Dehbozorgi, Raziyeh; Nedaiasl, Khadijeh Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: an hp-version collocation approach. (English) Zbl 07310808 Appl. Numer. Math. 161, 111-136 (2021). MSC: 45D05 65L60 65L70 PDF BibTeX XML Cite \textit{R. Dehbozorgi} and \textit{K. Nedaiasl}, Appl. Numer. Math. 161, 111--136 (2021; Zbl 07310808) Full Text: DOI
Safavi, M.; Banar, J.; Khajehnasiri, A. A. Application of Legendre operational matrix to solution of two dimensional non-linear Volterra integro-differential equation. (English) Zbl 07314451 Casp. J. Math. Sci. 9, No. 2, 321-339 (2020). MSC: 45G10 65R20 PDF BibTeX XML Cite \textit{M. Safavi} et al., Casp. J. Math. Sci. 9, No. 2, 321--339 (2020; Zbl 07314451) Full Text: DOI
Islam, Muhammad N.; Neugebauer, Jeffrey T. Initial value problems for fractional differential equations of Riemann-Liouville type. (English) Zbl 07312896 Adv. Dyn. Syst. Appl. 15, No. 2, 113-124 (2020). MSC: 34A08 34A12 45D05 45E10 45G05 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 2, 113--124 (2020; Zbl 07312896) Full Text: Link
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of Volterra type integral equations on time scales. (English) Zbl 07312891 Adv. Dyn. Syst. Appl. 15, No. 1, 39-48 (2020). MSC: 45D05 45G10 34N05 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Adv. Dyn. Syst. Appl. 15, No. 1, 39--48 (2020; Zbl 07312891) Full Text: Link
Amorim, Paulo Predator-prey interactions with hunger structure. (English) Zbl 07307305 SIAM J. Appl. Math. 80, No. 6, 2631-2656 (2020). MSC: 92D25 92D40 35L60 PDF BibTeX XML Cite \textit{P. Amorim}, SIAM J. Appl. Math. 80, No. 6, 2631--2656 (2020; Zbl 07307305) Full Text: DOI
Ali, Faeem; Ali, Javid Convergence, stability, and data dependence of a new iterative algorithm with an application. (English) Zbl 07291012 Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020). MSC: 47H05 47H09 47H10 PDF BibTeX XML Cite \textit{F. Ali} and \textit{J. Ali}, Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020; Zbl 07291012) Full Text: DOI
Seif, Yaser; Lotfi, Taher An efficient multistep iteration scheme for systems of nonlinear algebraic equations associated with integral equations. (English) Zbl 1452.65093 Math. Methods Appl. Sci. 43, No. 14, 8105-8115 (2020). MSC: 65H10 45D05 PDF BibTeX XML Cite \textit{Y. Seif} and \textit{T. Lotfi}, Math. Methods Appl. Sci. 43, No. 14, 8105--8115 (2020; Zbl 1452.65093) Full Text: DOI
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 07271996 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 123-131 (2020). MSC: 45 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 123--131 (2020; Zbl 07271996) Full Text: DOI
Nabil, Tamer Existence results for nonlinear coupled system of integral equations of Urysohn Volterra-Chandrasekhar mixed type. (English) Zbl 07271202 Demonstr. Math. 53, 236-248 (2020). MSC: 47H10 45G15 PDF BibTeX XML Cite \textit{T. Nabil}, Demonstr. Math. 53, 236--248 (2020; Zbl 07271202) Full Text: DOI
Ghiat, Mourad; Guebbai, Hamza; Kurulay, Muhammet; Segni, Sami On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term. (English) Zbl 07241631 Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020). MSC: 45D05 45G05 45J99 45E99 65R20 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020; Zbl 07241631) Full Text: DOI
Tunç, Osman; Korkmaz, Erdal; Atan, Özkan On the qualitative analysis of Volterra IDDEs with infinite delay. (English) Zbl 07225182 Appl. Appl. Math. 15, No. 1, 446-457 (2020). MSC: 45J05 45M10 PDF BibTeX XML Cite \textit{O. Tunç} et al., Appl. Appl. Math. 15, No. 1, 446--457 (2020; Zbl 07225182) Full Text: Link
Moosavi Nora, Seyyedeh Roodabeh; Taghizadeh, Nasir Study on solving two-dimensional linear and nonlinear Volterra partial integro-differential equations by reduced differential transform method. (English) Zbl 1439.35115 Appl. Appl. Math. 15, No. 1, 394-407 (2020). MSC: 35C05 35E15 45D05 45G10 PDF BibTeX XML Cite \textit{S. R. Moosavi Nora} and \textit{N. Taghizadeh}, Appl. Appl. Math. 15, No. 1, 394--407 (2020; Zbl 1439.35115) Full Text: Link
Grace, Said R.; Jadlovská, Irena; Zafer, Agacik On oscillation of second order delay differential equations with a sublinear neutral term. (English) Zbl 07220356 Mediterr. J. Math. 17, No. 4, Paper No. 116, 11 p. (2020). MSC: 34K11 34K12 45D05 PDF BibTeX XML Cite \textit{S. R. Grace} et al., Mediterr. J. Math. 17, No. 4, Paper No. 116, 11 p. (2020; Zbl 07220356) Full Text: DOI
