Pecher, Hartmut Local well-posedness for the Klein-Gordon-Zakharov system in 3D. (English) Zbl 07314929 Discrete Contin. Dyn. Syst. 41, No. 4, 1707-1736 (2021). MSC: 35Q55 35A01 PDF BibTeX XML Cite \textit{H. Pecher}, Discrete Contin. Dyn. Syst. 41, No. 4, 1707--1736 (2021; Zbl 07314929) Full Text: DOI
Murphy, Jason; Nakanishi, Kenji Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. (English) Zbl 07314919 Discrete Contin. Dyn. Syst. 41, No. 3, 1507-1517 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{J. Murphy} and \textit{K. Nakanishi}, Discrete Contin. Dyn. Syst. 41, No. 3, 1507--1517 (2021; Zbl 07314919) Full Text: DOI
Hamano, Masaru; Masaki, Satoshi A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. (English) Zbl 07314915 Discrete Contin. Dyn. Syst. 41, No. 3, 1415-1447 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{M. Hamano} and \textit{S. Masaki}, Discrete Contin. Dyn. Syst. 41, No. 3, 1415--1447 (2021; Zbl 07314915) Full Text: DOI
Comech, Andrew; Cuccagna, Scipio On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. (English) Zbl 07314908 Discrete Contin. Dyn. Syst. 41, No. 3, 1225-1270 (2021). MSC: 35B35 35B40 35C08 35Q41 37K40 PDF BibTeX XML Cite \textit{A. Comech} and \textit{S. Cuccagna}, Discrete Contin. Dyn. Syst. 41, No. 3, 1225--1270 (2021; Zbl 07314908) Full Text: DOI
Landoulsi, Oussama Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation outside a strictly convex obstacle in the \(L^2\)-supercritical case. (English) Zbl 07314362 Discrete Contin. Dyn. Syst. 41, No. 2, 701-746 (2021). MSC: 35Q55 35C08 35B40 PDF BibTeX XML Cite \textit{O. Landoulsi}, Discrete Contin. Dyn. Syst. 41, No. 2, 701--746 (2021; Zbl 07314362) Full Text: DOI
Mei, Xinyu; Xiong, Yangmin; Sun, Chunyou Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. (English) Zbl 07314357 Discrete Contin. Dyn. Syst. 41, No. 2, 569-600 (2021). MSC: 35B41 35Q55 35Q56 37L40 76F20 PDF BibTeX XML Cite \textit{X. Mei} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 569--600 (2021; Zbl 07314357) Full Text: DOI
Gerdjikov, Vladimir S.; Ivanov, Rossen I. Multicomponent Fokas-Lenells equations on Hermitian symmetric spaces. (English) Zbl 07312090 Nonlinearity 34, No. 2, 939-963 (2021). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{V. S. Gerdjikov} and \textit{R. I. Ivanov}, Nonlinearity 34, No. 2, 939--963 (2021; Zbl 07312090) Full Text: DOI
Dinh, Van Duong Dynamics of radial solutions for the focusing fourth-order nonlinear Schrödinger equations. (English) Zbl 07312085 Nonlinearity 34, No. 2, 776-821 (2021). MSC: 35Q55 35Q41 35B44 35P25 PDF BibTeX XML Cite \textit{V. D. Dinh}, Nonlinearity 34, No. 2, 776--821 (2021; Zbl 07312085) Full Text: DOI
Luo, Peng; Tian, Shuying; Zhou, Xiaodong Local uniqueness and the number of concentrated solutions for nonlinear Schrödinger equations with non-admissible potential. (English) Zbl 07312082 Nonlinearity 34, No. 2, 705-724 (2021). MSC: 35B40 35B45 35J40 PDF BibTeX XML Cite \textit{P. Luo} et al., Nonlinearity 34, No. 2, 705--724 (2021; Zbl 07312082) Full Text: DOI
Ayazoglu, Rabil; Saraç, Yeşim; Şener, S. Şule; Alisoy, Gülizar Existence and multiplicity of solutions for a Schrödinger-Kirchhoff type equation involving the fractional \(p(.,.)\)-Laplacian operator in \(\mathbb{R}^N\). (English) Zbl 07311755 Collect. Math. 72, No. 1, 129-156 (2021). MSC: 35R11 35J60 35J20 35B09 PDF BibTeX XML Cite \textit{R. Ayazoglu} et al., Collect. Math. 72, No. 1, 129--156 (2021; Zbl 07311755) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Ma, Wen-Xiu; Batwa, Sumayah A binary Darboux transformation for multicomponent NLS equations and their reductions. (English) Zbl 07311012 Anal. Math. Phys. 11, No. 2, Paper No. 44, 13 p. (2021). MSC: 37K15 35Q55 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma} and \textit{S. Batwa}, Anal. Math. Phys. 11, No. 2, Paper No. 44, 13 p. (2021; Zbl 07311012) Full Text: DOI
