Mahmoodi, Darani Narges Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations. (English) Zbl 07665303 Comput. Methods Differ. Equ. 11, No. 1, 183-196 (2023). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{D. N. Mahmoodi}, Comput. Methods Differ. Equ. 11, No. 1, 183--196 (2023; Zbl 07665303) Full Text: DOI OpenURL
Ghiat, Mourad; Tair, Boutheina; Ghuebbai, Hamza; Kamouche, Soumia Block-by-block method for solving non-linear Volterra integral equation of the first kind. (English) Zbl 07655384 Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023; Zbl 07655384) Full Text: DOI OpenURL
Liang, Hui; Stynes, Martin Regularity of the solution of a nonlinear Volterra integral equation of the second kind. (English) Zbl 07622300 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211-2223 (2023). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45B05 45G05 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211--2223 (2023; Zbl 07622300) Full Text: DOI OpenURL
Rouibah, K.; Bellour, A.; Lima, P.; Rawashdeh, E. Iterative continuous collocation method for solving nonlinear Volterra integral equations. (English) Zbl 07637437 Kragujevac J. Math. 46, No. 4, 635-648 (2022). MSC: 45L05 65R20 PDF BibTeX XML Cite \textit{K. Rouibah} et al., Kragujevac J. Math. 46, No. 4, 635--648 (2022; Zbl 07637437) Full Text: Link OpenURL
Filip, Alexandru-Darius Some applications of Maia’s fixed point theorem in the case of operators with Volterra property with respect to a subinterval. (English) Zbl 07633769 Miskolc Math. Notes 23, No. 2, 667-676 (2022). MSC: 47H10 47H09 34K05 34K12 45D05 45G10 54H25 PDF BibTeX XML Cite \textit{A.-D. Filip}, Miskolc Math. Notes 23, No. 2, 667--676 (2022; Zbl 07633769) Full Text: DOI OpenURL
Bekkouche, M. Moumen; Mansouri, I.; Ahmed, A. A. Azeb Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral. (English) Zbl 07632349 J. Appl. Math. Comput. 68, No. 6, 4305-4316 (2022). MSC: 34A08 34B15 45D05 65R20 PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., J. Appl. Math. Comput. 68, No. 6, 4305--4316 (2022; Zbl 07632349) Full Text: DOI OpenURL
Ereú, Jurancy; Pérez, Liliana; Rodríguez, Luz On \(\Lambda_p BV\)-solutions of some nonlinear integral equations on the plane. (English) Zbl 1502.45004 Int. J. Differ. Equ. 2022, Article ID 5482688, 23 p. (2022). Reviewer: Mohamed Abdalla Darwish (Damanhour) MSC: 45G10 45D05 PDF BibTeX XML Cite \textit{J. Ereú} et al., Int. J. Differ. Equ. 2022, Article ID 5482688, 23 p. (2022; Zbl 1502.45004) Full Text: DOI OpenURL
Ciplea, Sorina Anamaria; Lungu, Nicolaie; Marian, Daniela; Rassias, Themistocles M. On Hyers-Ulam-Rassias stability of a Volterra-Hammerstein functional integral equation. (English) Zbl 1496.45004 Daras, Nicholas J. (ed.) et al., Approximation and computation in science and engineering. Cham: Springer. Springer Optim. Appl. 180, 147-156 (2022). MSC: 45G10 26D10 39B82 47H30 PDF BibTeX XML Cite \textit{S. A. Ciplea} et al., Springer Optim. Appl. 180, 147--156 (2022; Zbl 1496.45004) Full Text: DOI arXiv OpenURL
Mahmudov, Nazim I.; Ahmadova, Arzu Some results on backward stochastic differential equations of fractional order. (English) Zbl 07597825 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 129, 23 p. (2022). MSC: 34A08 34F05 47N20 45D05 PDF BibTeX XML Cite \textit{N. I. Mahmudov} and \textit{A. Ahmadova}, Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 129, 23 p. (2022; Zbl 07597825) Full Text: DOI arXiv OpenURL
