Cai, Yongyong; Zhou, Xuanxuan Uniformly accurate nested Picard iterative integrators for the Klein-Gordon-Schrödinger equation in the nonrelativistic regime. (English) Zbl 07730433 Numer. Algorithms 94, No. 1, 371-396 (2023). MSC: 65-XX 35Q41 65M70 65N35 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{X. Zhou}, Numer. Algorithms 94, No. 1, 371--396 (2023; Zbl 07730433) Full Text: DOI
Wang, Gangwei; Zhou, Qin; Alshomrani, Ali Saleh; Biswas, Anjan Explicit optical dromions with Kerr law having fractional temporal evolution. (English) Zbl 07726798 Fractals 31, No. 5, Article ID 2350056, 11 p. (2023). MSC: 35Qxx 35Cxx 37Kxx PDF BibTeX XML Cite \textit{G. Wang} et al., Fractals 31, No. 5, Article ID 2350056, 11 p. (2023; Zbl 07726798) Full Text: DOI
Cui, Jianbo; Sun, Liying Stochastic logarithmic Schrödinger equations: energy regularized approach. (English) Zbl 07723846 SIAM J. Math. Anal. 55, No. 4, 3044-3080 (2023). MSC: 35Q55 35Q41 35B65 35A01 35A02 47J05 81Q05 35R60 PDF BibTeX XML Cite \textit{J. Cui} and \textit{L. Sun}, SIAM J. Math. Anal. 55, No. 4, 3044--3080 (2023; Zbl 07723846) Full Text: DOI arXiv
Matsui, Naoki Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential. (English) Zbl 07720251 Tôhoku Math. J. (2) 75, No. 2, 215-232 (2023). MSC: 35Q55 35Q41 35B44 81Q05 PDF BibTeX XML Cite \textit{N. Matsui}, Tôhoku Math. J. (2) 75, No. 2, 215--232 (2023; Zbl 07720251) Full Text: DOI arXiv
Ashida, Sohei Structures of sets of solutions to the Hartree-Fock equation. (English) Zbl 1515.81085 Tôhoku Math. J. (2) 75, No. 2, 143-159 (2023). MSC: 81Q05 35P30 PDF BibTeX XML Cite \textit{S. Ashida}, Tôhoku Math. J. (2) 75, No. 2, 143--159 (2023; Zbl 1515.81085) Full Text: DOI arXiv
Henning, Patrick The dependency of spectral gaps on the convergence of the inverse iteration for a nonlinear eigenvector problem. (English) Zbl 1517.65103 Math. Models Methods Appl. Sci. 33, No. 7, 1517-1544 (2023). MSC: 65N25 35Q55 65N12 65N30 81Q05 PDF BibTeX XML Cite \textit{P. Henning}, Math. Models Methods Appl. Sci. 33, No. 7, 1517--1544 (2023; Zbl 1517.65103) Full Text: DOI arXiv
Wu, Hua; Gao, Qiyi A space-time spectral method for solving the nonlinear Klein-Gordon equation. (English) Zbl 07710409 Appl. Numer. Math. 190, 110-137 (2023). MSC: 65Mxx 35Qxx 65Nxx PDF BibTeX XML Cite \textit{H. Wu} and \textit{Q. Gao}, Appl. Numer. Math. 190, 110--137 (2023; Zbl 07710409) Full Text: DOI
Li, Li; Wang, Lu; Yu, Faj Some general bright soliton solutions and interactions for a \((2+1)\)-dimensional nonlocal nonlinear Schrödinger equation. (English) Zbl 1514.35408 Appl. Math. Lett. 141, Article ID 108600, 8 p. (2023). MSC: 35Q55 35C08 37K40 35Q51 81Q05 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Lett. 141, Article ID 108600, 8 p. (2023; Zbl 1514.35408) Full Text: DOI
Oh, Tadahiro; Robert, Tristan; Tzvetkov, Nikolay Stochastic nonlinear wave dynamics on compact surfaces. (Sur l’équation des ondes non-linéaire stochastique sur les surfaces compactes.) (English. French summary) Zbl 07697376 Ann. Henri Lebesgue 6, 161-223 (2023). MSC: 35L71 35L15 35R01 35R60 60H15 PDF BibTeX XML Cite \textit{T. Oh} et al., Ann. Henri Lebesgue 6, 161--223 (2023; Zbl 07697376) Full Text: DOI arXiv
Kengne, E. Chirped nonlinear waves in the cubic-quintic distributed nonlinear Schrödinger equation with external trap, self-steepening and self-frequency shift. (English) Zbl 1516.81074 Phys. Lett., A 475, Article ID 128836, 16 p. (2023). MSC: 81Q05 35Q55 82D30 35C08 82B44 PDF BibTeX XML Cite \textit{E. Kengne}, Phys. Lett., A 475, Article ID 128836, 16 p. (2023; Zbl 1516.81074) Full Text: DOI
Garrisi, Daniele Stability and instability of standing-wave solutions to one-dimensional quadratic-cubic Klein-Gordon equations. (English) Zbl 1515.35246 J. Fixed Point Theory Appl. 25, No. 2, Paper No. 51, 19 p. (2023). MSC: 35Q55 35Q41 81Q05 47J35 35B38 34B24 PDF BibTeX XML Cite \textit{D. Garrisi}, J. Fixed Point Theory Appl. 25, No. 2, Paper No. 51, 19 p. (2023; Zbl 1515.35246) Full Text: DOI arXiv
Hebey, Emmanuel Strong convergence in Bopp-Podolsky-Proca type constructions. (English) Zbl 1516.35398 Discrete Contin. Dyn. Syst. 43, No. 6, 2371-2380 (2023). MSC: 35Q60 78A02 78A35 83A05 35G20 35G50 58J37 PDF BibTeX XML Cite \textit{E. Hebey}, Discrete Contin. Dyn. Syst. 43, No. 6, 2371--2380 (2023; Zbl 1516.35398) Full Text: DOI
Wu, Yifei Instability of the standing waves for the nonlinear Klein-Gordon equations in one dimension. (English) Zbl 1514.35287 Trans. Am. Math. Soc. 376, No. 6, 4085-4103 (2023). MSC: 35L71 35B35 PDF BibTeX XML Cite \textit{Y. Wu}, Trans. Am. Math. Soc. 376, No. 6, 4085--4103 (2023; Zbl 1514.35287) Full Text: DOI arXiv
Demeio, Lucio; Lenci, Stefano Wave propagation on a string resting on a general nonlinear substrate. (English) Zbl 1512.35025 SIAM J. Appl. Math. 83, No. 1, 1-24 (2023). MSC: 35B10 35C07 35L71 74J30 PDF BibTeX XML Cite \textit{L. Demeio} and \textit{S. Lenci}, SIAM J. Appl. Math. 83, No. 1, 1--24 (2023; Zbl 1512.35025) Full Text: DOI