Cho, Yonggeun; Lee, Kiyeon On the focusing energy-critical inhomogeneous NLS: weighted space approach. (English) Zbl 07310980 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112261, 22 p. (2021). MSC: 35Q55 35Q40 PDF BibTeX XML Cite \textit{Y. Cho} and \textit{K. Lee}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112261, 22 p. (2021; Zbl 07310980) Full Text: DOI
Cazenave, Thierry; Han, Zheng; Naumkin, Ivan Asymptotic behavior for a dissipative nonlinear Schrödinger equation. (English) Zbl 07310979 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021). MSC: 35Q55 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021; Zbl 07310979) Full Text: DOI
Chenn, Ilias; Sigal, Israel Michael Vortex lattices and the Bogoliubov-de Gennes equations. (English) Zbl 07309929 Adv. Math. 380, Article ID 107546, 54 p. (2021). MSC: 82D55 35Q82 35Q55 PDF BibTeX XML Cite \textit{I. Chenn} and \textit{I. M. Sigal}, Adv. Math. 380, Article ID 107546, 54 p. (2021; Zbl 07309929) Full Text: DOI
Hu, Beibei; Zhang, Ling; Zhang, Ning On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. (English) Zbl 07309653 J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021). MSC: 35G31 35Q15 35Q55 37K15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021; Zbl 07309653) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J20 35J60 49J35 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Dohnal, Tomáš; Romani, Giulio Eigenvalue bifurcation in doubly nonlinear problems with an application to surface plasmon polaritons. (English) Zbl 07309484 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 9, 30 p. (2021). MSC: 35P30 35B32 35Q61 78A48 35Q55 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{G. Romani}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 9, 30 p. (2021; Zbl 07309484) Full Text: DOI
Zhang, Yang Optimizers of the Sobolev and Gagliardo-Nirenberg inequalities in \(\dot{W}^{s,p} \). (English) Zbl 07309154 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 10, 24 p. (2021). MSC: 35J20 35J60 35Q55 26A33 PDF BibTeX XML Cite \textit{Y. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 10, 24 p. (2021; Zbl 07309154) Full Text: DOI
Jia, Junqing; Jiang, Xiaoyun; Zhang, Hui An L1 Legendre-Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional Schrödinger equation and its parameter estimation. (English) Zbl 07308001 Comput. Math. Appl. 82, 13-35 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{J. Jia} et al., Comput. Math. Appl. 82, 13--35 (2021; Zbl 07308001) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 07307695 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 07307695) Full Text: DOI
Brandes, J.; Parsell, S. T.; Poulias, C.; Shakan, G.; Vaughan, R. C. On generating functions in additive number theory. II: Lower-order terms and applications to PDEs. (English) Zbl 07307512 Math. Ann. 379, No. 1-2, 347-376 (2021). MSC: 11L15 11P55 35Q53 35Q55 PDF BibTeX XML Cite \textit{J. Brandes} et al., Math. Ann. 379, No. 1--2, 347--376 (2021; Zbl 07307512) Full Text: DOI
Yamano, Takuya; Ourabah, Kamel Gaussian traveling wave solutions for two argument-Schrödinger equations under potentials. (English) Zbl 07307165 Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{T. Yamano} and \textit{K. Ourabah}, Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021; Zbl 07307165) Full Text: DOI
Li, Jian; Xia, Tiecheng \(N\)-soliton solutions for the nonlocal Fokas-Lenells equation via RHP. (English) Zbl 07307151 Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021). MSC: 35C08 35Q55 35Q15 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Xia}, Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021; Zbl 07307151) Full Text: DOI
Fujiié, Setsuro; Kamvissis, Spyridon Publisher’s note: “Semiclassical WKB problem for the non-self-adjoint Dirac operator with analytic potential” [J. Math. Phys. 61, 011510 (2020)]. (English) Zbl 07306548 J. Math. Phys. 62, No. 1, 019901, 1 p. (2021). MSC: 81Q12 81Q20 81R25 35P30 35Q55 81U40 PDF BibTeX XML Cite \textit{S. Fujiié} and \textit{S. Kamvissis}, J. Math. Phys. 62, No. 1, 019901, 1 p. (2021; Zbl 07306548) Full Text: DOI
