Lin, X.; Cervera, M.; Lei, W.; Zheng, Y.; Huang, W., Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. part I: thermal analysis, Rapid Prototyping J., 23(2), 448-463 (2017)
[30] Zienkiewicz, O. C.; Oñate, E.; Heinrich, J. C., A general formulation for the coupled thermal flow of metals using finite elements, Internat. J. Numer. Methods Engrg., 17, 1497-1514 (1981) · Zbl 0462.73053
[31] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodadry, K. I., Nonlinear Finite Elements For Continua And Structures (2014), John Wiley & Sons: John Wiley & Sons New York
[32] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics, Vol. 2 (2005), Elsiever Butterworth-Heinemann: Elsiever Butterworth-Heinemann Oxford · Zbl 1084.74001
[33] Bridgmain, P., The Physics of High Pressure (1949), Bell & Sons: Bell & Sons London
[34] Nagtegaal, J. C.; Parks, D. M.; Rice, J. T., On numerical accurate finite elements solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 153-177 (1974) · Zbl 0284.73048
[35] McMeeking, R. M.; Rice, J. T., International journal of solids and structures, Comput. Methods Appl. Mech. Engrg., 11 (5), 601-616 (1975) · Zbl 0303.73062
[36] Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Dialami, N., Numerical modeling of friction stir welding processes, Comput. Methods Appl. Mech. Engrg., 254, 353-369 (2013) · Zbl 1297.74022
[37] Norton, F. H., The Creep of Steel at High Temperatures (1929), McGraw-Hill: McGraw-Hill New York
[38] Hoff, N. J., Approximate analysis of structures in the presence of moderately large creep deformation, Quart. Appl. Math., 12 (1), 49-55 (1954) · Zbl 0057.40803
[39] G.Y. Goon, P.I. Poluchin, B.A. Prudcowsky, The plastic deformation of metals, Metallurgia, Moscow, 1968.; G.Y. Goon, P.I. Poluchin, B.A. Prudcowsky, The plastic deformation of metals, Metallurgia, Moscow, 1968.
[40] Zienkiewicz, O. C.; Godbole, P. N., Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes, Internat. J. Numer. Methods Engrg., 8, 3-16 (1974) · Zbl 0271.73038
[41] Zienkiewicz, O. C.; Jain, P. C.; Oñate, E., Flow of solids during forming and extrusion: Some aspects of numerical solutions, Int. J. Solids Struct., 14, 15-38 (1978)
[42] Codina, R.; Schfer, U.; Oñate, E., Mould filling simulation using finite elements, Internat. J. Numer. Methods Heat Fluid Flow, 4, 4, 291-310 (1994) · Zbl 0923.76116
[43] Codina, R.; Soto, O., A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique, Internat. J. Numer. Methods Fluids, 40, 1-2, 293-301 (2002) · Zbl 1010.76053
[44] Truesdell, C., Hypo-elasticity, J. Ration. Mech. Anal., 4,1 (1955) · Zbl 0064.42002
[45] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer New York · Zbl 0934.74003
[46] Brepols, T.; Vladimirov, I. N.; Reese, S., Numerical comparison of isotropic hypo- and hyperelastic-based plasticity models with application to industrial forming processes, Int. J. Plast., 63, 18-48 (2014)
[47] Johnson, G.; Bammann, D. J., A discussion of the stress rate in finite deformation problems, Int. J. Solids Struct., 20, 725-737 (1984) · Zbl 0546.73031
[48] Prager, W., Introduction to Mechanics of Continua (1961), Ginn and Company: Ginn and Company Boston · Zbl 0094.18602
[49] Kojić, M.; Bathe, K. J., Studies of finite element procedures-Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation, Comput. Struct., 26, 1-2, 175-179 (1987) · Zbl 0609.73074
[50] Simo, J. C.; Pister, K. S., Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. Methods Appl. Mech. Engrg., 46, 2, 201-215 (1984) · Zbl 0525.73042
[51] Dienes, J. K., On the analysis of rotation and stress rate in deforming bodies, Comput. Methods Appl. Mech. Engrg., 32 (4), 217-232 (1979) · Zbl 0414.73005
[52] Nagtegaal, J. C.; De Jong, J. E., Some computational aspects of elastic-plastic large strain analysis, Numer. Methods Eng., 17 (1), 15-41 (1981) · Zbl 0463.73080