Boukrouche, Mahdi; Tarzia, Domingo A. A heat conduction problem with sources depending on the average of the heat flux on the boundary. (English) Zbl 1439.35203 Rev. Unión Mat. Argent. 61, No. 1, 87-101 (2020). MSC: 35K20 35C15 35K05 35K60 45D05 45E10 80A19 80A21 PDF BibTeX XML Cite \textit{M. Boukrouche} and \textit{D. A. Tarzia}, Rev. Unión Mat. Argent. 61, No. 1, 87--101 (2020; Zbl 1439.35203) Full Text: DOI
Okeke, Godwin Amechi; Abbas, Mujahid Fejér monotonicity and fixed point theorems with applications to a nonlinear integral equation in complex valued Banach spaces. (English) Zbl 07216313 Appl. Gen. Topol. 21, No. 1, 135-158 (2020). MSC: 47H09 47H10 49M05 54H25 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{M. Abbas}, Appl. Gen. Topol. 21, No. 1, 135--158 (2020; Zbl 07216313) Full Text: Link
Yaghoobnia, A. R.; Ezzati, R. Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system. (English) Zbl 1449.65371 Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020). MSC: 65R20 45D05 45G15 41A58 PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} and \textit{R. Ezzati}, Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020; Zbl 1449.65371) Full Text: DOI
Botosaru, Irene Nonparametric analysis of a duration model with stochastic unobserved heterogeneity. (English) Zbl 07213042 J. Econom. 217, No. 1, 112-139 (2020). MSC: 62 91 PDF BibTeX XML Cite \textit{I. Botosaru}, J. Econom. 217, No. 1, 112--139 (2020; Zbl 07213042) Full Text: DOI
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz; Rocha, Juan; Sadarangani, Kishin Solvability in Hölder spaces of an integral equation which models dynamics of the capillary rise. (English) Zbl 07212792 J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45G10 65R20 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} et al., J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020; Zbl 07212792) Full Text: DOI
Włodarczyk, Kazimierz Set-valued leader type contractions, periodic point and endpoint theorems, quasi-triangular spaces, Bellman and Volterra equations. (English) Zbl 07205607 Fixed Point Theory Appl. 2020, Paper No. 6, 54 p. (2020). MSC: 47H04 47H10 54A05 65J15 65Q20 45D05 PDF BibTeX XML Cite \textit{K. Włodarczyk}, Fixed Point Theory Appl. 2020, Paper No. 6, 54 p. (2020; Zbl 07205607) Full Text: DOI
Eikmeier, André; Emmrich, Etienne; Kreusler, Hans-Christian Nonlinear evolution equations with exponentially decaying memory: existence via time discretisation, uniqueness, and stability. (English) Zbl 07194988 Comput. Methods Appl. Math. 20, No. 1, 89-108 (2020). MSC: 47J35 45K05 34K30 35K90 35R09 65J08 65M12 PDF BibTeX XML Cite \textit{A. Eikmeier} et al., Comput. Methods Appl. Math. 20, No. 1, 89--108 (2020; Zbl 07194988) Full Text: DOI
Sapountzoglou, Niklas Entropy solutions to doubly nonlinear integro-differential equations. (English) Zbl 1447.45012 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020). MSC: 45K05 47J35 45D05 35D99 PDF BibTeX XML Cite \textit{N. Sapountzoglou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020; Zbl 1447.45012) Full Text: DOI
Wang, Tongke; Qin, Meng; Zhang, Zhiyue The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind. (English) Zbl 1437.65248 J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020; Zbl 1437.65248) Full Text: DOI
Nedaiasl, Khadijeh; Dehbozorgi, Raziyeh; Maleknejad, Khosrow \(hp\)-version collocation method for a class of nonlinear Volterra integral equations of the first kind. (English) Zbl 1437.65244 Appl. Numer. Math. 150, 452-477 (2020). MSC: 65R20 65L60 45J05 45D05 65L20 PDF BibTeX XML Cite \textit{K. Nedaiasl} et al., Appl. Numer. Math. 150, 452--477 (2020; Zbl 1437.65244) Full Text: DOI
Zhang, Xiao-Yong; Li, Jun-Lin A multistep Legendre pseudo-spectral method for nonlinear Volterra integral equations. (English) Zbl 07168433 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23-35 (2020). MSC: 45D05 45G10 41A10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-Y. Zhang} and \textit{J.-L. Li}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23--35 (2020; Zbl 07168433) Full Text: DOI
Zhang, Xiao-yong A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays. (English) Zbl 1433.65361 Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020). MSC: 65R20 45D05 45G10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-y. Zhang}, Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020; Zbl 1433.65361) Full Text: DOI
Lin, Ping; Yong, Jiongmin Controlled singular Volterra integral equations and Pontryagin maximum principle. (English) Zbl 1444.45003 SIAM J. Control Optim. 58, No. 1, 136-164 (2020). MSC: 45D05 45G05 34A08 49K15 49K21 PDF BibTeX XML Cite \textit{P. Lin} and \textit{J. Yong}, SIAM J. Control Optim. 58, No. 1, 136--164 (2020; Zbl 1444.45003) Full Text: DOI arXiv