Zhang, Jian; Lou, Zhenluo Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. (English) Zbl 07306518 J. Math. Phys. 62, No. 1, 011506, 14 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35J60 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Z. Lou}, J. Math. Phys. 62, No. 1, 011506, 14 p. (2021; Zbl 07306518) Full Text: DOI
Ao, Yong Existence of solutions for a class of nonlinear Choquard equations with critical growth. (English) Zbl 07305504 Appl. Anal. 100, No. 3, 465-481 (2021). MSC: 35Q55 35R09 35J91 35A01 49J20 PDF BibTeX XML Cite \textit{Y. Ao}, Appl. Anal. 100, No. 3, 465--481 (2021; Zbl 07305504) Full Text: DOI
Jiang, Chaolong; Wang, Yushun; Gong, Yuezheng Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. (English) Zbl 07305223 J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021). MSC: 65M22 65L06 65M70 65N35 35Q55 35Q41 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021; Zbl 07305223) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Benoist, T.; Fraas, M.; Pautrat, Y.; Pellegrini, C. Invariant measure for stochastic Schrödinger equations. (English) Zbl 07303658 Ann. Henri Poincaré 22, No. 2, 347-374 (2021). MSC: 81S25 81Q05 35R60 35Q55 37C40 37A05 81P20 PDF BibTeX XML Cite \textit{T. Benoist} et al., Ann. Henri Poincaré 22, No. 2, 347--374 (2021; Zbl 07303658) Full Text: DOI
Feng, Xiaojing; Yang, Xia Existence of ground state solutions for fractional Schrödinger-Poisson systems with doubly critical growth. (English) Zbl 07302841 Mediterr. J. Math. 18, No. 2, Paper No. 41, 14 p. (2021). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{X. Feng} and \textit{X. Yang}, Mediterr. J. Math. 18, No. 2, Paper No. 41, 14 p. (2021; Zbl 07302841) Full Text: DOI
Saanouni, T. Global and non-global solutions for a class of damped fourth-order Schrödinger equations. (English) Zbl 07302084 Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{T. Saanouni}, Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021; Zbl 07302084) Full Text: DOI
Ma, Wen-Xiu Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. (English) Zbl 07301333 Proc. Am. Math. Soc. 149, No. 1, 251-263 (2021). MSC: 37K15 35Q55 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma}, Proc. Am. Math. Soc. 149, No. 1, 251--263 (2021; Zbl 07301333) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. (English) Zbl 07301278 Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021). MSC: 35Q55 37K10 35C08 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021; Zbl 07301278) Full Text: DOI
Yang, Yunqing; Suzuki, Takashi; Wang, Jianyong Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation. (English) Zbl 07299030 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021). MSC: 35Q55 35Q41 37K35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021; Zbl 07299030) Full Text: DOI
Schmelcher, Peter Superexponential interactions and the dynamical unfolding of confined degrees of freedom. (English) Zbl 07299011 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105599, 15 p. (2021). MSC: 81V45 81V55 35Q55 70F05 81U05 PDF BibTeX XML Cite \textit{P. Schmelcher}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105599, 15 p. (2021; Zbl 07299011) Full Text: DOI
Zhai, Jian; Zheng, Bo-Wen Global existence and blow-up solutions of the radial Schrödinger maps. (English) Zbl 07298840 Commun. Contemp. Math. 23, No. 2, Article ID 2050009, 22 p. (2021). MSC: 35Q40 35Q55 35R09 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{J. Zhai} and \textit{B.-W. Zheng}, Commun. Contemp. Math. 23, No. 2, Article ID 2050009, 22 p. (2021; Zbl 07298840) Full Text: DOI