Chernov, Andreĭ V. On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games. (Russian. English summary) Zbl 1500.91042 Mat. Teor. Igr Prilozh. 14, No. 2, 99-122 (2022); translation in Autom. Remote Control 83, No. 11, 1843-1856 (2022). MSC: 91A65 47G99 PDF BibTeX XML Cite \textit{A. V. Chernov}, Mat. Teor. Igr Prilozh. 14, No. 2, 99--122 (2022; Zbl 1500.91042); translation in Autom. Remote Control 83, No. 11, 1843--1856 (2022) Full Text: MNR OpenURL
Wang, Yifei; Huang, Jin; Zhang, Li; Deng, Ting A combination method for solving multi-dimensional systems of Volterra integral equations with weakly singular kernels. (English) Zbl 1501.65160 Numer. Algorithms 91, No. 2, 473-504 (2022). MSC: 65R20 11B68 45G15 45D05 PDF BibTeX XML Cite \textit{Y. Wang} et al., Numer. Algorithms 91, No. 2, 473--504 (2022; Zbl 1501.65160) Full Text: DOI OpenURL
Moussai, Miloud Application of the Bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with Caputo fractional derivatives. (English) Zbl 1496.65239 Numer. Algebra Control Optim. 12, No. 3, 551-568 (2022). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{M. Moussai}, Numer. Algebra Control Optim. 12, No. 3, 551--568 (2022; Zbl 1496.65239) Full Text: DOI OpenURL
El Majouti, Z.; El Jid, R.; Hajjaj, A. Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via modified moving least-square method. (English) Zbl 07579665 Int. J. Comput. Math. 99, No. 9, 1849-1867 (2022). MSC: 65R20 45A05 45G10 PDF BibTeX XML Cite \textit{Z. El Majouti} et al., Int. J. Comput. Math. 99, No. 9, 1849--1867 (2022; Zbl 07579665) Full Text: DOI OpenURL
Hu, Beibei; Zhang, Ling; Lin, Ji The initial-boundary value problems of the new two-component generalized Sasa-Satsuma equation with a \(4\times 4\) matrix Lax pair. (English) Zbl 1496.35170 Anal. Math. Phys. 12, No. 5, Paper No. 109, 20 p. (2022). MSC: 35G31 35A22 35Q15 37K10 45D05 PDF BibTeX XML Cite \textit{B. Hu} et al., Anal. Math. Phys. 12, No. 5, Paper No. 109, 20 p. (2022; Zbl 1496.35170) Full Text: DOI OpenURL
Al-Issa, Sh. M. A study on a coupled system of quadratic Volterra-Stieltjes integral equations. (English) Zbl 07559317 J. Fract. Calc. Appl. 13, No. 2, 223-236 (2022). MSC: 26A33 47H30 47G10 47H08 PDF BibTeX XML Cite \textit{Sh. M. Al-Issa}, J. Fract. Calc. Appl. 13, No. 2, 223--236 (2022; Zbl 07559317) Full Text: Link OpenURL
Ereú, J.; Pérez, L.; Pineda, E.; Rodríguez, L. A study of solutions of some nonlinear integral equations in the space of functions of bounded second variation in the sense of Shiba. (English) Zbl 1495.45002 Mediterr. J. Math. 19, No. 4, Paper No. 151, 23 p. (2022). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45G10 45D05 47N20 26A45 65R20 PDF BibTeX XML Cite \textit{J. Ereú} et al., Mediterr. J. Math. 19, No. 4, Paper No. 151, 23 p. (2022; Zbl 1495.45002) Full Text: DOI OpenURL
Diop, Amadou; Dieye, Moustapha; Hazarika, Bipan Random integrodifferential equations of Volterra type with delay: attractiveness and stability. (Random integrodifferential equations of Volterra type with delay : attractiveness and stability.) (English) Zbl 07545341 Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022). MSC: 34G20 45D05 47J35 60H10 PDF BibTeX XML Cite \textit{A. Diop} et al., Appl. Math. Comput. 430, Article ID 127301, 18 p. (2022; Zbl 07545341) Full Text: DOI OpenURL
Abbas, Mohamed I.; