Cakir, Musa; Gunes, Baransel; Duru, Hakki A novel computational method for solving nonlinear Volterra integro-differential equation. (English) Zbl 1474.65492 Kuwait J. Sci. 48, No. 1, 1-9 (2021). MSC: 65R20 45D05 45K05 45G10 PDF BibTeX XML Cite \textit{M. Cakir} et al., Kuwait J. Sci. 48, No. 1, 1--9 (2021; Zbl 1474.65492) Full Text: DOI OpenURL
Saito, Kaori Global attractivity for a Volterra difference equation. (English) Zbl 1477.39005 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 411-421 (2020). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A30 PDF BibTeX XML Cite \textit{K. Saito}, Springer Proc. Math. Stat. 341, 411--421 (2020; Zbl 1477.39005) Full Text: DOI OpenURL
Amiraliyev, Gabil M.; Yapman, Ömer; Kudu, Mustafa A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. (English) Zbl 1488.65735 Hacet. J. Math. Stat. 48, No. 5, 1417-1429 (2019). MSC: 65R20 45J05 45G10 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} et al., Hacet. J. Math. Stat. 48, No. 5, 1417--1429 (2019; Zbl 1488.65735) Full Text: Link OpenURL
Lyu, Pin; Vong, Seakweng A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1428.35461 J. Sci. Comput. 80, No. 3, 1607-1628 (2019). MSC: 35Q53 65D05 45D05 65R20 65M06 65M12 35B65 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, J. Sci. Comput. 80, No. 3, 1607--1628 (2019; Zbl 1428.35461) Full Text: DOI OpenURL
Płociniczak, Łukasz Numerical method for the time-fractional porous medium equation. (English) Zbl 1409.76091 SIAM J. Numer. Anal. 57, No. 2, 638-656 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 76M20 76S05 35Q35 65R20 35R11 45G10 PDF BibTeX XML Cite \textit{Ł. Płociniczak}, SIAM J. Numer. Anal. 57, No. 2, 638--656 (2019; Zbl 1409.76091) Full Text: DOI arXiv OpenURL
Yankson, E. Periodicity in multiple delay Volterra difference equations of neutral type. (English) Zbl 1383.39007 Electron. J. Math. Anal. Appl. 6, No. 2, 110-118 (2018). MSC: 39A10 39A12 45D05 45G10 39A23 47H09 PDF BibTeX XML Cite \textit{E. Yankson}, Electron. J. Math. Anal. Appl. 6, No. 2, 110--118 (2018; Zbl 1383.39007) Full Text: Link OpenURL
Wan, Andy T. S.; Bihlo, Alexander; Nave, Jean-Christophe Conservative methods for dynamical systems. (English) Zbl 1375.65104 SIAM J. Numer. Anal. 55, No. 5, 2255-2285 (2017). MSC: 65L12 34A34 65L05 65P10 37M15 65L20 70F05 PDF BibTeX XML Cite \textit{A. T. S. Wan} et al., SIAM J. Numer. Anal. 55, No. 5, 2255--2285 (2017; Zbl 1375.65104) Full Text: DOI arXiv OpenURL
Deng, Jingwei; Zhao, Lijing; Wu, Yujiang Fast predictor-corrector approach for the tempered fractional differential equations. (English) Zbl 1364.65142 Numer. Algorithms 74, No. 3, 717-754 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65L06 65L12 65L70 65L05 34A08 34A34 PDF BibTeX XML Cite \textit{J. Deng} et al., Numer. Algorithms 74, No. 3, 717--754 (2017; Zbl 1364.65142) Full Text: DOI arXiv OpenURL
Migda, Janusz; Migda, Małgorzata Asymptotic behavior of solutions of discrete Volterra equations. (English) Zbl 1359.39004 Opusc. Math. 36, No. 2, 265-278 (2016). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 39A12 39A10 39A22 45D05 45G10 39A23 PDF BibTeX XML Cite \textit{J. Migda} and \textit{M. Migda}, Opusc. Math. 36, No. 2, 265--278 (2016; Zbl 1359.39004) Full Text: DOI OpenURL
Turkyilmazoglu, Mustafa A convergence condition of the homotopy analysis method. (English) Zbl 1301.65115 Liao, Shijun (ed.), Advances in the homotopy analysis method. Hackensack, NJ: World Scientific (ISBN 978-981-4551-24-3/hbk; 978-981-4551-26-7/ebook). 181-257 (2014). MSC: 65M99 65H05 45G10 45J05 65L03 65L10 34B15 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, in: Advances in the homotopy analysis method. Hackensack, NJ: World Scientific. 181--257 (2014; Zbl 1301.65115) Full Text: arXiv OpenURL