Clapp, Mónica; Maia, Liliane A.; Pellacci, Benedetta Positive multipeak solutions to a zero mass problem in exterior domains. (English) Zbl 07298832 Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021). MSC: 35Q55 35B09 35J20 PDF BibTeX XML Cite \textit{M. Clapp} et al., Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021; Zbl 07298832) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J61 35R11 35Q55 35Q40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Van Thin, Nguyen; Xiang, Mingqi; Zhang, Binlin On critical Schrödinger-Kirchhoff-type problems involving the fractional \(p\)-Laplacian with potential vanishing at infinity. (English) Zbl 07297203 Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021). MSC: 35R11 35J92 35A15 35J60 PDF BibTeX XML Cite \textit{N. Van Thin} et al., Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021; Zbl 07297203) Full Text: DOI
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 07291903 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 07291903) Full Text: DOI
Pellacci, Benedetta; Pistoia, Angela; Vaira, Giusi; Verzini, Gianmaria Normalized concentrating solutions to nonlinear elliptic problems. (English) Zbl 07291361 J. Differ. Equations 275, 882-919 (2021). MSC: 35J91 35B09 35A01 PDF BibTeX XML Cite \textit{B. Pellacci} et al., J. Differ. Equations 275, 882--919 (2021; Zbl 07291361) Full Text: DOI
Meng, Fanfei; Xu, Chengbin Scattering for mass-resonance nonlinear Schrödinger system in 5D. (English) Zbl 07291359 J. Differ. Equations 275, 837-857 (2021). MSC: 35Q55 35P25 PDF BibTeX XML Cite \textit{F. Meng} and \textit{C. Xu}, J. Differ. Equations 275, 837--857 (2021; Zbl 07291359) Full Text: DOI
Anco, Stephen; He, Huijun; Qiao, Zhijun Local well-posedness and blow-up for a family of \(U(1)\)-invariant peakon equations. (English) Zbl 07291356 J. Differ. Equations 275, 757-789 (2021). MSC: 35G25 35B44 35Q55 PDF BibTeX XML Cite \textit{S. Anco} et al., J. Differ. Equations 275, 757--789 (2021; Zbl 07291356) Full Text: DOI
D. D. Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 07291353 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. D. D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 07291353) Full Text: DOI
Zhao, Zehua On scattering for the defocusing nonlinear Schrödinger equation on waveguide \(\mathbb{R}^m \times \mathbb{T}\) (when \(m = 2, 3)\). (English) Zbl 07291351 J. Differ. Equations 275, 598-637 (2021). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35Q55 35R01 58J50 47A40 78A50 78A45 78A60 PDF BibTeX XML Cite \textit{Z. Zhao}, J. Differ. Equations 275, 598--637 (2021; Zbl 07291351) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 07289443 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 07289443) Full Text: DOI
Bridges, Thomas J.; Kostianko, Anna; Zelik, Sergey Validity of the hyperbolic Whitham modulation equations in Sobolev spaces. (English) Zbl 07289121 J. Differ. Equations 274, 971-995 (2021). MSC: 35Q55 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{T. J. Bridges} et al., J. Differ. Equations 274, 971--995 (2021; Zbl 07289121) Full Text: DOI
Kishimoto, Nobu Unconditional local well-posedness for periodic NLS. (English) Zbl 07289115 J. Differ. Equations 274, 766-787 (2021). MSC: 35Q55 35A02 PDF BibTeX XML Cite \textit{N. Kishimoto}, J. Differ. Equations 274, 766--787 (2021; Zbl 07289115) Full Text: DOI
Adami, Riccardo; Fukuizumi, Reika; Holmer, Justin Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 07288849 Trans. Am. Math. Soc. 374, No. 1, 35-60 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35P25 78A60 PDF BibTeX XML Cite \textit{R. Adami} et al., Trans. Am. Math. Soc. 374, No. 1, 35--60 (2021; Zbl 07288849) Full Text: DOI
Chaichenets, Leonid; Pattakos, Nikolaos The global Cauchy problem for the NLS with higher order anisotropic dispersion. (English) Zbl 07286310 Glasg. Math. J. 63, No. 1, 45-53 (2021). MSC: 35Q55 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Glasg. Math. J. 63, No. 1, 45--53 (2021; Zbl 07286310) Full Text: DOI
Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle. (English) Zbl 07285693 J. Differ. Equations 272, 370-398 (2021). MSC: 35J10 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 272, 370--398 (2021; Zbl 07285693) Full Text: DOI