Gal, Sorin G. Volterra-Choquet integral equations. (English) Zbl 1443.45002 J. Integral Equations Appl. 31, No. 4, 495-504 (2019). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45D05 45G10 45L05 28A12 28A25 PDF BibTeX XML Cite \textit{S. G. Gal}, J. Integral Equations Appl. 31, No. 4, 495--504 (2019; Zbl 1443.45002) Full Text: DOI Euclid
Erfanian, Majid; Zeidabadi, Hamed Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar functions in the complex plane. (English) Zbl 1445.65049 J. Math. Model. 7, No. 4, 399-416 (2019). MSC: 65R20 45G10 42C40 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, J. Math. Model. 7, No. 4, 399--416 (2019; Zbl 1445.65049) Full Text: DOI
Zhao, Xiaoxu; Li, Meiyi; Lv, Xueqin An algorithm for solving \(m\)th-order nonlinear Volterra-Fredholm integro-differential equations. (Chinese. English summary) Zbl 1449.65170 Math. Pract. Theory 49, No. 14, 208-216 (2019). MSC: 65L60 65R20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{X. Zhao} et al., Math. Pract. Theory 49, No. 14, 208--216 (2019; Zbl 1449.65170)
Moosavi Noori, Seyyedeh Roodabeh; Taghizadeh, Nasir Application of reduced differential transform method for solving two-dimensional Volterra integral equations of the second kind. (English) Zbl 1440.45003 Appl. Appl. Math. 14, No. 2, 1003-1019 (2019). MSC: 45D05 45G10 65R20 PDF BibTeX XML Cite \textit{S. R. Moosavi Noori} and \textit{N. Taghizadeh}, Appl. Appl. Math. 14, No. 2, 1003--1019 (2019; Zbl 1440.45003) Full Text: Link
Babenko, V. Calculus and nonlinear integral equations for functions with values in \(L\)-spaces. (English) Zbl 1449.45009 Anal. Math. 45, No. 4, 727-755 (2019). MSC: 45G10 28B20 PDF BibTeX XML Cite \textit{V. Babenko}, Anal. Math. 45, No. 4, 727--755 (2019; Zbl 1449.45009) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P.; Pathade, Priyanka A. An existence and convergence results for Caputo fractional Volterra integro-differential equations. (English) Zbl 07144123 Jordan J. Math. Stat. 12, No. 3, 307-327 (2019). MSC: 34K37 34K07 45J05 65H20 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Jordan J. Math. Stat. 12, No. 3, 307--327 (2019; Zbl 07144123) Full Text: Link
Sahlan, M. Nosrati Four computational approaches for solving a class of boundary value problems arising in chemical reactor industry. (English) Zbl 1429.65173 Appl. Math. Comput. 355, 253-268 (2019). MSC: 65L60 34B15 45B05 45D05 65L10 92E20 PDF BibTeX XML Cite \textit{M. N. Sahlan}, Appl. Math. Comput. 355, 253--268 (2019; Zbl 1429.65173) Full Text: DOI
Alvandi, Azizallah; Paripour, Mahmoud The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel. (English) Zbl 1429.65305 Appl. Math. Comput. 355, 151-160 (2019). MSC: 65R20 34K07 45J05 45G10 PDF BibTeX XML Cite \textit{A. Alvandi} and \textit{M. Paripour}, Appl. Math. Comput. 355, 151--160 (2019; Zbl 1429.65305) Full Text: DOI
Pan, Yubin; Huang, Jin; Ma, Yanying Bernstein series solutions of multidimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels. (English) Zbl 1429.65320 Appl. Math. Comput. 347, 149-161 (2019). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{Y. Pan} et al., Appl. Math. Comput. 347, 149--161 (2019; Zbl 1429.65320) Full Text: DOI
Ngoc, Pham Huu Anh; Anh, Tran The Stability of nonlinear Volterra equations and applications. (English) Zbl 1428.45009 Appl. Math. Comput. 341, 1-14 (2019). MSC: 45J05 34K20 45D05 45M10 PDF BibTeX XML Cite \textit{P. H. A. Ngoc} and \textit{T. T. Anh}, Appl. Math. Comput. 341, 1--14 (2019; Zbl 1428.45009) Full Text: DOI
Abdeljawad, Thabet; Agarwal, Ravi P.; Karapınar, Erdal; Kumari, P. Sumati Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended \(b\)-metric space. (English) Zbl 1425.47016 Symmetry 11, No. 5, Paper No. 686, 18 p. (2019). MSC: 54H25 54E40 34A08 45D05 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Symmetry 11, No. 5, Paper No. 686, 18 p. (2019; Zbl 1425.47016) Full Text: DOI
Lyu, Pin; Vong, Seakweng A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1428.35461 J. Sci. Comput. 80, No. 3, 1607-1628 (2019). MSC: 35Q53 65D05 45D05 65R20 65M06 65M12 35B65 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, J. Sci. Comput. 80, No. 3, 1607--1628 (2019; Zbl 1428.35461) Full Text: DOI
Abadias, Luciano; Alvarez, Edgardo; Banaś, Józef; Lizama, Carlos Solvability and uniform local attractivity for a Volterra equation of convolution type. (English) Zbl 1435.45001 J. Integral Equations Appl. 31, No. 2, 149-164 (2019). Reviewer: Dazmir Shulaia (Tbilisi) MSC: 45D05 45E10 45G10 34A08 47H08 PDF BibTeX XML Cite \textit{L. Abadias} et al., J. Integral Equations Appl. 31, No. 2, 149--164 (2019; Zbl 1435.45001) Full Text: DOI Euclid