Cuevas, Claudio; Choquehuanca, Mario; Soto, Herme Asymptotic analysis for Volterra difference equations. (English) Zbl 1304.39013 Asymptotic Anal. 88, No. 3, 125-164 (2014). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A22 45D05 39A12 39A10 PDF BibTeX XML Cite \textit{C. Cuevas} et al., Asymptotic Anal. 88, No. 3, 125--164 (2014; Zbl 1304.39013) Full Text: DOI OpenURL
Zheng, Kelong; Wang, Hong; Guo, Chunxiang On nonlinear discrete weakly singular inequalities and applications to Volterra-type difference equations. (English) Zbl 1375.34023 Adv. Difference Equ. 2013, Paper No. 239, 13 p. (2013). MSC: 34A34 39A12 45J05 PDF BibTeX XML Cite \textit{K. Zheng} et al., Adv. Difference Equ. 2013, Paper No. 239, 13 p. (2013; Zbl 1375.34023) Full Text: DOI OpenURL
Agarwal, Ravi P.; Cuevas, Claudio; Dantas, Filipe Almost automorphy profile of solutions for difference equations of Volterra type. (English) Zbl 1302.39008 J. Appl. Math. Comput. 42, No. 1-2, 1-18 (2013). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A12 39A10 45D05 43A60 39A60 45G10 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., J. Appl. Math. Comput. 42, No. 1--2, 1--18 (2013; Zbl 1302.39008) Full Text: DOI OpenURL
Sun, Jian-Qing; Chang, Xiang-Ke; He, Yi; Hu, Xing-Biao An extended multistep Shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. (English) Zbl 1287.65059 Numer. Math. 125, No. 4, 785-809 (2013). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 65L05 65B05 65L12 34A34 92D25 65L20 PDF BibTeX XML Cite \textit{J.-Q. Sun} et al., Numer. Math. 125, No. 4, 785--809 (2013; Zbl 1287.65059) Full Text: DOI OpenURL
Adivar, Murat; Koyuncuoğlu, H. Can; Raffoul, Youssef N. Periodic and asymptotically periodic solutions of systems of nonlinear difference equations with infinite delay. (English) Zbl 1278.39020 J. Difference Equ. Appl. 19, No. 12, 1927-1939 (2013). MSC: 39A23 39A24 34A34 34A12 PDF BibTeX XML Cite \textit{M. Adivar} et al., J. Difference Equ. Appl. 19, No. 12, 1927--1939 (2013; Zbl 1278.39020) Full Text: DOI arXiv OpenURL
Dimitrova, Zlatinka On traveling waves in lattices: the case of Riccati lattices. (English) Zbl 1330.35062 J. Theor. Appl. Mech., Sofia 42, No. 3, 3-22 (2012). MSC: 35C07 35G20 PDF BibTeX XML Cite \textit{Z. Dimitrova}, J. Theor. Appl. Mech., Sofia 42, No. 3, 3--22 (2012; Zbl 1330.35062) Full Text: arXiv OpenURL
Bradul, N. V. Solution of the optimal control problem with incomplete data for the stochastic difference Volterra equation. (Russian. English summary) Zbl 1289.93153 Prykl. Stat., Aktuarna Finans. Mat. 2012, No. 2, 5-12 (2012). MSC: 93E20 93C41 93C10 PDF BibTeX XML Cite \textit{N. V. Bradul}, Prykl. Stat., Aktuarna Finans. Mat. 2012, No. 2, 5--12 (2012; Zbl 1289.93153) OpenURL
Győri, István; Hartung, Ferenc Asymptotic behaviour of nonlinear difference equations. (English) Zbl 1277.39025 J. Difference Equ. Appl. 18, No. 9, 1485-1509 (2012). Reviewer: Dan-Mircea Borş (Iaşi) MSC: 39A22 92D25 39A10 PDF BibTeX XML Cite \textit{I. Győri} and \textit{F. Hartung}, J. Difference Equ. Appl. 18, No. 9, 1485--1509 (2012; Zbl 1277.39025) Full Text: DOI OpenURL
Ayhan, Burcu; Bekir, Ahmet The \(\left(\frac{G^\prime}{G}\right)\)-expansion method for the nonlinear lattice equations. (English) Zbl 1254.39003 Commun. Nonlinear Sci. Numer. Simul. 17, No. 9, 3490-3498 (2012). MSC: 39A12 39A10 35Q53 39A23 PDF BibTeX XML Cite \textit{B. Ayhan} and \textit{A. Bekir}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 9, 3490--3498 (2012; Zbl 1254.39003) Full Text: DOI OpenURL
Chen, Hao; Zhang, Chengjian Block boundary value methods for solving Volterra integral and integro-differential equations. (English) Zbl 1241.65119 J. Comput. Appl. Math. 236, No. 11, 2822-2837 (2012). Reviewer: Ivan Secrieru (Chişinău) MSC: 65R20 45G10 45J05 45D05 PDF BibTeX XML Cite \textit{H. Chen} and \textit{C. Zhang}, J. Comput. Appl. Math. 236, No. 11, 2822--2837 (2012; Zbl 1241.65119) Full Text: DOI OpenURL