Kairzhan, Adilbek; Marangell, Robert; Pelinovsky, Dmitry E.; Xiao, Ke Liang Standing waves on a flower graph. (English) Zbl 07283597 J. Differ. Equations 271, 719-763 (2021). MSC: 35R02 35Q55 35B32 PDF BibTeX XML Cite \textit{A. Kairzhan} et al., J. Differ. Equations 271, 719--763 (2021; Zbl 07283597) Full Text: DOI
Li, Bang-Qing Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. (English) Zbl 1453.78003 Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021). MSC: 78A40 78A60 35Q51 35Q55 35C08 37K40 PDF BibTeX XML Cite \textit{B.-Q. Li}, Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021; Zbl 1453.78003) Full Text: DOI
Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 07281310 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 07281310) Full Text: DOI
Lin, Zeda; Xu, Xiaoxi; Chen, Zikang; Yan, Ziteng; Mai, Zhijie; Liu, Bin Two-dimensional vortex quantum droplets get thick. (English) Zbl 1452.35190 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021). MSC: 35Q55 82D50 82C10 PDF BibTeX XML Cite \textit{Z. Lin} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021; Zbl 1452.35190) Full Text: DOI
Sakaguchi, Hidetsugu; Malomed, Boris A. Symmetry breaking in a two-component system with repulsive interactions and linear coupling. (English) Zbl 1452.78024 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105496, 13 p. (2021). MSC: 78A60 78A50 82C10 82C20 82C26 81R40 35C08 35Q55 PDF BibTeX XML Cite \textit{H. Sakaguchi} and \textit{B. A. Malomed}, Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105496, 13 p. (2021; Zbl 1452.78024) Full Text: DOI
Bayındır, Cihan; Altintas, Azmi Ali; Ozaydin, Fatih Self-localized solitons of a \(q\)-deformed quantum system. (English) Zbl 1453.35160 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021). MSC: 35Q55 35Q41 35C08 35B35 35B44 65N35 65L06 60H40 81Q05 PDF BibTeX XML Cite \textit{C. Bayındır} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021; Zbl 1453.35160) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 07273579 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 07273579) Full Text: DOI
Rybalko, Yan; Shepelsky, Dmitry Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data. (English) Zbl 1451.35194 J. Differ. Equations 270, 694-724 (2021). MSC: 35Q55 35Q15 35Q41 35B40 37K10 PDF BibTeX XML Cite \textit{Y. Rybalko} and \textit{D. Shepelsky}, J. Differ. Equations 270, 694--724 (2021; Zbl 1451.35194) Full Text: DOI
Schratz, Katharina; Wang, Yan; Zhao, Xiaofei Low-regularity integrators for nonlinear Dirac equations. (English) Zbl 1450.35231 Math. Comput. 90, No. 327, 189-214 (2021). MSC: 35Q41 65M70 65N35 65M12 65M15 65M06 35B65 35S30 PDF BibTeX XML Cite \textit{K. Schratz} et al., Math. Comput. 90, No. 327, 189--214 (2021; Zbl 1450.35231) Full Text: DOI
Campos, Luccas Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 1452.35179 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021). MSC: 35Q55 35P25 35B45 PDF BibTeX XML Cite \textit{L. Campos}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021; Zbl 1452.35179) Full Text: DOI
Li, Xiaoxi; Wen, Jinming; Li, Dongfang Mass- and energy-conserving difference schemes for nonlinear fractional Schrödinger equations. (English) Zbl 1450.65081 Appl. Math. Lett. 111, Article ID 106686, 7 p. (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Lett. 111, Article ID 106686, 7 p. (2021; Zbl 1450.65081) Full Text: DOI
Wang, Li; Yan, Zhenya Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials. (English) Zbl 1451.35201 Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021). MSC: 35Q55 81Q05 35C08 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Z. Yan}, Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021; Zbl 1451.35201) Full Text: DOI
Wang, Xiu-Bin; Han, Bo Solitons in nonlinear systems with higher-order effects. (English) Zbl 1451.35202 Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021). MSC: 35Q55 78A60 35C08 65D18 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021; Zbl 1451.35202) Full Text: DOI