Alouini, Brahim; Hajaiej, Hichem Dynamics of dipolar quantum droplets in an extended Gross-Pitaevskii equation in the presence of time-dependent harmonic trapping potential and a damping term. (English) Zbl 1512.35526 Anal. Appl., Singap. 21, No. 3, 651-676 (2023). MSC: 35Q55 35Q41 35Q40 35E15 35B40 35A01 35B45 82C10 81Q05 PDF BibTeX XML Cite \textit{B. Alouini} and \textit{H. Hajaiej}, Anal. Appl., Singap. 21, No. 3, 651--676 (2023; Zbl 1512.35526) Full Text: DOI
Hamano, Masaru; Ikeda, Masahiro Stability and instability of radial standing waves to NLKG equation with an inverse-square potential. (English) Zbl 1512.35028 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023). MSC: 35B15 35A15 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamano} and \textit{M. Ikeda}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023; Zbl 1512.35028) Full Text: DOI arXiv
Jahnke, Tobias; Kirn, Michael On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation. (English) Zbl 1512.35502 BIT 63, No. 2, Paper No. 26, 28 p. (2023). MSC: 35Q41 81Q05 65M12 65M15 65M70 65D32 PDF BibTeX XML Cite \textit{T. Jahnke} and \textit{M. Kirn}, BIT 63, No. 2, Paper No. 26, 28 p. (2023; Zbl 1512.35502) Full Text: DOI
Bhatia, Sanjana; Goyal, Amit; Jana, Soumendu; Kumar, C. N. Stationary hypergeometric solitons and their stability in a Bose-Einstein condensate with \(\mathcal{PT}\)-symmetric potential. (English) Zbl 07677198 Phys. Lett., A 469, Article ID 128751, 7 p. (2023). MSC: 81Q05 35Q55 81V73 82C26 70H05 58J53 PDF BibTeX XML Cite \textit{S. Bhatia} et al., Phys. Lett., A 469, Article ID 128751, 7 p. (2023; Zbl 07677198) Full Text: DOI
Nfor, Nkeh Oma; Yamgoué, Serge Bruno Modulational instability and discrete localized modes in two coupled atomic chains with next-nearest-neighbor interactions. (English) Zbl 1509.82029 J. Nonlinear Math. Phys. 30, No. 1, 71-91 (2023). MSC: 82B20 34C15 70K50 PDF BibTeX XML Cite \textit{N. O. Nfor} and \textit{S. B. Yamgoué}, J. Nonlinear Math. Phys. 30, No. 1, 71--91 (2023; Zbl 1509.82029) Full Text: DOI
Carles, Rémi; Su, Chunmei Numerical study of the logarithmic Schrödinger equation with repulsive harmonic potential. (English) Zbl 07675802 Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 3136-3159 (2023). Reviewer: Xiaoming He (Beijing) MSC: 35Q55 35Q41 35B05 35B40 65M70 65T50 65N35 65M15 35C08 81Q05 PDF BibTeX XML Cite \textit{R. Carles} and \textit{C. Su}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 5, 3136--3159 (2023; Zbl 07675802) Full Text: DOI arXiv
Bian, Shasha; Cheng, Yue; Guo, Boling; Wang, Tingchun Error estimate of a new conservative finite difference scheme for the Klein-Gordon-Dirac system. (English) Zbl 07672345 Numer. Math., Theory Methods Appl. 16, No. 1, 140-164 (2023). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{S. Bian} et al., Numer. Math., Theory Methods Appl. 16, No. 1, 140--164 (2023; Zbl 07672345) Full Text: DOI
Melezhik, Vladimir S. Quantum-quasiclassical analysis of center-of-mass nonseparability in hydrogen atom stimulated by strong laser fields. (English) Zbl 07671644 J. Phys. A, Math. Theor. 56, No. 15, Article ID 154003, 15 p. (2023). MSC: 81Q05 81V45 70H05 78A60 39A12 37D30 47A10 PDF BibTeX XML Cite \textit{V. S. Melezhik}, J. Phys. A, Math. Theor. 56, No. 15, Article ID 154003, 15 p. (2023; Zbl 07671644) Full Text: DOI arXiv
Guan, Wen; Rădulescu, Vicenţiu D.; Wang, Da-Bin Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1512.35618 J. Differ. Equations 355, 219-247 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 47H11 58E30 81Q05 PDF BibTeX XML Cite \textit{W. Guan} et al., J. Differ. Equations 355, 219--247 (2023; Zbl 1512.35618) Full Text: DOI
Masoudi, Yousef; Nadjafikhah, Mehdi; Toomanian, Megerdich Applying moving frames to finding conservation laws of the nonlinear Klein-Gordon equation. (English) Zbl 07665319 Comput. Methods Differ. Equ. 11, No. 2, 399-411 (2023). MSC: 35Qxx 37K05 70S10 53A55 20C30 PDF BibTeX XML Cite \textit{Y. Masoudi} et al., Comput. Methods Differ. Equ. 11, No. 2, 399--411 (2023; Zbl 07665319) Full Text: DOI
Taherkhani, Shima; Najafi, Khalilsaraye Iraj; Ghayebi, Bakhtiyar A pseudospectral Sinc method for numerical investigation of the nonlinear time-fractional Klein-Gordon and sine-Gordon equations. (English) Zbl 07665316 Comput. Methods Differ. Equ. 11, No. 2, 357-368 (2023). MSC: 35R11 65M22 65N35 PDF BibTeX XML Cite \textit{S. Taherkhani} et al., Comput. Methods Differ. Equ. 11, No. 2, 357--368 (2023; Zbl 07665316) Full Text: DOI
Dennis, Mark R.; Tijssen, Teuntje; Morgan, Michael A. On the Majorana representation of the optical Dirac equation. (English) Zbl 1510.78046 J. Phys. A, Math. Theor. 56, No. 2, Article ID 024004, 13 p. (2023). MSC: 78A60 78A25 35Q41 35Q61 81V80 81Q05 81R25 PDF BibTeX XML Cite \textit{M. R. Dennis} et al., J. Phys. A, Math. Theor. 56, No. 2, Article ID 024004, 13 p. (2023; Zbl 1510.78046) Full Text: DOI arXiv