Moaddy, K.; Hashim, I.; Alomari, A. K.; Momani, S. A new hybrid non-standard finite difference-Adomian scheme for solution of nonlinear equations. (English) Zbl 1229.65114 Sains Malays. 40, No. 5, 515-519 (2011). MSC: 65L05 65L12 65H10 34A34 92D25 PDF BibTeX XML Cite \textit{K. Moaddy} et al., Sains Malays. 40, No. 5, 515--519 (2011; Zbl 1229.65114) OpenURL
Wu, Yu; Li, Xiaopei; Deng, Shengfu Nonlinear delay discrete inequalities and their applications to Volterra type difference equations. (English) Zbl 1187.39018 Adv. Difference Equ. 2010, Article ID 795145, 14 p. (2010). MSC: 39A22 26D20 39A10 PDF BibTeX XML Cite \textit{Y. Wu} et al., Adv. Difference Equ. 2010, Article ID 795145, 14 p. (2010; Zbl 1187.39018) Full Text: DOI EuDML OpenURL
Levi, D.; Yamilov, R. I. On a nonlinear integrable difference equation on the square. (English) Zbl 1240.39020 Ufim. Mat. Zh. 1, No. 2, 101-105 (2009). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 39A14 37K35 37K10 PDF BibTeX XML Cite \textit{D. Levi} and \textit{R. I. Yamilov}, Ufim. Mat. Zh. 1, No. 2, 101--105 (2009; Zbl 1240.39020) Full Text: MNR OpenURL
Hamaya, Yoshihiro On the existence of almost periodic solutions to a nonlinear Volterra difference equation. (English) Zbl 1179.39019 Elaydi, Saber (ed.) et al., Advances in discrete dynamical systems. Proceedings of the 11th international conference on difference equations and applications (ICDEA 06), Kyoto, Japan, July 24–28, 2006. Tokyo: Mathematical Society of Japan (ISBN 978-4-931469-49-5/hbk). Advanced Studies in Pure Mathematics 53, 59-66 (2009). MSC: 39A24 39A10 39A12 34K14 PDF BibTeX XML Cite \textit{Y. Hamaya}, Adv. Stud. Pure Math. 53, 59--66 (2009; Zbl 1179.39019) OpenURL
Ji, Chunyan; Jiang, Daqing; Shi, Ningzhong Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. (English) Zbl 1190.34064 J. Math. Anal. Appl. 359, No. 2, 482-498 (2009). Reviewer: Henri Schurz (Carbondale) MSC: 34F05 60H30 34C60 34D05 37H10 60H10 92D25 PDF BibTeX XML Cite \textit{C. Ji} et al., J. Math. Anal. Appl. 359, No. 2, 482--498 (2009; Zbl 1190.34064) Full Text: DOI OpenURL
Pachpatte, B. G. On a mixed sum-difference equation of Volterra-Fredholm type. (English) Zbl 1186.39006 Sarajevo J. Math. 5(17), No. 1, 55-62 (2009). Reviewer: M. Serban (Cluj-Napoca) MSC: 39A12 39A22 26D15 45G10 PDF BibTeX XML Cite \textit{B. G. Pachpatte}, Sarajevo J. Math. 5(17), No. 1, 55--62 (2009; Zbl 1186.39006) OpenURL
Muroya, Yoshiaki; Ishiwata, Emiko Stability for a class of difference equations. (English) Zbl 1167.39006 J. Comput. Appl. Math. 228, No. 2, 561-570 (2009). Reviewer: Shangjiang Guo (Hunan) MSC: 39A11 39A10 39A12 92D25 PDF BibTeX XML Cite \textit{Y. Muroya} and \textit{E. Ishiwata}, J. Comput. Appl. Math. 228, No. 2, 561--570 (2009; Zbl 1167.39006) Full Text: DOI OpenURL
Ramos, J. I. Exponential techniques and implicit Runge-Kutta methods for singularly-perturbed Volterra integro-differential equations. (English) Zbl 1163.65100 Neural Parallel Sci. Comput. 16, No. 3, 387-404 (2008). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{J. I. Ramos}, Neural Parallel Sci. Comput. 16, No. 3, 387--404 (2008; Zbl 1163.65100) OpenURL
Squassina, Marco; Zuccher, Simone Numerical computations for the spatial segregation limit of some 2D competition-diffusion systems. (English) Zbl 1175.35077 Adv. Math. Sci. Appl. 18, No. 1, 83-04 (2008). Reviewer: Pavel Burda (Praha) MSC: 35K57 35B40 35B35 92D25 35K60 65M06 PDF BibTeX XML Cite \textit{M. Squassina} and \textit{S. Zuccher}, Adv. Math. Sci. Appl. 18, No. 1, 83--04 (2008; Zbl 1175.35077) OpenURL
Messina, E.; Muroya, Y.; Russo, E.; Vecchio, A. Asymptotic behavior of solutions for nonlinear Volterra discrete equations. (English) Zbl 1155.39006 Discrete Dyn. Nat. Soc. 2008, Article ID 867623, 18 p. (2008). Reviewer: Stefan Hilger (Eichstätt) MSC: 39A11 39A12 45G10 65R20 PDF BibTeX XML Cite \textit{E. Messina} et al., Discrete Dyn. Nat. Soc. 2008, Article ID 867623, 18 p. (2008; Zbl 1155.39006) Full Text: DOI EuDML OpenURL
Kamont, Zdzislaw Stability of nonlinear difference functional equations on unbounded domains. (English) Zbl 1199.65227 Mat. Visn. Nauk. Tov. Im. Shevchenka 4, 329-352 (2007). MSC: 65L03 65L20 PDF BibTeX XML Cite \textit{Z. Kamont}, Mat. Visn. Nauk. Tov. Im. Shevchenka 4, 329--352 (2007; Zbl 1199.65227) OpenURL
Krivine, Hubert; Lesne, Annick; Treiner, Jacques Discrete-time and continuous-time modelling: some bridges and gaps. (English) Zbl 1116.65096 Math. Struct. Comput. Sci. 17, No. 2, 261-276 (2007). MSC: 65L12 39A12 34A34 92D25 65P10 37M15 65L05 70F15 PDF BibTeX XML Cite \textit{H. Krivine} et al., Math. Struct. Comput. Sci. 17, No. 2, 261--276 (2007; Zbl 1116.65096) Full Text: DOI OpenURL
Luca-Tudorache, Rodica Nonlinear evolution problems in Hilbert spaces. (Probleme neliniare de evoluţie în spaţii Hilbert.) (Romanian) Zbl 1135.35001 Iaşi: Editura Performantica (ISBN 978-973-730-359-2/pbk). 148 p. (2007). Reviewer: Georgeta Teodoru (Iaşi) MSC: 35-02 35L50 35L55 35D05 34B10 34G20 39A10 39A11 45K05 47J35 47H05 47N20 PDF BibTeX XML Cite \textit{R. Luca-Tudorache}, Probleme neliniare de evoluţie în spaţii Hilbert (Romanian). Iaşi: Editura Performantica (2007; Zbl 1135.35001) OpenURL
Akin-Bohner, Elvan; Raffoul, Youssef N. Boundedness in functional dynamic equations on time scales. (English) Zbl 1139.39005 Adv. Difference Equ. 2006, Article ID 79689, 18 p. (2006). MSC: 39A11 39A12 34A34 45J05 PDF BibTeX XML Cite \textit{E. Akin-Bohner} and \textit{Y. N. Raffoul}, Adv. Difference Equ. 2006, Article ID 79689, 18 p. (2006; Zbl 1139.39005) Full Text: DOI EuDML OpenURL
Hamaya, Yoshihiro; Shinohara, Yoichi On the remark to Elaydi’s paper. (English) Zbl 1085.39501 Far East J. Dyn. Syst. 7, No. 2, 161-173 (2005). MSC: 39A11 39A10 PDF BibTeX XML Cite \textit{Y. Hamaya} and \textit{Y. Shinohara}, Far East J. Dyn. Syst. 7, No. 2, 161--173 (2005; Zbl 1085.39501) OpenURL
Shaikhet, Leonid General method of Lyapunov functionals construction in stability investigations of nonlinear stochastic difference equations with continuous time. (English) Zbl 1083.39010 Stoch. Dyn. 5, No. 2, 175-188 (2005). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 39A11 37H10 60H25 PDF BibTeX XML Cite \textit{L. Shaikhet}, Stoch. Dyn. 5, No. 2, 175--188 (2005; Zbl 1083.39010) Full Text: DOI OpenURL
González, Cristóbal; Jiménez-Melado, Antonio; Lorente, María Existence and estimate of solutions of some nonlinear Volterra difference equations in Hilbert spaces. (English) Zbl 1076.39006 J. Math. Anal. Appl. 305, No. 1, 63-71 (2005). Reviewer: B. M. Agrawal (Gwalior) MSC: 39A11 47J05 PDF BibTeX XML Cite \textit{C. González} et al., J. Math. Anal. Appl. 305, No. 1, 63--71 (2005; Zbl 1076.39006) Full Text: DOI OpenURL
Kabanikhin, S. I.; Satybaev, A. D.; Shishlenin, M. A. Direct methods of solving multidimensional inverse hyperbolic problems. (English) Zbl 1069.65105 Inverse and Ill-Posed Problems Series. Utrecht: VSP (ISBN 90-6764-416-1/hbk). viii, 179 p. (2005). Reviewer: Dinh Nho Hao (Brussels) MSC: 65M32 65-02 35L15 35L70 35R30 65M06 65M12 PDF BibTeX XML Cite \textit{S. I. Kabanikhin} et al., Direct methods of solving multidimensional inverse hyperbolic problems. Utrecht: VSP (2005; Zbl 1069.65105) OpenURL
Bibik, Yu. V.; Popov, S. P.; Sarancha, D. A. Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka-Volterra system with diffusion. (Russian, English) Zbl 1130.65085 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 5, 904-916 (2004); translation in Comput. Math. Math. Phys. 44, No. 5, 856-867 (2004). Reviewer: Elena Glukhova (Moskva) MSC: 65M06 35Q51 92D25 35K50 35K55 PDF BibTeX XML Cite \textit{Yu. V. Bibik} et al., Zh. Vychisl. Mat. Mat. Fiz. 44, No. 5, 904--916 (2004; Zbl 1130.65085); translation in Comput. Math. Math. Phys. 44, No. 5, 856--867 (2004) OpenURL