Kyzy, Erkeaim Seidakmat; Kerimbekov, Akylbek On solvability of tracking problem under nonlinear boundary control. (English) Zbl 1428.35643 Lindahl, Karl-Olof (ed.) et al., Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 207-218 (2019). MSC: 35Q93 35R05 45D05 45K05 35A02 35B50 93C20 65K10 49K20 PDF BibTeX XML Cite \textit{E. S. Kyzy} and \textit{A. Kerimbekov}, in: Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 207--218 (2019; Zbl 1428.35643) Full Text: DOI
Buterin, S. A.; Terekhin, P. A. On solvability of one nonlinear integral equation in the class of analytic functions. (English) Zbl 1436.45004 Appl. Math. Lett. 96, 27-32 (2019). Reviewer: Alexander N. Tynda (Penza) MSC: 45G10 45D05 PDF BibTeX XML Cite \textit{S. A. Buterin} and \textit{P. A. Terekhin}, Appl. Math. Lett. 96, 27--32 (2019; Zbl 1436.45004) Full Text: DOI
Asadpour, Sasan; Cherati, Allahbakhsh Yazdani; Hosseinzadeh, Hassan Solving the general form of the Emden-Fowler equations with the moving least squares method. (English) Zbl 1438.34074 J. Math. Model. 7, No. 2, 231-250 (2019). MSC: 34A45 65L05 34A34 PDF BibTeX XML Cite \textit{S. Asadpour} et al., J. Math. Model. 7, No. 2, 231--250 (2019; Zbl 1438.34074) Full Text: DOI
Tunç, Cemil; Mohammed, Sizar Abid Uniformly boundedness in nonlinear Volterra integro-differential equations with delay. (English) Zbl 1418.45007 J. Appl. Nonlinear Dyn. 8, No. 2, 279-290 (2019). MSC: 45J05 45D05 PDF BibTeX XML Cite \textit{C. Tunç} and \textit{S. A. Mohammed}, J. Appl. Nonlinear Dyn. 8, No. 2, 279--290 (2019; Zbl 1418.45007) Full Text: DOI
Eshkuvatov, Z. K.; Hameed, Hameed Husam; Taib, B. M.; Nik Long, N. M. A. General 2 \({\times}\) 2 system of nonlinear integral equations and its approximate solution. (English) Zbl 1418.65198 J. Comput. Appl. Math. 361, 528-546 (2019). MSC: 65R20 65D32 34A34 PDF BibTeX XML Cite \textit{Z. K. Eshkuvatov} et al., J. Comput. Appl. Math. 361, 528--546 (2019; Zbl 1418.65198) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar; Samadyar, Nasrin A numerical approach for solving weakly singular partial integro-differential equations via two-dimensional-orthonormal Bernstein polynomials with the convergence analysis. (English) Zbl 1418.65145 Numer. Methods Partial Differ. Equations 35, No. 2, 615-637 (2019). MSC: 65M70 65D25 65D30 65M12 65M15 35R09 45K05 45D05 45G15 45G05 PDF BibTeX XML Cite \textit{F. Mirzaee} et al., Numer. Methods Partial Differ. Equations 35, No. 2, 615--637 (2019; Zbl 1418.65145) Full Text: DOI
Awad, Hamed Kamal; Darwish, Mohamed Abdalla On Erdélyi-Kober cubic fractional integral equation of Urysohn-Volterra type. (English) Zbl 1437.45003 Differ. Uravn. Protsessy Upr. 2019, No. 1, 70-83 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G05 45G10 47H30 26A33 PDF BibTeX XML Cite \textit{H. K. Awad} and \textit{M. A. Darwish}, Differ. Uravn. Protsessy Upr. 2019, No. 1, 70--83 (2019; Zbl 1437.45003) Full Text: Link
Erfanian, Majid; Akrami, Abbas; Parsamanesh, Mahmmod Solving two-dimensional nonlinear Fredholm integral equations using rationalized Haar functions in the complex plane. (English) Zbl 1411.45002 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 47, 13 p. (2019). MSC: 45D05 65R20 65T60 PDF BibTeX XML Cite \textit{M. Erfanian} et al., Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 47, 13 p. (2019; Zbl 1411.45002) Full Text: DOI
Płociniczak, Łukasz Numerical method for the time-fractional porous medium equation. (English) Zbl 1409.76091 SIAM J. Numer. Anal. 57, No. 2, 638-656 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 76M20 76S05 35Q35 65R20 35R11 45G10 PDF BibTeX XML Cite \textit{Ł. Płociniczak}, SIAM J. Numer. Anal. 57, No. 2, 638--656 (2019; Zbl 1409.76091) Full Text: DOI arXiv
Song, Huiming; Yang, Zhanwen; Brunner, Hermann Analysis of collocation methods for nonlinear Volterra integral equations of the third kind. (English) Zbl 1434.65320 Calcolo 56, No. 1, Paper No. 7, 29 p. (2019). Reviewer: Vladimir S. Pilidi (Rostov-na-Donu) MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{H. Song} et al., Calcolo 56, No. 1, Paper No. 7, 29 p. (2019; Zbl 1434.65320) Full Text: DOI
Segni, Sami; Ghiat, Mourad; Guebbai, Hamza New approximation method for Volterra nonlinear integro-differential equation. (English) Zbl 1406.65140 Asian-Eur. J. Math. 12, No. 1, Article ID 1950016, 10 p. (2019). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{S. Segni} et al., Asian-Eur. J. Math. 12, No. 1, Article ID 1950016, 10 p. (2019; Zbl 1406.65140) Full Text: DOI