Fioravanti, Davide; Rossi, Marco On the origin of the correspondence between classical and quantum integrable theories. (English) Zbl 07656853 Phys. Lett., B 838, Article ID 137706, 10 p. (2023). MSC: 81Q05 34L25 81R12 81Q40 35Q55 81Q60 70S15 81U05 81Q30 82B20 82B23 PDF BibTeX XML Cite \textit{D. Fioravanti} and \textit{M. Rossi}, Phys. Lett., B 838, Article ID 137706, 10 p. (2023; Zbl 07656853) Full Text: DOI arXiv
Fernández, Francisco M. Comment on “Confined Klein-Gordon oscillators in Minkowski spacetime and a pseudo-Minkowski spacetime with a space-like dislocation: PDM KG-oscillators, isospectrality and invariance”. (English) Zbl 07648376 Ann. Phys. 449, Article ID 169216, 4 p. (2023). MSC: 81R20 83A05 35B05 35Q41 51B20 47A10 14F18 PDF BibTeX XML Cite \textit{F. M. Fernández}, Ann. Phys. 449, Article ID 169216, 4 p. (2023; Zbl 07648376) Full Text: DOI
Arora, Anudeep K.; Sparber, Christof Self-bound vortex states in nonlinear Schrödinger equations with LHY correction. (English) Zbl 1504.35465 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 14, 25 p. (2023). MSC: 35Q55 35Q41 35C08 82C10 81Q05 81V73 35A01 49M41 PDF BibTeX XML Cite \textit{A. K. Arora} and \textit{C. Sparber}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 14, 25 p. (2023; Zbl 1504.35465) Full Text: DOI arXiv
Dagan, Yuval Relativistic hydrodynamic interpretation of de Broglie matter waves. (English) Zbl 1516.83006 Found. Phys. 53, No. 1, Paper No. 20, 11 p. (2023). MSC: 83C10 35J05 83C35 83C55 81Q05 70K20 00A79 01A50 PDF BibTeX XML Cite \textit{Y. Dagan}, Found. Phys. 53, No. 1, Paper No. 20, 11 p. (2023; Zbl 1516.83006) Full Text: DOI
Dong, Bo; Wang, Wei A high-order multiscale discontinuous Galerkin method for two-dimensional Schrödinger equation in quantum transport. (English) Zbl 1502.65196 J. Comput. Appl. Math. 418, Article ID 114701, 14 p. (2023). MSC: 65N30 35Q55 82D37 82D80 81Q05 35B05 35J10 PDF BibTeX XML Cite \textit{B. Dong} and \textit{W. Wang}, J. Comput. Appl. Math. 418, Article ID 114701, 14 p. (2023; Zbl 1502.65196) Full Text: DOI
Sedletsky, Yu. V.; Gandzha, I. S. Hamiltonian form of an extended nonlinear Schrödinger equation for modelling the wave field in a system with quadratic and cubic nonlinearities. (English) Zbl 07688736 Math. Model. Nat. Phenom. 17, Paper No. 43, 13 p. (2022). MSC: 81Qxx 70H05 35Q55 PDF BibTeX XML Cite \textit{Yu. V. Sedletsky} and \textit{I. S. Gandzha}, Math. Model. Nat. Phenom. 17, Paper No. 43, 13 p. (2022; Zbl 07688736) Full Text: DOI
Soenjaya, Agus Leonardi Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling. (English) Zbl 07655820 Math. Bohem. 147, No. 4, 461-470 (2022). MSC: 35Q40 35G55 PDF BibTeX XML Cite \textit{A. L. Soenjaya}, Math. Bohem. 147, No. 4, 461--470 (2022; Zbl 07655820) Full Text: DOI
Friederich, Xavier On existence and uniqueness of asymptotic \(N\)-soliton-like solutions of the nonlinear Klein-Gordon equation. (English) Zbl 1502.35140 Math. Z. 302, No. 4, 2131-2191 (2022). MSC: 35Q51 35Q53 35L71 35B40 35C08 37K40 35A01 35A02 PDF BibTeX XML Cite \textit{X. Friederich}, Math. Z. 302, No. 4, 2131--2191 (2022; Zbl 1502.35140) Full Text: DOI arXiv
Wen, Yanyun; Li, Yuan; Zhao, Peihao The solutions of critical nonlinear Dirac equations with degenerate potential. (English) Zbl 1501.35341 Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3335-3365 (2022). MSC: 35Q41 35Q40 81Q05 35A15 35A01 35B33 49J35 PDF BibTeX XML Cite \textit{Y. Wen} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3335--3365 (2022; Zbl 1501.35341) Full Text: DOI
Miranda, Bruno M.; dos Santos, Mateus C. P.; Cardoso, Wesley B. Symmetry breaking in Bose-Einstein condensates confined by a funnel potential. (English) Zbl 1515.81245 Phys. Lett., A 452, Article ID 128453, 6 p. (2022). MSC: 81V73 82B26 82D15 81R40 81Q05 34L40 35Q55 PDF BibTeX XML Cite \textit{B. M. Miranda} et al., Phys. Lett., A 452, Article ID 128453, 6 p. (2022; Zbl 1515.81245) Full Text: DOI arXiv
Liu, Feng-Xia; Guo, Bo-Ling Stability and instability of Schwarzschild-AdS for the nonlinear Einstein-Klein-Gordon system. (English) Zbl 1504.35545 Acta Math. Appl. Sin., Engl. Ser. 38, No. 4, 778-812 (2022). MSC: 35Q75 83C05 83C57 35B35 35L05 35A01 35A02 35B40 35B20 58C30 PDF BibTeX XML Cite \textit{F.-X. Liu} and \textit{B.-L. Guo}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 4, 778--812 (2022; Zbl 1504.35545) Full Text: DOI
Parker, Ross; Cuevas-Maraver, Jesús; Kevrekidis, P. G.; Aceves, Alejandro Revisiting multi-breathers in the discrete Klein-Gordon equation: a spatial dynamics approach. (English) Zbl 1506.37094 Nonlinearity 35, No. 11, 5714-5748 (2022). MSC: 37K45 37K40 37K60 PDF BibTeX XML Cite \textit{R. Parker} et al., Nonlinearity 35, No. 11, 5714--5748 (2022; Zbl 1506.37094) Full Text: DOI arXiv
Sun, Cong; Yan, Dong Ze; Zhang, Yong Ling Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term. (English) Zbl 1500.35108 Open Math. 20, 931-945 (2022). MSC: 35J05 35J91 35A01 PDF BibTeX XML Cite \textit{C. Sun} et al., Open Math. 20, 931--945 (2022; Zbl 1500.35108) Full Text: DOI
Chou, Chia-Chun Complex-valued derivative propagation method with adaptive moving grids for electronic nonadiabatic dynamics. (English) Zbl 1510.81057 Ann. Phys. 445, Article ID 169084, 19 p. (2022). MSC: 81Q05 35Q41 70H20 70H11 65M50 78A60 PDF BibTeX XML Cite \textit{C.-C. Chou}, Ann. Phys. 445, Article ID 169084, 19 p. (2022; Zbl 1510.81057) Full Text: DOI
Fukuizumi, Reika; Hoshino, Masato; Inui, Takahisa Corrigendum to: “Non relativistic and ultra relativistic limits in 2D stochastic nonlinear damped Klein-Gordon equation”. (English) Zbl 1498.35360 Nonlinearity 35, No. 10, C17-C19 (2022). MSC: 35L71 35A35 35R60 60H15 PDF BibTeX XML Cite \textit{R. Fukuizumi} et al., Nonlinearity 35, No. 10, C17--C19 (2022; Zbl 1498.35360) Full Text: DOI
Vo Van Au Global existence for the defocusing Sobolev critical Schrödinger equation under the finite variance condition of initial data. (English) Zbl 1501.35380 Appl. Math. Lett. 134, Article ID 108332, 8 p. (2022). MSC: 35Q55 35Q41 81Q05 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{Vo Van Au}, Appl. Math. Lett. 134, Article ID 108332, 8 p. (2022; Zbl 1501.35380) Full Text: DOI
Song, Mingzhan; Song, Songhe; Zhang, Wei; Qian, Xu Stochastic global momentum-preserving schemes for two-dimensional stochastic partial differential equations. (English) Zbl 1495.65141 East Asian J. Appl. Math. 12, No. 4, 912-927 (2022). MSC: 65M06 35Q55 35R60 65P10 PDF BibTeX XML Cite \textit{M. Song} et al., East Asian J. Appl. Math. 12, No. 4, 912--927 (2022; Zbl 1495.65141) Full Text: DOI
Kang, Shengnan; Abdella, Kenzu; Pollanen, Macro; Zhang, Shuhua; Wang, Liang Sinc collocation numerical methods for solving two-dimensional Gross-Pitaevskii equations with non-homogeneous Dirichlet boundary conditions. (English) Zbl 1513.65410 Adv. Appl. Math. Mech. 14, No. 6, 1302-1332 (2022). MSC: 65M70 65M06 65N35 81Q05 35Q55 35Q41 PDF BibTeX XML Cite \textit{S. Kang} et al., Adv. Appl. Math. Mech. 14, No. 6, 1302--1332 (2022; Zbl 1513.65410) Full Text: DOI
Miraboutalebi, S.; Ahmadi, F.; Jahangiri, A. Effect of RGUP on the nonlinear Klein-Gordon model with spontaneous symmetry breaking. (English) Zbl 1510.81061 Phys. Lett., B 833, Article ID 137270, 10 p. (2022). MSC: 81Q05 35G20 81S07 81R20 81R60 83C45 81R40 PDF BibTeX XML Cite \textit{S. Miraboutalebi} et al., Phys. Lett., B 833, Article ID 137270, 10 p. (2022; Zbl 1510.81061) Full Text: DOI arXiv
Kudryashov, Nikolay A. Solitary waves of the generalized Radhakrishnan-Kundu-Lakshmanan equation with four powers of nonlinearity. (English) Zbl 1508.81827 Phys. Lett., A 448, Article ID 128327, 7 p. (2022). MSC: 81Q05 35Q55 78A40 76L05 81U40 78A48 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Phys. Lett., A 448, Article ID 128327, 7 p. (2022; Zbl 1508.81827) Full Text: DOI
Jeanjean, Louis; Le, Thanh Trung Multiple normalized solutions for a Sobolev critical Schrödinger equation. (English) Zbl 1497.35433 Math. Ann. 384, No. 1-2, 101-134 (2022). MSC: 35Q55 35Q41 35B35 35B38 35B44 35A01 81Q05 PDF BibTeX XML Cite \textit{L. Jeanjean} and \textit{T. T. Le}, Math. Ann. 384, No. 1--2, 101--134 (2022; Zbl 1497.35433) Full Text: DOI arXiv
Utesov, A. B.; Bazarkhanova, A. A. Optimal computing units in the problem of discretizing solutions of the Klein-Gordon equation and their limit errors. (English. Russian original) Zbl 1496.65194 Differ. Equ. 58, No. 5, 698-711 (2022); translation from Differ. Uravn. 58, No. 5, 703-716 (2022). MSC: 65M99 41A46 41A63 35Q53 PDF BibTeX XML Cite \textit{A. B. Utesov} and \textit{A. A. Bazarkhanova}, Differ. Equ. 58, No. 5, 698--711 (2022; Zbl 1496.65194); translation from Differ. Uravn. 58, No. 5, 703--716 (2022) Full Text: DOI
Yunakovsky, A. D. Nonlinear Schrödinger equation and the hyperbolization method. (English. Russian original) Zbl 1511.81045 Comput. Math. Math. Phys. 62, No. 7, 1112-1130 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1138-1157 (2022). MSC: 81Q05 35Q55 35Q41 81Q37 65M50 PDF BibTeX XML Cite \textit{A. D. Yunakovsky}, Comput. Math. Math. Phys. 62, No. 7, 1112--1130 (2022; Zbl 1511.81045); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1138--1157 (2022) Full Text: DOI
Wang, Yan; Zhao, Xiaofei A symmetric low-regularity integrator for nonlinear Klein-Gordon equation. (English) Zbl 1498.65178 Math. Comput. 91, No. 337, 2215-2245 (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65M70 65M22 65N35 65M12 65M15 81Q05 35B65 35Q40 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Zhao}, Math. Comput. 91, No. 337, 2215--2245 (2022; Zbl 1498.65178) Full Text: DOI
Bao, Weizhu; Cai, Yongyong; Feng, Yue Improved uniform error bounds on time-splitting methods for long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. (English) Zbl 07572363 SIAM J. Numer. Anal. 60, No. 4, 1962-1984 (2022). MSC: 65-XX 35L70 65M12 65M15 65M70 81-08 PDF BibTeX XML Cite \textit{W. Bao} et al., SIAM J. Numer. Anal. 60, No. 4, 1962--1984 (2022; Zbl 07572363) Full Text: DOI arXiv
Cai, Yongyong; Zhou, Xuanxuan Uniformly accurate nested Picard iterative integrators for the Klein-Gordon equation in the nonrelativistic regime. (English) Zbl 1492.35244 J. Sci. Comput. 92, No. 2, Paper No. 53, 28 p. (2022). MSC: 35Q41 65M70 65N35 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{X. Zhou}, J. Sci. Comput. 92, No. 2, Paper No. 53, 28 p. (2022; Zbl 1492.35244) Full Text: DOI
Germain, Pierre; Pusateri, Fabio Quadratic Klein-Gordon equations with a potential in one dimension. (English) Zbl 1495.35126 Forum Math. Pi 10, Paper No. e17, 172 p. (2022). MSC: 35L71 35P25 35Q56 42B37 PDF BibTeX XML Cite \textit{P. Germain} and \textit{F. Pusateri}, Forum Math. Pi 10, Paper No. e17, 172 p. (2022; Zbl 1495.35126) Full Text: DOI arXiv
He, Xiaoming; Rădulescu, Vicenţiu D.; Zou, Wenming Normalized ground states for the critical fractional Choquard equation with a local perturbation. (English) Zbl 1495.35191 J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022). MSC: 35R11 35A15 35B33 35J20 35J61 35Q55 46N50 81Q05 PDF BibTeX XML Cite \textit{X. He} et al., J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022; Zbl 1495.35191) Full Text: DOI
Guo, Jiafeng; Su, Huajie; Yan, Zhaowen Heisenberg supermagnetic hierarchy with the quadratic and cubic constraints. (English) Zbl 1498.81072 Phys. Lett., A 443, Article ID 128197, 8 p. (2022). MSC: 81Q05 81Q60 82D40 70S15 70H45 PDF BibTeX XML Cite \textit{J. Guo} et al., Phys. Lett., A 443, Article ID 128197, 8 p. (2022; Zbl 1498.81072) Full Text: DOI
Li, Xin; Zhang, Luming High-order conservative energy quadratization schemes for the Klein-Gordon-Schrödinger equation. (English) Zbl 1502.65162 Adv. Comput. Math. 48, No. 4, Paper No. 41, 22 p. (2022). MSC: 65M70 65L06 35L65 35Q55 35Q41 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Zhang}, Adv. Comput. Math. 48, No. 4, Paper No. 41, 22 p. (2022; Zbl 1502.65162) Full Text: DOI
Ali, Md Ramjan; Ghosh, Uttam; Sarkar, Susmita; Das, Shantanu Analytic solution of the fractional order non-linear Schrödinger equation and the fractional order Klein Gordon equation. (English) Zbl 1494.35061 Differ. Equ. Dyn. Syst. 30, No. 3, 499-512 (2022). MSC: 35C05 35L71 35Q55 35R11 PDF BibTeX XML Cite \textit{M. R. Ali} et al., Differ. Equ. Dyn. Syst. 30, No. 3, 499--512 (2022; Zbl 1494.35061) Full Text: DOI
Domrin, A. V. On solutions to the matrix nonlinear Schrödinger equation. (English. Russian original) Zbl 1492.35305 Comput. Math. Math. Phys. 62, No. 6, 920-932 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 951-964 (2022). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{A. V. Domrin}, Comput. Math. Math. Phys. 62, No. 6, 920--932 (2022; Zbl 1492.35305); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 951--964 (2022) Full Text: DOI
Kopylova, Elena Klein-Gordon equation with mean field interaction. Orbital and asymptotic stability of solitary waves. (English) Zbl 1492.35167 Nonlinearity 35, No. 7, 3593-3629 (2022). MSC: 35L71 35B35 35B40 35C08 47F05 PDF BibTeX XML Cite \textit{E. Kopylova}, Nonlinearity 35, No. 7, 3593--3629 (2022; Zbl 1492.35167) Full Text: DOI
Masaki, Satoshi; Segata, Jun-Ichi; Uriya, Kota On asymptotic behavior of solutions to cubic nonlinear Klein-Gordon systems in one space dimension. (English) Zbl 1492.35045 Trans. Am. Math. Soc., Ser. B 9, 517-563 (2022). MSC: 35B40 35A22 35L52 35L71 PDF BibTeX XML Cite \textit{S. Masaki} et al., Trans. Am. Math. Soc., Ser. B 9, 517--563 (2022; Zbl 1492.35045) Full Text: DOI arXiv
Zhou, Zijian; Song, Jin; Weng, Weifang; Yan, Zhenya Stable solitons and interactions of the logarithmic nonlinear Schrödinger equation with two \(\mathcal{PT} \)-symmetric non-periodic potentials. (English) Zbl 1497.81054 Appl. Math. Lett. 132, Article ID 108131, 9 p. (2022). MSC: 81Q05 35Q55 35Q41 35C08 PDF BibTeX XML Cite \textit{Z. Zhou} et al., Appl. Math. Lett. 132, Article ID 108131, 9 p. (2022; Zbl 1497.81054) Full Text: DOI
Fukuizumi, Reika; Hoshino, Masato; Inui, Takahisa Non relativistic and ultra relativistic limits in 2D stochastic nonlinear damped Klein-Gordon equation. (English) Zbl 1491.35293 Nonlinearity 35, No. 6, 2878-2919 (2022); corrigendum ibid. 35, No. 10, C17-C19 (2022). MSC: 35L71 35A35 35R60 60H15 PDF BibTeX XML Cite \textit{R. Fukuizumi} et al., Nonlinearity 35, No. 6, 2878--2919 (2022; Zbl 1491.35293) Full Text: DOI arXiv