Gil, Michael I.; Medina, Rigoberto Nonlinear Volterra difference equations in space \(l^p\). (English) Zbl 1071.39006 Discrete Dyn. Nat. Soc. 2004, No. 2, 301-306 (2004). Reviewer: Fozi Dannan (Damascus) MSC: 39A11 PDF BibTeX XML Cite \textit{M. I. Gil} and \textit{R. Medina}, Discrete Dyn. Nat. Soc. 2004, No. 2, 301--306 (2004; Zbl 1071.39006) Full Text: DOI EuDML OpenURL
Song, Yihong; Baker, Christopher T. H. Qualitative behaviour of numerical approximations to Volterra integro-differential equations. (English) Zbl 1059.65129 J. Comput. Appl. Math. 172, No. 1, 101-115 (2004). Reviewer: Neville Ford (Chester) MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{Y. Song} and \textit{C. T. H. Baker}, J. Comput. Appl. Math. 172, No. 1, 101--115 (2004; Zbl 1059.65129) Full Text: DOI OpenURL
Morchalo, Jaroslaw On some difference equations. (English) Zbl 1063.39008 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 48, No. 2, 379-390 (2002). MSC: 39A11 PDF BibTeX XML Cite \textit{J. Morchalo}, An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 48, No. 2, 379--390 (2002; Zbl 1063.39008) OpenURL
Elaydi, S. Asymptotics for linear difference equations: II: Applications. (English) Zbl 1063.39004 Elaydi, S. (ed.) et al., New trends in difference equations. Proceedings of the 5th international conference on difference equations and applications, Temuco, Chile, January 2–7, 2000. London: Taylor & Francis (ISBN 0-415-28389-2/hbk). 111-133 (2002). MSC: 39A11 65R20 45G10 PDF BibTeX XML Cite \textit{S. Elaydi}, in: New trends in difference equations. Proceedings of the 5th international conference on difference equations and applications, Temuco, Chile, January 2--7, 2000. London: Taylor \& Francis. 111--133 (2002; Zbl 1063.39004) OpenURL
Kolmanovskii, V. B.; Castellanos-Velasco, E.; Torres-Muñoz, J. Analysis in average for Volterra equations under unknown perturbations. (English) Zbl 1046.39006 Dyn. Syst. Appl. 11, No. 4, 557-584 (2002). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A12 39A10 PDF BibTeX XML Cite \textit{V. B. Kolmanovskii} et al., Dyn. Syst. Appl. 11, No. 4, 557--584 (2002; Zbl 1046.39006) OpenURL
Kolmanovskii, V. B.; Richard, J.-P. Estimation of the solutions of Volterra difference equations. (English) Zbl 1018.39003 J. Math. Anal. Appl. 273, No. 2, 618-626 (2002). Reviewer: Bolis Basit (Clayton) MSC: 39A10 PDF BibTeX XML Cite \textit{V. B. Kolmanovskii} and \textit{J. P. Richard}, J. Math. Anal. Appl. 273, No. 2, 618--626 (2002; Zbl 1018.39003) Full Text: DOI OpenURL
Medina, Rigoberto Asymptotic behavior of solutions of Volterra difference equations with finite linear part. (English) Zbl 0994.39006 Nonlinear Stud. 8, No. 1, 87-95 (2001). Reviewer: Lothar Berg (Rostock) MSC: 39A11 PDF BibTeX XML Cite \textit{R. Medina}, Nonlinear Stud. 8, No. 1, 87--95 (2001; Zbl 0994.39006) OpenURL
Rodkina, Alexandra; Mao, Xuerong On boundedness and stability of solutions of nonlinear difference equation with nonmartingale type noise. (English) Zbl 1016.39004 J. Difference Equ. Appl. 7, No. 4, 529-550 (2001). MSC: 39A11 91B30 60H25 PDF BibTeX XML Cite \textit{A. Rodkina} and \textit{X. Mao}, J. Difference Equ. Appl. 7, No. 4, 529--550 (2001; Zbl 1016.39004) Full Text: DOI OpenURL
Kolmanovskij, V. B.; Myshkis, A. D. Estimate of solutions of some Volterra equation with discrete time. (Russian) Zbl 1030.39002 Dokl. Akad. Nauk, Ross. Akad. Nauk 375, No. 6, 747-750 (2000). Reviewer: Andrei Zemskov (Moskva) MSC: 39A10 PDF BibTeX XML Cite \textit{V. B. Kolmanovskij} and \textit{A. D. Myshkis}, Dokl. Akad. Nauk, Ross. Akad. Nauk 375, No. 6, 747--750 (2000; Zbl 1030.39002) OpenURL