Lam, King-Yeung Dirac-concentrations in an integro-PDE model from evolutionary game theory. (English) Zbl 1404.35242 Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 737-754 (2019). MSC: 35K55 35F21 92D15 47G20 49L25 PDF BibTeX XML Cite \textit{K.-Y. Lam}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 737--754 (2019; Zbl 1404.35242) Full Text: DOI
Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. (English) Zbl 1410.35196 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 1, 257-294 (2019). MSC: 35Q55 81Q05 35B25 35A01 35A02 35B44 45D05 PDF BibTeX XML Cite \textit{R. Carlone} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 1, 257--294 (2019; Zbl 1410.35196) Full Text: DOI
Schmeidel, Ewa The existence of consensus of a leader-following problem with Caputo fractional derivative. (English) Zbl 1404.26010 Opusc. Math. 39, No. 1, 77-89 (2019). MSC: 26A33 34K20 45D05 PDF BibTeX XML Cite \textit{E. Schmeidel}, Opusc. Math. 39, No. 1, 77--89 (2019; Zbl 1404.26010) Full Text: DOI
Peleg, Avner; Chakraborty, Debananda Large stable oscillations due to Hopf bifurcations in amplitude dynamics of colliding soliton sequences. (English) Zbl 07265236 Commun. Nonlinear Sci. Numer. Simul. 63, 145-160 (2018). MSC: 37 35 PDF BibTeX XML Cite \textit{A. Peleg} and \textit{D. Chakraborty}, Commun. Nonlinear Sci. Numer. Simul. 63, 145--160 (2018; Zbl 07265236) Full Text: DOI
Xu, Peiliang Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry. (English) Zbl 07263361 Commun. Nonlinear Sci. Numer. Simul. 59, 515-543 (2018). MSC: 93B 34C 65Z 65L 68U PDF BibTeX XML Cite \textit{P. Xu}, Commun. Nonlinear Sci. Numer. Simul. 59, 515--543 (2018; Zbl 07263361) Full Text: DOI
Ozyapici, Ali; Bilgehan, Bülent Generalized system of trial equation methods and their applications to biological systems. (English) Zbl 1427.35240 Appl. Math. Comput. 338, 722-732 (2018). MSC: 35Q53 35C07 35Q51 92D30 92D25 PDF BibTeX XML Cite \textit{A. Ozyapici} and \textit{B. Bilgehan}, Appl. Math. Comput. 338, 722--732 (2018; Zbl 1427.35240) Full Text: DOI
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz Numerical method for Volterra equation with a power-type nonlinearity. (English) Zbl 1427.65423 Appl. Math. Comput. 337, 452-460 (2018). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} and \textit{Ł. Płociniczak}, Appl. Math. Comput. 337, 452--460 (2018; Zbl 1427.65423) Full Text: DOI
Andreev, Aleksandr S.; Peregudova, Olga A. On the stability and stabilization problems of Volterra integro-differential equations. (English) Zbl 1423.45004 Nelineĭn. Din. 14, No. 3, 387-407 (2018). MSC: 45J05 45M10 45G10 37B25 37B55 45D05 93D15 93D20 PDF BibTeX XML Cite \textit{A. S. Andreev} and \textit{O. A. Peregudova}, Nelineĭn. Din. 14, No. 3, 387--407 (2018; Zbl 1423.45004) Full Text: DOI MNR
Kirk, Colleen M.; Olmstead, W. Edward Thermal blow-up in a finite strip with superdiffusive properties. (English) Zbl 1429.45001 Fract. Calc. Appl. Anal. 21, No. 4, 949-959 (2018). MSC: 45G05 35K55 45D05 80A19 35B44 35R11 PDF BibTeX XML Cite \textit{C. M. Kirk} and \textit{W. E. Olmstead}, Fract. Calc. Appl. Anal. 21, No. 4, 949--959 (2018; Zbl 1429.45001) Full Text: DOI
Jalalvand, M.; Nabati, M. Numerical method for the nonlinear Volterra integral equations using Simpson product integration method. (English) Zbl 1438.65328 Adv. Model. Optim. 20, No. 1, 229-235 (2018). MSC: 65R20 45D05 45G05 PDF BibTeX XML Cite \textit{M. Jalalvand} and \textit{M. Nabati}, Adv. Model. Optim. 20, No. 1, 229--235 (2018; Zbl 1438.65328)
Hamoud, Ahmed A.; Issa, M. SH. Bani; Ghadle, Kirtiwant P. Existence and uniqueness results for nonlinear Volterra-Fredholm integro differential equations. (English) Zbl 1423.45005 Nonlinear Funct. Anal. Appl. 23, No. 4, 797-805 (2018). MSC: 45J05 45G10 45L05 65R20 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Nonlinear Funct. Anal. Appl. 23, No. 4, 797--805 (2018; Zbl 1423.45005)
Atshan, Shakir M.; Hamoud, Ahmed A. Approximate solutions of fourth-order fractional integro-differential equations. (English) Zbl 1424.35008 Acta Univ. Apulensis, Math. Inform. 55, 49-61 (2018). MSC: 35A15 26A33 65H20 45J05 PDF BibTeX XML Cite \textit{S. M. Atshan} and \textit{A. A. Hamoud}, Acta Univ. Apulensis, Math. Inform. 55, 49--61 (2018; Zbl 1424.35008) Full Text: DOI
Erfanian, Majid The approximate solution of nonlinear mixed Volterra-Fredholm-Hammerstein integral equations with RH wavelet bases in a complex plane. (English) Zbl 1406.45001 Math. Methods Appl. Sci. 41, No. 18, 8942-8952 (2018). MSC: 45D05 65R20 65T60 65E05 37C25 PDF BibTeX XML Cite \textit{M. Erfanian}, Math. Methods Appl. Sci. 41, No. 18, 8942--8952 (2018; Zbl 1406.45001) Full Text: DOI