Deng, Shuo; Li, Jiyong A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with energy-preservation for long-time dynamics of the nonlinear Klein-Gordon equation. (English) Zbl 1503.65258 Appl. Numer. Math. 178, 166-191 (2022). MSC: 65M70 35Q55 65M12 PDF BibTeX XML Cite \textit{S. Deng} and \textit{J. Li}, Appl. Numer. Math. 178, 166--191 (2022; Zbl 1503.65258) Full Text: DOI
Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.; Zhu, Yi Integrable nonlocal derivative nonlinear Schrödinger equations. (English) Zbl 1490.35386 Inverse Probl. 38, No. 6, Article ID 065003, 34 p. (2022). MSC: 35Q55 35Q15 37K10 37K15 37K40 35C08 35B40 PDF BibTeX XML Cite \textit{M. J. Ablowitz} et al., Inverse Probl. 38, No. 6, Article ID 065003, 34 p. (2022; Zbl 1490.35386) Full Text: DOI
Dujardin, Guillaume; Lacroix-Violet, Ingrid High order linearly implicit methods for evolution equations. (English) Zbl 1503.65260 ESAIM, Math. Model. Numer. Anal. 56, No. 3, 743-766 (2022). Reviewer: José Augusto Ferreira (Coimbra) MSC: 65M70 65N06 65L20 65L06 65M12 81Q05 35Q41 35Q55 35K05 PDF BibTeX XML Cite \textit{G. Dujardin} and \textit{I. Lacroix-Violet}, ESAIM, Math. Model. Numer. Anal. 56, No. 3, 743--766 (2022; Zbl 1503.65260) Full Text: DOI arXiv
Saanouni, Tarek; Nafti, Hayat Decay of radial solutions to a class of defocusing mass-sub-critical fractional Schrödinger equations. (English) Zbl 1487.35355 Ann. Funct. Anal. 13, No. 3, Paper No. 34, 17 p. (2022). MSC: 35Q55 35J10 35B40 35P25 81Q05 26A33 35R11 PDF BibTeX XML Cite \textit{T. Saanouni} and \textit{H. Nafti}, Ann. Funct. Anal. 13, No. 3, Paper No. 34, 17 p. (2022; Zbl 1487.35355) Full Text: DOI
Antoine, Xavier; Zhao, Xiaofei Pseudospectral methods with PML for nonlinear Klein-Gordon equations in classical and non-relativistic regimes. (English) Zbl 07516812 J. Comput. Phys. 448, Article ID 110728, 24 p. (2022). MSC: 35Qxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{X. Antoine} and \textit{X. Zhao}, J. Comput. Phys. 448, Article ID 110728, 24 p. (2022; Zbl 07516812) Full Text: DOI arXiv
Calvo, María Cabrera; Schratz, Katharina Uniformly accurate low regularity integrators for the Klein-Gordon equation from the classical to nonrelativistic limit regime. (English) Zbl 1492.35297 SIAM J. Numer. Anal. 60, No. 2, 888-912 (2022). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 35Q55 35Q41 65M70 65M12 35B05 35B65 35B35 PDF BibTeX XML Cite \textit{M. C. Calvo} and \textit{K. Schratz}, SIAM J. Numer. Anal. 60, No. 2, 888--912 (2022; Zbl 1492.35297) Full Text: DOI arXiv
Comech, Andrew On solutions with compact spectrum to nonlinear Klein-Gordon and Schrödinger equations. (English) Zbl 1486.35017 SIAM J. Math. Anal. 54, No. 2, 2128-2141 (2022). MSC: 35B10 35C08 35B40 35B41 35L71 35Q41 35Q55 37K40 81Q05 PDF BibTeX XML Cite \textit{A. Comech}, SIAM J. Math. Anal. 54, No. 2, 2128--2141 (2022; Zbl 1486.35017) Full Text: DOI arXiv
Mohammadi, M.; Riazi, N.; Dehghani, M. H. Faster-than-light solitons in \(1+1\) dimensions. (English) Zbl 1494.83023 Ann. Phys. 440, Article ID 168820, 14 p. (2022). MSC: 83C80 81Q05 35Q55 81R20 35C08 PDF BibTeX XML Cite \textit{M. Mohammadi} et al., Ann. Phys. 440, Article ID 168820, 14 p. (2022; Zbl 1494.83023) Full Text: DOI arXiv
Schubring, Daniel Lessons from \(O(N)\) models in one dimension. (English) Zbl 1494.81006 Ann. Phys. 440, Article ID 168818, 49 p. (2022). MSC: 81Q05 81T10 81V70 81S40 81Q30 47A10 70H45 81Q60 81-01 PDF BibTeX XML Cite \textit{D. Schubring}, Ann. Phys. 440, Article ID 168818, 49 p. (2022; Zbl 1494.81006) Full Text: DOI arXiv
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes. (English) Zbl 1486.35122 J. Eur. Math. Soc. (JEMS) 24, No. 6, 2133-2167 (2022). MSC: 35C08 35B40 35L71 37K40 PDF BibTeX XML Cite \textit{M. Kowalczyk} et al., J. Eur. Math. Soc. (JEMS) 24, No. 6, 2133--2167 (2022; Zbl 1486.35122) Full Text: DOI arXiv
Moraes, Gabriel E. Bittencourt; de Loreno, Guilherme Cnoidal waves for the quintic Klein-Gordon and Schrödinger equations: existence and orbital instability. (English) Zbl 1493.35011 J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022). Reviewer: Xiaoming He (Beijing) MSC: 35B35 35C07 35Q51 35Q53 35Q55 PDF BibTeX XML Cite \textit{G. E. B. Moraes} and \textit{G. de Loreno}, J. Math. Anal. Appl. 513, No. 1, Article ID 126203, 22 p. (2022; Zbl 1493.35011) Full Text: DOI arXiv
Bao, Weizhu; Carles, Rémi; Su, Chunmei; Tang, Qinglin Error estimates of local energy regularization for the logarithmic Schrödinger equation. (English) Zbl 1483.35168 Math. Models Methods Appl. Sci. 32, No. 1, 101-136 (2022). MSC: 35Q40 35Q55 65M15 81Q05 PDF BibTeX XML Cite \textit{W. Bao} et al., Math. Models Methods Appl. Sci. 32, No. 1, 101--136 (2022; Zbl 1483.35168) Full Text: DOI arXiv