Gu, Guangze; Tang, Xianhua; Shen, Jianxia Multiple solutions for fractional Schrödinger-Poisson system with critical or supercritical nonlinearity. (English) Zbl 1448.35193 Appl. Math. Lett. 111, Article ID 106605, 7 p. (2021). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{G. Gu} et al., Appl. Math. Lett. 111, Article ID 106605, 7 p. (2021; Zbl 1448.35193) Full Text: DOI
Carles, Rémi Semi-classical analysis for nonlinear Schrödinger equations. WKB analysis, focal points, coherent states. 2nd edition. (English) Zbl 1448.35461 Hackensack, NJ: World Scientific (ISBN 978-981-12-2790-5/hbk; 978-981-12-2792-9/ebook). xiv, 352 p. (2021). MSC: 35Q55 35-02 81Q20 PDF BibTeX XML Cite \textit{R. Carles}, Semi-classical analysis for nonlinear Schrödinger equations. WKB analysis, focal points, coherent states. 2nd edition. Hackensack, NJ: World Scientific (2021; Zbl 1448.35461) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 07246880 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 07246880) Full Text: DOI
Binhua, Feng; Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. (English) Zbl 1447.35291 Adv. Nonlinear Anal. 10, 311-330 (2021). MSC: 35Q55 35J10 35B44 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{F. Binhua} et al., Adv. Nonlinear Anal. 10, 311--330 (2021; Zbl 1447.35291) Full Text: DOI
Jeng, B.-W.; Sriburadet, Sirilak Continuation and preconditioned imaginary time evolution methods for boson-fermion mixtures. (English) Zbl 1446.65186 J. Comput. Appl. Math. 381, Article ID 113019, 22 p. (2021). MSC: 65N35 35P30 35Q55 35B32 65M22 PDF BibTeX XML Cite \textit{B. W. Jeng} and \textit{S. Sriburadet}, J. Comput. Appl. Math. 381, Article ID 113019, 22 p. (2021; Zbl 1446.65186) Full Text: DOI
Marroquin, Daniel R. Recent progress on the study of the short wave-Long wave interactions system for aurora-type phenomena. (English) Zbl 07315505 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 554-561 (2020). MSC: 76W05 35Q55 76N17 76N10 35Q35 PDF BibTeX XML Cite \textit{D. R. Marroquin}, AIMS Ser. Appl. Math. 10, 554--561 (2020; Zbl 07315505)
Jagtap, Ameya D. Higher order scheme for sine-Gordon equation in nonlinear non-homogeneous media. (English) Zbl 07315494 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 465-474 (2020). MSC: 35Q55 78A48 35C08 39A12 33C45 PDF BibTeX XML Cite \textit{A. D. Jagtap}, AIMS Ser. Appl. Math. 10, 465--474 (2020; Zbl 07315494)
Barker, Blake; James, Jason Mireles; Morgan, Jalen Parameterization method for unstable manifolds of standing waves on the line. (English) Zbl 07315448 SIAM J. Appl. Dyn. Syst. 19, No. 3, 1758-1797 (2020). MSC: 74J30 34C45 35B99 35Q55 65M99 PDF BibTeX XML Cite \textit{B. Barker} et al., SIAM J. Appl. Dyn. Syst. 19, No. 3, 1758--1797 (2020; Zbl 07315448) Full Text: DOI
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Raza, Nauman; Javid, Ahmad Modulation instability and optical solitons of Radhakrishnan-Kundu-Lakshmanan model. (English) Zbl 07315414 J. Appl. Anal. Comput. 10, No. 4, 1375-1395 (2020). MSC: 78A60 35Q51 35Q55 PDF BibTeX XML Cite \textit{N. Raza} and \textit{A. Javid}, J. Appl. Anal. Comput. 10, No. 4, 1375--1395 (2020; Zbl 07315414) Full Text: DOI
Yang, Jin-Jie; Tian, Shou-Fu Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions. (English. Russian original) Zbl 07314346 Theor. Math. Phys. 205, No. 3, 1611-1637 (2020); translation from Teor. Mat. Fiz. 205, No. 3, 420-450 (2020). MSC: 35Q55 35Q15 35C08 81U20 35P25 PDF BibTeX XML Cite \textit{J.-J. Yang} and \textit{S.-F. Tian}, Theor. Math. Phys. 205, No. 3, 1611--1637 (2020; Zbl 07314346); translation from Teor. Mat. Fiz. 205, No. 3, 420--450 (2020) Full Text: DOI
El-Rashidy, K.; Seadawy, Aly R. Kinky breathers, multi-peak and multi-wave soliton solutions for the nonlinear propagation of Kundu-Eckhaus dynamical model. (English) Zbl 07312248 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050317, 10 p. (2020). MSC: 35Q55 35C08 35A22 PDF BibTeX XML Cite \textit{K. El-Rashidy} and \textit{A. R. Seadawy}, Int. J. Mod. Phys. B 34, No. 32, Article ID 2050317, 10 p. (2020; Zbl 07312248) Full Text: DOI