Benchohra, Mouffak; Rezoug, Noreddine Existence and attractivity of solutions of semilinear Volterra type integro-differential evolution equations. (English) Zbl 1413.45002 Surv. Math. Appl. 13, 215-235 (2018). MSC: 45D05 34G20 47J35 PDF BibTeX XML Cite \textit{M. Benchohra} and \textit{N. Rezoug}, Surv. Math. Appl. 13, 215--235 (2018; Zbl 1413.45002) Full Text: EMIS
Laeli Dastjerdi, H.; Nili Ahmadabadi, M. Numerical solution of a type of weakly singular nonlinear Volterra integral equation by tau method. (English) Zbl 1413.65486 J. Linear Topol. Algebra 7, No. 2, 75-85 (2018). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{H. Laeli Dastjerdi} and \textit{M. Nili Ahmadabadi}, J. Linear Topol. Algebra 7, No. 2, 75--85 (2018; Zbl 1413.65486) Full Text: Link
Castro, L. P.; Simões, A. M. Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric. (English) Zbl 1405.45010 Math. Methods Appl. Sci. 41, No. 17, 7367-7383 (2018). MSC: 45M10 45D05 34K20 47H10 PDF BibTeX XML Cite \textit{L. P. Castro} and \textit{A. M. Simões}, Math. Methods Appl. Sci. 41, No. 17, 7367--7383 (2018; Zbl 1405.45010) Full Text: DOI
Aydi, Hassen; Wongyat, Teerawat; Sintunavarat, Wutiphol On new evolution of Ri’s result via \(w\)-distances and the study on the solution for nonlinear integral equations and fractional differential equations. (English) Zbl 1445.45008 Adv. Difference Equ. 2018, Paper No. 132, 15 p. (2018). MSC: 45G10 34A08 26A33 PDF BibTeX XML Cite \textit{H. Aydi} et al., Adv. Difference Equ. 2018, Paper No. 132, 15 p. (2018; Zbl 1445.45008) Full Text: DOI
Huang, Dejian; Li, Yanqing; Pei, Donghe Identification of a time-dependent coefficient in heat conduction problem by new iteration method. (English) Zbl 1407.65171 Adv. Math. Phys. 2018, Article ID 4918256, 7 p. (2018). MSC: 65M32 35K05 35Q79 45D05 65J15 PDF BibTeX XML Cite \textit{D. Huang} et al., Adv. Math. Phys. 2018, Article ID 4918256, 7 p. (2018; Zbl 1407.65171) Full Text: DOI
Chang, Yong-Kui; Ponce, Rodrigo Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces. (English) Zbl 06979944 J. Integral Equations Appl. 30, No. 3, 347-369 (2018). MSC: 47D06 45D05 45N05 47J35 45M10 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{R. Ponce}, J. Integral Equations Appl. 30, No. 3, 347--369 (2018; Zbl 06979944) Full Text: DOI Euclid
Vainikko, Gennadi Positive solution of Lighthill-type equations. (English) Zbl 1404.45002 Z. Anal. Anwend. 37, No. 4, 475-494 (2018). MSC: 45D05 45M20 45M05 PDF BibTeX XML Cite \textit{G. Vainikko}, Z. Anal. Anwend. 37, No. 4, 475--494 (2018; Zbl 1404.45002) Full Text: DOI
Khanduzi, R.; Ebrahimzadeh, A.; Peyghami, M. Reza A modified teaching-learning-based optimization for optimal control of Volterra integral systems. (English) Zbl 1398.49018 Soft Comput. 22, No. 17, 5889-5899 (2018). MSC: 49K21 49M37 45D05 PDF BibTeX XML Cite \textit{R. Khanduzi} et al., Soft Comput. 22, No. 17, 5889--5899 (2018; Zbl 1398.49018) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. (English) Zbl 1397.35331 Commun. Pure Appl. Anal. 17, No. 5, 1975-1992 (2018). MSC: 35R11 47H08 47J35 35B44 PDF BibTeX XML Cite \textit{P. Chen} et al., Commun. Pure Appl. Anal. 17, No. 5, 1975--1992 (2018; Zbl 1397.35331) Full Text: DOI
Hu, Beibei; Xia, Tiecheng A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line. (English) Zbl 1397.35274 Math. Methods Appl. Sci. 41, No. 13, 5112-5123 (2018). MSC: 35Q55 35Q51 35Q15 37K10 37K15 78A60 45D05 45C05 35P15 PDF BibTeX XML Cite \textit{B. Hu} and \textit{T. Xia}, Math. Methods Appl. Sci. 41, No. 13, 5112--5123 (2018; Zbl 1397.35274) Full Text: DOI
Syam, Muhammed I.; Abu Omar, Mohammed A numerical method for solving a class of nonlinear second order fractional Volterra integro-differntial type of singularly perturbed problems. (English) Zbl 1448.65286 Mathematics 6, No. 4, Paper No. 48, 22 p. (2018). MSC: 65R20 45J05 34A08 PDF BibTeX XML Cite \textit{M. I. Syam} and \textit{M. Abu Omar}, Mathematics 6, No. 4, Paper No. 48, 22 p. (2018; Zbl 1448.65286) Full Text: DOI
Diblík, Josef; Galewski, Marek; Koniorczyk, Marcin; Schmeidel, Ewa An application of a diffeomorphism theorem to Volterra integral operator. (English) Zbl 06890407 Differ. Integral Equ. 31, No. 7-8, 621-642 (2018). Reviewer: Guy Katriel (Haifa) MSC: 45P05 26B10 47J07 PDF BibTeX XML Cite \textit{J. Diblík} et al., Differ. Integral Equ. 31, No. 7--8, 621--642 (2018; Zbl 06890407)