Ballesteros, Miguel; Iniesta, Diego; Naumkin, Ivan; Peña, Clemente Wave and scattering operators for the nonlinear Klein-Gordon equation on a quarter-plane. (English) Zbl 1507.35229 J. Differ. Equations 321, 66-98done, nur noch checkmatrix und matrixtex (2022). MSC: 35Q53 35Q55 35B40 35P25 PDF BibTeX XML Cite \textit{M. Ballesteros} et al., J. Differ. Equations 321, 66--98done, nur noch checkmatrix und matrixtex (2022; Zbl 1507.35229) Full Text: DOI
Cen, Julia; Correa, Francisco; Fring, Andreas; Taira, Takanobu Stability in integrable nonlocal nonlinear equations. (English) Zbl 1487.81079 Phys. Lett., A 435, Article ID 128060, 7 p. (2022). MSC: 81Q05 35Q55 81P94 81Q80 81R12 35C08 PDF BibTeX XML Cite \textit{J. Cen} et al., Phys. Lett., A 435, Article ID 128060, 7 p. (2022; Zbl 1487.81079) Full Text: DOI arXiv
Chen, Li; Lee, Jinyeop; Liew, Matthew Convergence towards the Vlasov-Poisson equation from the \(N\)-fermionic Schrödinger equation. (English) Zbl 1491.35354 Ann. Henri Poincaré 23, No. 2, 555-593 (2022). MSC: 35Q40 35Q55 35Q83 81V70 81Q05 81V74 PDF BibTeX XML Cite \textit{L. Chen} et al., Ann. Henri Poincaré 23, No. 2, 555--593 (2022; Zbl 1491.35354) Full Text: DOI arXiv
He, Chuan-Min; Li, Lin; Chen, Shang-Jie; O’Regan, Donal Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents. (English) Zbl 1485.35177 Anal. Math. Phys. 12, No. 2, Paper No. 48, 17 p. (2022). MSC: 35J47 35J61 35A01 PDF BibTeX XML Cite \textit{C.-M. He} et al., Anal. Math. Phys. 12, No. 2, Paper No. 48, 17 p. (2022; Zbl 1485.35177) Full Text: DOI
Cai, Yongyong; Wang, Yan Uniformly accurate nested Picard iterative integrators for the nonlinear Dirac equation in the nonrelativistic regime. (English) Zbl 1482.35190 Multiscale Model. Simul. 20, No. 1, 164-187 (2022). MSC: 35Q41 65M70 65N35 81Q05 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{Y. Wang}, Multiscale Model. Simul. 20, No. 1, 164--187 (2022; Zbl 1482.35190) Full Text: DOI
Aryan, Shrey Existence of two-solitary waves with logarithmic distance for the nonlinear Klein-Gordon equation. (English) Zbl 1485.35046 Commun. Contemp. Math. 24, No. 1, Article ID 2050091, 25 p. (2022). MSC: 35B40 35C08 35L15 35L71 37K40 PDF BibTeX XML Cite \textit{S. Aryan}, Commun. Contemp. Math. 24, No. 1, Article ID 2050091, 25 p. (2022; Zbl 1485.35046) Full Text: DOI arXiv
Halidou, Hamadou; Abbagari, Souleymanou; Houwe, Alphonse; Inc, Mustafa; Thomas, Bouetou B. Rational W-shape solitons on a nonlinear electrical transmission line with Josephson junction. (English) Zbl 1486.81096 Phys. Lett., A 430, Article ID 127951, 11 p. (2022). MSC: 81Q05 35Q55 82D40 68Q12 83C56 81-10 PDF BibTeX XML Cite \textit{H. Halidou} et al., Phys. Lett., A 430, Article ID 127951, 11 p. (2022; Zbl 1486.81096) Full Text: DOI
Saleem, U.; Sarfraz, H.; Hanif, Y. Dynamics of kink-soliton solutions of the \((2+1)\)-dimensional sine-Gordon equation. (English. Russian original) Zbl 1486.81102 Theor. Math. Phys. 210, No. 1, 68-84 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 80-98 (2022). MSC: 81Q05 35Q55 35C08 35Q05 35P05 35P10 35A01 PDF BibTeX XML Cite \textit{U. Saleem} et al., Theor. Math. Phys. 210, No. 1, 68--84 (2022; Zbl 1486.81102); translation from Teor. Mat. Fiz. 210, No. 1, 80--98 (2022) Full Text: DOI arXiv
Ma, Xinxin; Kuang, Yonghui Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation. (English. Russian original) Zbl 1486.81097 Theor. Math. Phys. 210, No. 1, 31-45 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 38-53 (2022). MSC: 81Q05 35Q55 34B10 81U40 35Q15 PDF BibTeX XML Cite \textit{X. Ma} and \textit{Y. Kuang}, Theor. Math. Phys. 210, No. 1, 31--45 (2022; Zbl 1486.81097); translation from Teor. Mat. Fiz. 210, No. 1, 38--53 (2022) Full Text: DOI
Wang, Xiu-Bin; Han, Bo The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: inverse scattering transform and multisoliton solutions. (English. Russian original) Zbl 1486.81103 Theor. Math. Phys. 210, No. 1, 8-30 (2022); translation from Teor. Mat. Fiz. 210, No. 1, 11-37 (2022). MSC: 81Q05 35Q55 81U40 35C08 35Q15 35G31 70H33 81Q80 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Theor. Math. Phys. 210, No. 1, 8--30 (2022; Zbl 1486.81103); translation from Teor. Mat. Fiz. 210, No. 1, 11--37 (2022) Full Text: DOI arXiv
Yu, Zong-Bing; Zhu, Chenghao; Zhao, Jian-Shi; Zou, Li Inverse scattering transform of the general three-component nonlinear Schrödinger equation and its multisoliton solutions. (English) Zbl 1490.35462 Appl. Math. Lett. 128, Article ID 107874, 7 p. (2022). MSC: 35Q55 35Q15 35C08 37K15 37K10 15A18 81Q05 PDF BibTeX XML Cite \textit{Z.-B. Yu} et al., Appl. Math. Lett. 128, Article ID 107874, 7 p. (2022; Zbl 1490.35462) Full Text: DOI
Zhang, Ziyun Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems. (English) Zbl 1483.35143 Commun. Math. Sci. 20, No. 2, 377-403 (2022). MSC: 35P30 35A35 35J25 35J61 47J10 65K10 65N25 81Q05 PDF BibTeX XML Cite \textit{Z. Zhang}, Commun. Math. Sci. 20, No. 2, 377--403 (2022; Zbl 1483.35143) Full Text: DOI arXiv
Missaoui, Salah Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in \(\mathbb{R}^3\) nonlinear KGS system. (English) Zbl 1491.37066 Commun. Pure Appl. Anal. 21, No. 2, 567-584 (2022). MSC: 37L30 37L50 35B40 35B41 35Q55 PDF BibTeX XML Cite \textit{S. Missaoui}, Commun. Pure Appl. Anal. 21, No. 2, 567--584 (2022; Zbl 1491.37066) Full Text: DOI
Bao, Weizhu; Feng, Yue; Su, Chunmei Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. (English) Zbl 07473345 Math. Comput. 91, No. 334, 811-842 (2022). MSC: 65-XX 35L70 65M12 65M15 65M70 81-08 PDF BibTeX XML Cite \textit{W. Bao} et al., Math. Comput. 91, No. 334, 811--842 (2022; Zbl 07473345) Full Text: DOI arXiv
Kopylova, Elena On dispersive estimates for one-dimensional Klein-Gordon equations. (English) Zbl 1509.35265 Asymptotic Anal. 127, No. 1-2, 1-13 (2022). MSC: 35Q53 35Q55 35P25 35C08 35B40 35B35 PDF BibTeX XML Cite \textit{E. Kopylova}, Asymptotic Anal. 127, No. 1--2, 1--13 (2022; Zbl 1509.35265) Full Text: DOI
Chen, Jie; Wang, Baoxiang Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. (English) Zbl 1483.35136 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022). MSC: 35L71 35L15 35P25 35R60 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022; Zbl 1483.35136) Full Text: DOI arXiv
Kudryashov, Nikolay A. Bright and dark solitons in a nonlinear saturable medium. (English) Zbl 1485.81026 Phys. Lett., A 427, Article ID 127913, 5 p. (2022). MSC: 81Q05 35Q55 81U15 35C08 26B10 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Phys. Lett., A 427, Article ID 127913, 5 p. (2022; Zbl 1485.81026) Full Text: DOI
Kudryavtsev, A. G.; Myagkov, N. N. New solutions for the (3 + 1)-dimensional Charney-Obukhov equation. (English) Zbl 1485.81027 Phys. Lett., A 427, Article ID 127901, 4 p. (2022). MSC: 81Q05 35Q55 35C07 76M23 81V80 PDF BibTeX XML Cite \textit{A. G. Kudryavtsev} and \textit{N. N. Myagkov}, Phys. Lett., A 427, Article ID 127901, 4 p. (2022; Zbl 1485.81027) Full Text: DOI
Chen, Xuwen; Holmer, Justin Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on \(\mathbb{T}^4\). (English) Zbl 1483.35201 Forum Math. Pi 10, Paper No. e3, 49 p. (2022). MSC: 35Q55 35A02 81V70 35A23 35B45 81Q05 PDF BibTeX XML Cite \textit{X. Chen} and \textit{J. Holmer}, Forum Math. Pi 10, Paper No. e3, 49 p. (2022; Zbl 1483.35201) Full Text: DOI arXiv
Liu, Nan; Xuan, Zuxing; Sun, Jinyi Triple-pole soliton solutions of the derivative nonlinear Schrödinger equation via inverse scattering transform. (English) Zbl 1479.35806 Appl. Math. Lett. 125, Article ID 107741, 8 p. (2022). MSC: 35Q55 35Q15 81Q05 37K15 35C08 35R30 PDF BibTeX XML Cite \textit{N. Liu} et al., Appl. Math. Lett. 125, Article ID 107741, 8 p. (2022; Zbl 1479.35806) Full Text: DOI
Li, Jiyong Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. (English) Zbl 1484.65263 Appl. Numer. Math. 172, 1-26 (2022). MSC: 65M70 65M12 65M15 81Q05 PDF BibTeX XML Cite \textit{J. Li}, Appl. Numer. Math. 172, 1--26 (2022; Zbl 1484.65263) Full Text: DOI
Nimiwal, Raghavendra; Satpathi, Urbashi; Vasan, Vishal; Kulkarni, Manas Soliton-like behaviour in non-integrable systems. (English) Zbl 07654537 J. Phys. A, Math. Theor. 54, No. 42, Article ID 425701, 22 p. (2021). MSC: 35Q55 37K10 35Q51 35C08 81Q05 PDF BibTeX XML Cite \textit{R. Nimiwal} et al., J. Phys. A, Math. Theor. 54, No. 42, Article ID 425701, 22 p. (2021; Zbl 07654537) Full Text: DOI arXiv
Bhimani, Divyang G. Global well-posedness for Klein-Gordon-Hartree and fractional Hartree equations on modulation spaces. (English) Zbl 1496.35169 Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021). MSC: 35G25 35A01 35L15 35L71 35Q55 35R11 42B35 PDF BibTeX XML Cite \textit{D. G. Bhimani}, Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021; Zbl 1496.35169) Full Text: arXiv Link
Aljohani, A. F.; Hussain, Q.; Zaman, F. D.; Kara, A. H. On a study of some classes of the fourth-order KdV-Klein/Gordon equation and its time fractional forms. (English) Zbl 1485.37064 Chaos Solitons Fractals 148, Article ID 111028, 5 p. (2021). MSC: 37K06 37K40 35Q53 35R11 PDF BibTeX XML Cite \textit{A. F. Aljohani} et al., Chaos Solitons Fractals 148, Article ID 111028, 5 p. (2021; Zbl 1485.37064) Full Text: DOI
Prodanov, Dimiter The Burgers equations and the Born rule. (English) Zbl 1498.35510 Chaos Solitons Fractals 144, Article ID 110637, 17 p. (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{D. Prodanov}, Chaos Solitons Fractals 144, Article ID 110637, 17 p. (2021; Zbl 1498.35510) Full Text: DOI arXiv
Eslami, M.; Neirameh, A. Generalized exponential rational function for distinct types solutions to the conformable resonant Schrödinger’s equation. (English) Zbl 1492.81049 Int. J. Mod. Phys. B 35, No. 30, Article ID 2150306, 8 p. (2021). MSC: 81Q05 35Q55 41A20 35R11 78A60 78A50 82D25 68W30 PDF BibTeX XML Cite \textit{M. Eslami} and \textit{A. Neirameh}, Int. J. Mod. Phys. B 35, No. 30, Article ID 2150306, 8 p. (2021; Zbl 1492.81049) Full Text: DOI