[53] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., 49 (2), 221-245 (1984) · Zbl 0566.73035
[54] Simo, J. C., On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity, Mech. Mater., 4, 3-4, 439-451 (1985)
[55] Haddag, B.; Balan, T.; Abed-Meraim, F., Investigation of advanced strain-path dependent material models for sheet metal forming simulations, Int. J. Plast., 23 (6), 951-979 (2008) · Zbl 1148.74313
[56] Firat, M.; Kaftanoglu, K.; Eser, B., Sheet metal forming analyses with an emphasis on the springback deformation, J. Mater. Process. Technol., 196, 1-3, 135-148 (2008)
[57] Lubliner, L., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[58] Khan, A., Continuum Theory of Plasticity (1995), John Wiley & Sons: John Wiley & Sons New York · Zbl 0856.73002
[59] Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C., Challenges in thermo-mechanical analysis of friction stir welding processes, Arch. Comput. Methods Eng., 24, 189-225 (2017) · Zbl 1360.74044
[60] Armero, F.; Simo, J., A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., 35, 737-766 (1992) · Zbl 0784.73085
[61] Armero, F.; Simo, J., A priori stability estimates and unconditionally stable product algorithms for nonlinear coupled thermoplasticity, Int. J. Plast., 9, 749-782 (1993) · Zbl 0791.73026
[62] Oñate, E.; Franci, A.; Carbonell, J., Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses, Internat. J. Numer. Methods Fluids, 74, 10, 699-731 (2014) · Zbl 1455.76091
[63] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers, Rev. Fr. Autom. Inform. Rech. Oper., 8, R-2, 129-151 (1974) · Zbl 0338.90047
[64] PFEM webpage, www.cimne.com/pfem; PFEM webpage, www.cimne.com/pfem
[65] Cremonesi, M.; Ferrara, L.; Frangi, A.; Perego, U., A Lagrangian finite element approach for the simulation of water-waves induced by landslides, Comput. Struct., 89, 1086-1093 (2011)
[66] Carbonell, J. M.; Oñate, E.; Suarez, B., Modelling of tunnelling processes and cutting tool wear with the particle finite element method (PFEM), Comput. Mech., 52 (3), 607-629 (2013) · Zbl 1282.74085
[67] Zhu, M.; Scott, M. H., Modeling fluid-structure interaction by the particle finite element method in opensees, Comput. Struct., 132, 12-21 (2014)
[68] Oñate, E.; Marti, J.; Rossi, R.; Idelsohn, S. R., Analysis of the melting, burning and flame spread of polymers with the particle finite element method, Comput. Assist. Methods Eng. Sci., 20, 165-184 (2013)
[69] Idelsohn, S.; Calvo, N.; Oñate, E., Polyhedrization of an arbitrary point set, Comput. Methods Appl. Mech. Engrg., 92, 22-24, 2649-2668 (2003) · Zbl 1040.65019
[70] A. Saalfeld, Delaunay Edge Refinements, in: Proceedings 3rd Canadian Conference on Computational Geometry, Burnaby, 1991, pp. 33-36.; A. Saalfeld, Delaunay Edge Refinements, in: Proceedings 3rd Canadian Conference on Computational Geometry, Burnaby, 1991, pp. 33-36.
[71] Edelsbrunner, H.; Tan, T. S., An upper bound for conforming delaunay triangulations, Discrete Comput. Geom., 10, 2, 197:213 (1993) · Zbl 0774.68093
[72] Edelsbrunner, H.; Mucke, E. P., Three dimensional alpha shapes, ACM Trans. Graph., 13, 4372 (1999)
[73] Franci, A.; Cremonesi, M., On the effect of standard pfem remeshing on volume conservation in free-surface fluid flow problems, Comput. Part. Mech., 1-13 (2016)
[74] Nuclear Street webpage, http://nuclearstreet.com/; Nuclear Street webpage, http://nuclearstreet.com/
[75] Sakai, N.; Horie, H.; Yanagisawa, H.; Fujii, T.; Mizokami, S.; Okamoto, K., Validation of MAAP model enhancement for Fukushima Dai-ichi accident analysis with Phenomena Identification and Ranking Table (PIRT), J. Nucl. Sci. Technol., 51, 7-8, 951-963 (2014)
[76] Hofmann, P., Current knowledge on core degradation phenomena, a review, J. Nucl. Mater., 270, 194-211 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.