Assari, Pouria; Dehghan, Mehdi The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. (English) Zbl 1446.65205 Appl. Numer. Math. 131, 140-157 (2018). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{P. Assari} and \textit{M. Dehghan}, Appl. Numer. Math. 131, 140--157 (2018; Zbl 1446.65205) Full Text: DOI
Goodrich, Christopher S. Perturbed integral operator equations of Volterra type with applications to \(p\)-Laplacian equations. (English) Zbl 1391.45003 Mediterr. J. Math. 15, No. 2, Paper No. 47, 20 p. (2018). MSC: 45D05 45G10 45M20 47G10 34B10 34B18 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Mediterr. J. Math. 15, No. 2, Paper No. 47, 20 p. (2018; Zbl 1391.45003) Full Text: DOI
Barseghyan, A. G. On integral equations the kernels of which are homogeneous functions of degree \((-1)\). (English. Russian original) Zbl 1390.45002 J. Contemp. Math. Anal., Armen. Acad. Sci. 53, No. 1, 47-55 (2018); translation from Izv. Nats. Akad. Nauk Armen., Mat. 53, No. 1, 23-36 (2018). MSC: 45A05 45H05 45D05 PDF BibTeX XML Cite \textit{A. G. Barseghyan}, J. Contemp. Math. Anal., Armen. Acad. Sci. 53, No. 1, 47--55 (2018; Zbl 1390.45002); translation from Izv. Nats. Akad. Nauk Armen., Mat. 53, No. 1, 23--36 (2018) Full Text: DOI
Scholtes, Martin; Wittbold, Petra Existence of entropy solutions to a doubly nonlinear integro-differential equation. (English) Zbl 1449.45021 Differ. Integral Equ. 31, No. 5-6, 465-496 (2018). Reviewer: Vincenzo Vespri (Firenze) MSC: 45K05 47J35 45D05 35D99 PDF BibTeX XML Cite \textit{M. Scholtes} and \textit{P. Wittbold}, Differ. Integral Equ. 31, No. 5--6, 465--496 (2018; Zbl 1449.45021)
Rzepka, Beata Solvability of a nonlinear Volterra-Stieltjes integral equation in the class of bounded and continuous functions of two variables. (English) Zbl 1390.45019 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 311-329 (2018). MSC: 45G10 47H08 PDF BibTeX XML Cite \textit{B. Rzepka}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 2, 311--329 (2018; Zbl 1390.45019) Full Text: DOI
Erfanian, M. The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane. (English) Zbl 1383.65156 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 31, 13 p. (2018). MSC: 65R20 45B05 45D05 45G10 45P05 65T60 PDF BibTeX XML Cite \textit{M. Erfanian}, Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 31, 13 p. (2018; Zbl 1383.65156) Full Text: DOI
Yankson, E. Periodicity in multiple delay Volterra difference equations of neutral type. (English) Zbl 1383.39007 Electron. J. Math. Analysis Appl. 6, No. 2, 110-118 (2018). MSC: 39A10 39A12 45D05 45G10 39A23 47H09 PDF BibTeX XML Cite \textit{E. Yankson}, Electron. J. Math. Analysis Appl. 6, No. 2, 110--118 (2018; Zbl 1383.39007) Full Text: Link
Boulfoul, Bilal; Bellour, Azzeddine; Djebali, Smail Solvability of nonlinear integral equations of product type. (English) Zbl 1386.45003 Electron. J. Differ. Equ. 2018, Paper No. 19, 20 p. (2018). MSC: 45D05 45G10 47H08 47H09 47H10 47H30 PDF BibTeX XML Cite \textit{B. Boulfoul} et al., Electron. J. Differ. Equ. 2018, Paper No. 19, 20 p. (2018; Zbl 1386.45003) Full Text: Link
Johnson, Peter; Peskir, Goran Sequential testing problems for Bessel processes. (English) Zbl 1406.60061 Trans. Am. Math. Soc. 370, No. 3, 2085-2113 (2018). MSC: 60G40 60J60 60H30 35K10 45G10 62C10 PDF BibTeX XML Cite \textit{P. Johnson} and \textit{G. Peskir}, Trans. Am. Math. Soc. 370, No. 3, 2085--2113 (2018; Zbl 1406.60061) Full Text: DOI
Wei, Yunxia; Chen, Yanping; Shi, Xiulian A spectral collocation method for multidimensional nonlinear weakly singular Volterra integral equation. (English) Zbl 1377.65175 J. Comput. Appl. Math. 331, 52-63 (2018). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Comput. Appl. Math. 331, 52--63 (2018; Zbl 1377.65175) Full Text: DOI
Zeinali, Masoumeh; Shahmorad, Sedaghat An equivalence lemma for a class of fuzzy implicit integro-differential equations. (English) Zbl 1372.45014 J. Comput. Appl. Math. 327, 388-399 (2018). MSC: 45J05 45G10 26E50 PDF BibTeX XML Cite \textit{M. Zeinali} and \textit{S. Shahmorad}, J. Comput. Appl. Math. 327, 388--399 (2018; Zbl 1372.45014) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations. (English) Zbl 07148846 Korean J. Math. 25, No. 3, 323-334 (2017). MSC: 44A10 45G10 65M55 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Korean J. Math. 25, No. 3, 323--334 (2017; Zbl 07148846) Full Text: DOI