Ackleh, Azmy S.; Aizicovici, Sergiu; Reich, Simeon Parameter identification in nonlocal nonlinear evolution equations. (English) Zbl 0969.65050 Numer. Funct. Anal. Optimization 21, No. 5-6, 553-570 (2000). Reviewer: Manuel Calvo (Zaragoza) MSC: 65J22 65J15 65R32 34G20 45Q05 34A55 65L05 65L12 PDF BibTeX XML Cite \textit{A. S. Ackleh} et al., Numer. Funct. Anal. Optim. 21, No. 5--6, 553--570 (2000; Zbl 0969.65050) Full Text: DOI OpenURL
Nestell, Merlynd K.; Ghandehari, Mostafa A quadratic Volterra integral equation and its solution for various kernels. (English) Zbl 0957.45007 Corduneanu, C. (ed.) et al., Volterra equations and applications. Proceedings of the Volterra centennial symposium, University of Texas, Arlington, TX, USA, May 23-25, 1996. London: Gordon and Breach Science Publishers. Stab. Control Theory Methods Appl. 10, 357-365 (2000). MSC: 45G10 PDF BibTeX XML Cite \textit{M. K. Nestell} and \textit{M. Ghandehari}, Stab. Control Theory Methods Appl. 10, 357--365 (2000; Zbl 0957.45007) OpenURL
Kolmanovskii, V. B.; Myshkis, A. D.; Richard, J.-P. Estimate of solutions for some Volterra difference equations. (English) Zbl 0959.39004 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40, No. 1-8, 345-363 (2000). Reviewer: B.M.Agrawal (Gwalior) MSC: 39A11 PDF BibTeX XML Cite \textit{V. B. Kolmanovskii} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40, No. 1--8, 345--363 (2000; Zbl 0959.39004) Full Text: DOI OpenURL
Crisci, M. R.; Kolmanovskii, V. B.; Russo, E.; Vecchio, A. Stability of discrete Volterra equations of Hammerstein type. (English) Zbl 0951.65148 J. Difference Equ. Appl. 6, No. 2, 127-145 (2000). MSC: 65R20 39A11 45G10 PDF BibTeX XML Cite \textit{M. R. Crisci} et al., J. Difference Equ. Appl. 6, No. 2, 127--145 (2000; Zbl 0951.65148) Full Text: DOI OpenURL
Medina, Rigoberto Asymptotic equivalence of Volterra difference systems. (English) Zbl 0953.39003 Int. J. Differ. Equ. Appl. 1, No. 1, 53-64 (2000). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A11 PDF BibTeX XML Cite \textit{R. Medina}, Int. J. Differ. Equ. Appl. 1, No. 1, 53--64 (2000; Zbl 0953.39003) OpenURL
Elaydi, Saber N. An introduction to difference equations. 2nd ed. (English) Zbl 0930.39001 Undergraduate Texts in Mathematics. New York, NY: Springer. xviii, 427 p. (1999). Reviewer: Lothar Berg (Rostock) MSC: 39Axx 93-01 37Jxx 00A06 39-04 39-01 PDF BibTeX XML Cite \textit{S. N. Elaydi}, An introduction to difference equations. 2nd ed. New York, NY: Springer (1999; Zbl 0930.39001) OpenURL
Rodionov, A. M. On sufficient conditions of absolute stability of discrete equations. (English. Russian original) Zbl 1052.93508 Autom. Remote Control 59, No. 12, Part 2, 1801-1804 (1999); translation from Avtom. Telemekh. 1998, No. 12, 127-131 (1998). MSC: 93D05 39A11 34D20 PDF BibTeX XML Cite \textit{A. M. Rodionov}, Autom. Remote Control 59, No. 12, Part 2, 1801--1804 (1998; Zbl 1052.93508); translation from Avtom. Telemekh. 1998, No. 12, 127--131 (1998) OpenURL
Garey, L. E.; Shaw, R. E. Efficient algorithms for solving nonlinear Volterra integro-differential equations with two point boundary conditions. (English) Zbl 0957.65121 Int. J. Math. Math. Sci. 21, No. 4, 755-760 (1998). MSC: 65R20 65F05 65H10 45G10 45J05 PDF BibTeX XML Cite \textit{L. E. Garey} and \textit{R. E. Shaw}, Int. J. Math. Math. Sci. 21, No. 4, 755--760 (1998; Zbl 0957.65121) Full Text: DOI EuDML OpenURL
Yang, Enhao On some nonlinear integral and discrete inequalities related to Ou-Iang’s inequality. (English) Zbl 0913.26007 Acta Math. Sin., New Ser. 14, No. 3, 353-360 (1998). Reviewer: B.G.Pachpatte (Aurangabad) MSC: 26D10 39A10 39A12 45D05 PDF BibTeX XML Cite \textit{E. Yang}, Acta Math. Sin., New Ser. 14, No. 3, 353--360 (1998; Zbl 0913.26007) Full Text: DOI OpenURL
Kupershmidt, B. A. Infinitely-precise space-time discretizations of the equation \(u_ t+uu_ x=0\). (English) Zbl 0861.65075 Fokas, A. S. (ed.) et al., Algebraic aspects of integrable systems: in memory of Irene Dorfman. Boston, MA: Birkhäuser. Prog. Nonlinear Differ. Equ. Appl. 26, 205-216 (1997). Reviewer: S.Jiang (Bonn) MSC: 65M06 35Q53 35L60 PDF BibTeX XML Cite \textit{B. A. Kupershmidt}, Prog. Nonlinear Differ. Equ. Appl. 26, 205--216 (1997; Zbl 0861.65075) OpenURL
Shaw, R. E.; Garey, L. E. A fast method for solving second order boundary value Volterra integro-differential equations. (English) Zbl 0897.65089 Int. J. Comput. Math. 65, No. 1-2, 121-129 (1997). Reviewer: E.Minchev (Sofia) MSC: 65R20 45G10 45J05 PDF BibTeX XML Cite \textit{R. E. Shaw} and \textit{L. E. Garey}, Int. J. Comput. Math. 65, No. 1--2, 121--129 (1997; Zbl 0897.65089) Full Text: DOI OpenURL
Elaydi, Saber N. An introduction to difference equations. (English) Zbl 0840.39002 Undergraduate Texts in Mathematics. New York, NY: Springer-Verlag. xiii, 389 p. (1996). Reviewer: L.Berg (Rostock) MSC: 39Axx 93-01 00A06 39-01 PDF BibTeX XML Cite \textit{S. N. Elaydi}, An introduction to difference equations. New York, NY: Springer (1996; Zbl 0840.39002) OpenURL
Aleksandrov, V. M.; Shmatkova, A. A. Nonlinear unsteady creep of an ice sheet on a hydraulic foundation. (English. Russian original) Zbl 0921.73152 J. Appl. Math. Mech. 60, No. 4, 677-681 (1996); translation from Prikl. Mat. Mekh. 60, No. 4, 681-686 (1996). MSC: 74Hxx 86A40 86A05 PDF BibTeX XML Cite \textit{V. M. Aleksandrov} and \textit{A. A. Shmatkova}, J. Appl. Math. Mech. 60, No. 4, 677--681 (1996; Zbl 0921.73152); translation from Prikl. Mat. Mekh. 60, No. 4, 681--686 (1996) Full Text: DOI OpenURL
Hu, Shigeng; Huang, Zhenghai Some nonlinear integral inequalities. (Chinese. English summary) Zbl 0871.26013 J. Math. Res. Expo. 15, No. 4, 525-532 (1995). Reviewer: Yang En-Hao (Guangzhou) MSC: 26D15 45D05 PDF BibTeX XML Cite \textit{S. Hu} and \textit{Z. Huang}, J. Math. Res. Expo. 15, No. 4, 525--532 (1995; Zbl 0871.26013) OpenURL
Gorenflo, Rudolf; Kilbas, Anatoly A. Asymptotic solution of a nonlinear Abel-Volterra integral equation of second kind. (English) Zbl 0838.45004 J. Fractional Calc. 8, 103-117 (1995). Reviewer: I.Schragin (Tübingen) MSC: 45G05 45M05 PDF BibTeX XML Cite \textit{R. Gorenflo} and \textit{A. A. Kilbas}, J. Fractional Calc. 8, 103--117 (1995; Zbl 0838.45004) OpenURL
Bressloff, Paul C. Dynamics of a compartmental model integrate-and-fire neuron with somatic potential reset. (English) Zbl 0885.65155 Physica D 80, No. 4, 399-412 (1995). MSC: 65R20 92B20 45G10 PDF BibTeX XML Cite \textit{P. C. Bressloff}, Physica D 80, No. 4, 399--412 (1995; Zbl 0885.65155) Full Text: DOI OpenURL
Villasenor, R. A comparative study between an integral equation approach and a finite difference formulation for heat diffusion with nonlinear boundary conditions. (English) Zbl 0806.65102 Appl. Math. Modelling 18, No. 6, 321-327 (1994). Reviewer: A.Kaneko (Komaba) MSC: 65M70 65M06 65R20 45G10 35K60 PDF BibTeX XML Cite \textit{R. Villasenor}, Appl. Math. Modelling 18, No. 6, 321--327 (1994; Zbl 0806.65102) Full Text: DOI OpenURL
Elaydi, Saber N.; Kocic, Vlajko L. Global stability of a nonlinear Volterra difference system. (English) Zbl 0868.39003 Differ. Equ. Dyn. Syst. 2, No. 4, 337-345 (1994). MSC: 39A11 PDF BibTeX XML Cite \textit{S. N. Elaydi} and \textit{V. L. Kocic}, Differ. Equ. Dyn. Syst. 2, No. 4, 337--345 (1994; Zbl 0868.39003) OpenURL
Kwapisz, Marian On \(l^ p\) solutions of discrete Volterra equations. (English) Zbl 0758.39001 Aequationes Math. 43, No. 2-3, 191-197 (1992). Reviewer: F.J.Papp (Ypsilanti) MSC: 39A10 39A12 47J05 PDF BibTeX XML Cite \textit{M. Kwapisz}, Aequationes Math. 43, No. 2--3, 191--197 (1992; Zbl 0758.39001) Full Text: DOI EuDML OpenURL