Cheemaa, N.; Chen, S.; Seadawy, A. R. Chiral soliton solutions of perturbed chiral nonlinear Schrödinger equation with its applications in mathematical physics. (English) Zbl 07312231 Int. J. Mod. Phys. B 34, No. 31, Article ID 2050301, 18 p. (2020). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{N. Cheemaa} et al., Int. J. Mod. Phys. B 34, No. 31, Article ID 2050301, 18 p. (2020; Zbl 07312231) Full Text: DOI
Younas, Usman; Seadawy, Aly R.; Younis, M.; Rizvi, S. T. R. Optical solitons and closed form solutions to the \((3+1)\)-dimensional resonant Schrödinger dynamical wave equation. (English) Zbl 07312220 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050291, 16 p. (2020). MSC: 35Q55 35C08 35C05 PDF BibTeX XML Cite \textit{U. Younas} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050291, 16 p. (2020; Zbl 07312220) Full Text: DOI
Ali, I.; Seadawy, A. R.; Rizvi, S. T. R.; Younis, M.; Ali, K. Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. (English) Zbl 07312212 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020; Zbl 07312212) Full Text: DOI
Masaki, Satoshi A survey on long range scattering for Schrödinger equation and Klein-Gordon equation with critical nonlinearity of non-polynomial type. (English) Zbl 07311532 RIMS Kôkyûroku Bessatsu B82, 103-135 (2020). MSC: 35Q55 35P25 81Q05 81U99 PDF BibTeX XML Cite \textit{S. Masaki}, RIMS Kôkyûroku Bessatsu B82, 103--135 (2020; Zbl 07311532) Full Text: Link
Capistrano-Filho, Roberto de A.; Cavalcante, Márcio; Gallego, Fernando A. Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. (English) Zbl 07307881 Pac. J. Math. 309, No. 1, 35-70 (2020). MSC: 35A07 35C15 35G15 35G30 35Q55 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} et al., Pac. J. Math. 309, No. 1, 35--70 (2020; Zbl 07307881) Full Text: DOI
Li, Anran; Wang, Peiting; Wei, Chongqing Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent. (English) Zbl 07307869 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020). MSC: 35J10 35J60 35J65 PDF BibTeX XML Cite \textit{A. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020; Zbl 07307869) Full Text: DOI
Shang, Tingting; Liang, Ruixi Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials. (English) Zbl 07307863 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{T. Shang} and \textit{R. Liang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020; Zbl 07307863) Full Text: DOI
Xiao, Lu; Wang, Jun Existence of positive solutions for a Schrödinger-Poisson system with critical growth. (English) Zbl 07304796 Appl. Anal. 99, No. 11, 1827-1864 (2020). MSC: 35J61 35J20 35Q55 49J40 PDF BibTeX XML Cite \textit{L. Xiao} and \textit{J. Wang}, Appl. Anal. 99, No. 11, 1827--1864 (2020; Zbl 07304796) Full Text: DOI
Dohnal, Tomáš; Rudolf, Daniel NLS approximation for wavepackets in periodic cubically nonlinear wave problems in \(\mathbb{R}^d\). (English) Zbl 07304781 Appl. Anal. 99, No. 10, 1685-1723 (2020). MSC: 35Q55 35Q60 35L71 41A60 35C08 65N25 65N06 65L06 65T50 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{D. Rudolf}, Appl. Anal. 99, No. 10, 1685--1723 (2020; Zbl 07304781) Full Text: DOI
Iqbal, Azhar; Abd Hamid, Nur Nadiah; Md. Ismail, Ahmad Izani Cubic B-spline Galerkin method for numerical solution of the coupled nonlinear Schrödinger equation. (English) Zbl 1453.65325 Math. Comput. Simul. 174, 32-44 (2020). MSC: 65M60 65M12 35Q55 PDF BibTeX XML Cite \textit{A. Iqbal} et al., Math. Comput. Simul. 174, 32--44 (2020; Zbl 1453.65325) Full Text: DOI
Miyaji, Tomoyuki; Ohnishi, Isamu; Tsutsumi, Yoshio Erratum to: “Stability of stationary solution for the Lugiato-Lefever equation”. (English) Zbl 07303960 Tohoku Math. J. (2) 72, No. 3, 487-492 (2020). MSC: 35Q55 35B35 PDF BibTeX XML Cite \textit{T. Miyaji} et al., Tohoku Math. J. (2) 72, No. 3, 487--492 (2020; Zbl 07303960) Full Text: DOI Euclid
Nguyen, Nghiem V.; Liu, Chuangye Some models for the interaction of long and short waves in dispersive media. I: Derivation. (English) Zbl 07302963 Water Waves 2, No. 2, 327-359 (2020). MSC: 35Q31 35Q55 35Q41 35Q53 35A15 35B35 76B15 PDF BibTeX XML Cite \textit{N. V. Nguyen} and \textit{C. Liu}, Water Waves 2, No. 2, 327--359 (2020; Zbl 07302963) Full Text: DOI
Wang, Tingchun; Wang, Jialing; Guo, Boling Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. (English) Zbl 1453.65366 J. Comput. Phys. 404, Article ID 109116, 21 p. (2020). MSC: 65M70 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Phys. 404, Article ID 109116, 21 p. (2020; Zbl 1453.65366) Full Text: DOI
Zhao, Peng; Fan, Engui Finite gap integration of the derivative nonlinear Schrödinger equation: a Riemann-Hilbert method. (English) Zbl 1453.35161 Physica D 402, Article ID 132213, 31 p. (2020). MSC: 35Q55 37K40 37K20 PDF BibTeX XML Cite \textit{P. Zhao} and \textit{E. Fan}, Physica D 402, Article ID 132213, 31 p. (2020; Zbl 1453.35161) Full Text: DOI
Bondarenko, Natalia P. Spectral data characterization for the Sturm-Liouville operator on the star-shaped graph. (English) Zbl 07299660 Anal. Math. Phys. 10, No. 4, Paper No. 83, 27 p. (2020). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34A55 34B07 34B09 34B45 34L40 47E05 PDF BibTeX XML Cite \textit{N. P. Bondarenko}, Anal. Math. Phys. 10, No. 4, Paper No. 83, 27 p. (2020; Zbl 07299660) Full Text: DOI
Zhai, Yunyun; Geng, Xianguo; Xue, Bo Riemann theta function solutions to the coupled long wave-short wave resonance equations. (English) Zbl 07299659 Anal. Math. Phys. 10, No. 4, Paper No. 82, 25 p. (2020). MSC: 35Q51 35Q55 37K10 37K20 35C20 14H42 PDF BibTeX XML Cite \textit{Y. Zhai} et al., Anal. Math. Phys. 10, No. 4, Paper No. 82, 25 p. (2020; Zbl 07299659) Full Text: DOI
Oh, Tadahiro; Okamoto, Mamoru On the stochastic nonlinear Schrödinger equations at critical regularities. (English) Zbl 1452.35192 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 869-894 (2020). MSC: 35Q55 PDF BibTeX XML Cite \textit{T. Oh} and \textit{M. Okamoto}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 869--894 (2020; Zbl 1452.35192) Full Text: DOI
Liu, Senli; Chen, Haibo; Feng, Zhaosheng Schrödinger-Poisson systems with singular potential and critical exponent. (English) Zbl 07298210 Electron. J. Differ. Equ. 2020, Paper No. 130, 17 p. (2020). MSC: 35J20 35J75 35Q55 PDF BibTeX XML Cite \textit{S. Liu} et al., Electron. J. Differ. Equ. 2020, Paper No. 130, 17 p. (2020; Zbl 07298210) Full Text: Link
Kikuchi, Hiroaki; Watanabe, Minami Existence of a ground state and blowup problem for a class of nonlinear Schrödinger equations involving mass and energy critical exponents. (English) Zbl 07296658 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 56, 31 p. (2020). MSC: 35J20 35Q55 PDF BibTeX XML Cite \textit{H. Kikuchi} and \textit{M. Watanabe}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 56, 31 p. (2020; Zbl 07296658) Full Text: DOI
Bhimani, Divyang G.; Carles, Rémi Norm inflation for nonlinear Schrödinger equations in Fourier-Lebesgue and modulation spaces of negative regularity. (English) Zbl 07296357 J. Fourier Anal. Appl. 26, No. 6, Paper No. 78, 33 p. (2020). MSC: 35Q55 35Q41 42B35 35A01 35B65 35R25 78A05 PDF BibTeX XML Cite \textit{D. G. Bhimani} and \textit{R. Carles}, J. Fourier Anal. Appl. 26, No. 6, Paper No. 78, 33 p. (2020; Zbl 07296357) Full Text: DOI
Tao, Zhaoling; Chen, Xiwang Soliton solutions of fiber nonlinear Schrödinger equation with variable coefficients. (Chinese. English summary) Zbl 07296107 Numer. Math., Nanjing 42, No. 2, 97-105 (2020). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{Z. Tao} and \textit{X. Chen}, Numer. Math., Nanjing 42, No. 2, 97--105 (2020; Zbl 07296107)
Sun, Xia; Teng, Kaimin Existence of normalized solutions for fractional Schrödinger-Poisson system. (Chinese. English summary) Zbl 07295980 Math. Appl. 33, No. 3, 666-680 (2020). MSC: 35Q55 35R11 PDF BibTeX XML Cite \textit{X. Sun} and \textit{K. Teng}, Math. Appl. 33, No. 3, 666--680 (2020; Zbl 07295980)