Bencheikh, Abdelkrim; Chiter, Lakhdar; Abbassi, Hocine Bernstein polynomials method for numerical solutions of integro-differential form of the singular Emden-Fowler initial value problems. (English) Zbl 1427.65104 J. Math. Comput. Sci., JMCS 17, No. 1, 66-75 (2017). MSC: 65L05 34A34 45J05 65R20 PDF BibTeX XML Cite \textit{A. Bencheikh} et al., J. Math. Comput. Sci., JMCS 17, No. 1, 66--75 (2017; Zbl 1427.65104) Full Text: DOI
Sohrabi, S.; Ranjbar, H.; Saei, M. Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations. (English) Zbl 1411.65172 Appl. Math. Comput. 299, 141-152 (2017). MSC: 65R20 45D05 45G05 PDF BibTeX XML Cite \textit{S. Sohrabi} et al., Appl. Math. Comput. 299, 141--152 (2017; Zbl 1411.65172) Full Text: DOI
Mousavi, Bibi Khadijeh; Askari-Hemmat, Ataollah; Heydari, Mohammad Hossien Wilson wavelets for solving nonlinear stochastic integral equations. (English) Zbl 1412.60097 Wavel. Linear Algebra 4, No. 2, 33-48 (2017). MSC: 60H20 65T60 PDF BibTeX XML Cite \textit{B. K. Mousavi} et al., Wavel. Linear Algebra 4, No. 2, 33--48 (2017; Zbl 1412.60097) Full Text: DOI
Atshan, Shakir Msahir An approximate solutions of boundary value problem for fourth-order fractional integro-differential equation. (English) Zbl 1412.35009 Aligarh Bull. Math. 36, No. 1-2, 109-123 (2017). MSC: 35A15 26A33 65H20 45J05 PDF BibTeX XML Cite \textit{S. M. Atshan}, Aligarh Bull. Math. 36, No. 1--2, 109--123 (2017; Zbl 1412.35009)
Mirzaee, Farshid Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. (English) Zbl 1424.45010 Comput. Methods Differ. Equ. 5, No. 2, 88-102 (2017). MSC: 45G10 45D05 45B05 65D30 65M70 65R20 PDF BibTeX XML Cite \textit{F. Mirzaee}, Comput. Methods Differ. Equ. 5, No. 2, 88--102 (2017; Zbl 1424.45010) Full Text: Link
Wongyat, Teerawat; Sintunavarat, Wutiphol The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via \( w\)-distances. (English) Zbl 1422.45002 Adv. Difference Equ. 2017, Paper No. 211, 15 p. (2017). MSC: 45D05 45G10 34A08 26A33 PDF BibTeX XML Cite \textit{T. Wongyat} and \textit{W. Sintunavarat}, Adv. Difference Equ. 2017, Paper No. 211, 15 p. (2017; Zbl 1422.45002) Full Text: DOI
Otadi, Mahmood; Mosleh, Maryam Universal approximation method for the solution of integral equations. (English) Zbl 1407.65328 Math. Sci., Springer 11, No. 3, 181-187 (2017). MSC: 65R20 68T05 45D05 45G10 PDF BibTeX XML Cite \textit{M. Otadi} and \textit{M. Mosleh}, Math. Sci., Springer 11, No. 3, 181--187 (2017; Zbl 1407.65328) Full Text: DOI
Chen, Yin Yuan; Frankel, J. I.; Keyhani, M. A new front surface heat flux calibration method for a 1-D nonlinear thermal system with a time-varying back boundary condition. (English) Zbl 1390.80010 J. Eng. Math. 105, 157-187 (2017). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80A23 35K05 35K20 65M32 45D05 65R20 PDF BibTeX XML Cite \textit{Y. Y. Chen} et al., J. Eng. Math. 105, 157--187 (2017; Zbl 1390.80010) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro differential equations. (English) Zbl 1383.65157 J. Korean Soc. Ind. Appl. Math. 21, No. 1, 17-28 (2017). MSC: 65R20 45B05 45D05 45J05 45G10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, J. Korean Soc. Ind. Appl. Math. 21, No. 1, 17--28 (2017; Zbl 1383.65157) Full Text: Link
Micula, Sanda On some iterative numerical methods for a Volterra functional integral equation of the second kind. (English) Zbl 1382.65471 J. Fixed Point Theory Appl. 19, No. 3, 1815-1824 (2017). Reviewer: Dana Černá (Liberec) MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{S. Micula}, J. Fixed Point Theory Appl. 19, No. 3, 1815--1824 (2017; Zbl 1382.65471) Full Text: DOI
Ludu, Andrei; Khanal, Harihar Differential equations of dynamical order. (English) Zbl 1381.34019 Electron. J. Differ. Equ. 2017, Conf. 24, 47-61 (2017). MSC: 34A08 45G10 65D30 PDF BibTeX XML Cite \textit{A. Ludu} and \textit{H. Khanal}, Electron. J. Differ. Equ. 2017, 47--61 (2017; Zbl 1381.34019) Full Text: Link
Baghani, Omid; Baghani, Hamid A new contraction condition and its application to weakly singular Volterra integral equations of the second kind. (English) Zbl 1390.45009 J. Fixed Point Theory Appl. 19, No. 4, 2601-2615 (2017). Reviewer: Jin Liang (Shanghai) MSC: 45G05 45D05 45E10 54H25 PDF BibTeX XML Cite \textit{O. Baghani} and \textit{H. Baghani}, J. Fixed Point Theory Appl. 19, No. 4, 2601--2615 (2017; Zbl 1390.45009) Full Text: DOI
Hendi, F. A.; Al-Qarni, M. M. The homotopy perturbation method for solving nonlinear Volterra-Fredholm integral equation with singular Volterra kernel. (English) Zbl 1373.45001 Far East J. Appl. Math. 96, No. 4, 233-243 (2017). MSC: 45B05 45E10 PDF BibTeX XML Cite \textit{F. A. Hendi} and \textit{M. M. Al-Qarni}, Far East J. Appl. Math. 96, No. 4, 233--243 (2017; Zbl 1373.45001) Full Text: DOI