Zouyousefain, M. Difference equations of Volterra type and extension of Lyapunov’s method. (English) Zbl 0732.39004 J. Appl. Math. Stochastic Anal. 3, No. 3, 193-202 (1990). Reviewer: Yu.V.Kostarchuk (Chernigov) MSC: 39A10 39A11 PDF BibTeX XML Cite \textit{M. Zouyousefain}, J. Appl. Math. Stochastic Anal. 3, No. 3, 193--202 (1990; Zbl 0732.39004) Full Text: DOI EuDML OpenURL
Erbe, L. H.; Kong, Qingkai Oscillation of Volterra-Stieltjes equations. (English) Zbl 0718.45005 Differential equations and applications, Proc. Int. Conf., Columbus/OH (USA) 1988, Vol. I, 249-256 (1989). Reviewer: M.Tvrdý (Praha) MSC: 45J05 45G10 45M15 39A12 PDF BibTeX XML OpenURL
Mingarelli, Angelo B.; Halvorsen, S. Gotskalk Non-oscillation domains of differential equations with two parameters. (English) Zbl 0657.34035 Lecture Notes in Mathematics 1338. Berlin etc.: Springer-Verlag. ix, 109 p. DM 23.00 (1988). Reviewer: P.Smith MSC: 34C10 34A30 34C15 34-02 45D05 39A10 39A12 PDF BibTeX XML Cite \textit{A. B. Mingarelli} and \textit{S. G. Halvorsen}, Non-oscillation domains of differential equations with two parameters. Berlin etc.: Springer-Verlag (1988; Zbl 0657.34035) Full Text: DOI OpenURL
Baev, A. V.; Lavritova, E. V. On an algorithm of regularized inversion of the difference scheme for an inverse hyperbolic problem. (Russian) Zbl 0645.65086 Mathematical models and numerical methods, Work Collect., Moskva 1987, 41-45 (1987). Reviewer: R.S.Anderssen MSC: 65Z05 65N22 65R20 35R30 35L05 35C15 45G10 PDF BibTeX XML OpenURL
Margetson, J.; Groves, A.; Stanley, P. Stress analysis of metallic rocket motor cases reinforced with a viscoelastic fibre overwind. (English) Zbl 0576.73029 Int. J. Mech. Sci. 27, 439-452 (1985). MSC: 74Hxx 74D05 74D10 74A15 PDF BibTeX XML Cite \textit{J. Margetson} et al., Int. J. Mech. Sci. 27, 439--452 (1985; Zbl 0576.73029) Full Text: DOI OpenURL
Billings, S. A. Identification of nonlinear systems. (English) Zbl 0588.93017 Nonlinear system design, IEE Control Eng. Ser. 25, 30-45 (1984). Reviewer: D.Normand-Cyrot MSC: 93B30 93C10 93E12 41A58 93C55 93C99 93E25 PDF BibTeX XML OpenURL
Samojlenko, V. G. Inverse periodic problem for nonlinear Langmuir chain equations. (English. Russian original) Zbl 0513.76017 Ukr. Math. J. 34, 261-266 (1983); translation from Ukr. Mat. Zh. 34, 322-327 (1982). MSC: 76B25 76X05 76M99 35Q99 39A99 65M06 PDF BibTeX XML Cite \textit{V. G. Samojlenko}, Ukr. Math. J. 34, 261--266 (1983; Zbl 0513.76017); translation from Ukr. Mat. Zh. 34, 322--327 (1982) Full Text: DOI OpenURL
Garey, L. E. A stable fourth order method for Volterra integral equations. (English) Zbl 0537.65095 Numerical mathematics and computing, Proc. 11th Manitoba Conf., Winnipeg/Manit. 1981, Congr. Numerantium 34, 259-268 (1982). MSC: 65R20 45G10 PDF BibTeX XML OpenURL
Leznov, A. N.; Smirnov, V. G. Graded algebras of the second rank and integration of nonlinear equations \(Y_{zz}=\exp(2Y)-\exp(-2Y)\), \(Y_{zz}=2\exp(Y)-\exp(-2Y)\). (English) Zbl 0465.35019 Lett. Math. Phys. 5, 31-36 (1981). MSC: 35G20 17B70 35A05 PDF BibTeX XML Cite \textit{A. N. Leznov} and \textit{V. G. Smirnov}, Lett. Math. Phys. 5, 31--36 (1981; Zbl 0465.35019) Full Text: DOI OpenURL
Levi, D.; Ragnisco, O. Non-linear differential-difference equations with N-dependent coefficients. II. (English) Zbl 0477.34047 J. Phys. A 12, L163-L167 (1979). MSC: 34K10 39B05 34A34 PDF BibTeX XML Cite \textit{D. Levi} and \textit{O. Ragnisco}, J. Phys. A, Math. Gen. 12, L163--L167 (1979; Zbl 0477.34047) OpenURL
Nohel, John A. A nonlinear singularly perturbed Volterra functional differential equation. (English) Zbl 0422.34077 Functional differential equations and approximation of fixed points, Proc., Bonn 1978, Lect. Notes Math. 730, 265-282 (1979). MSC: 34K05 34A34 45J05 PDF BibTeX XML Full Text: EuDML OpenURL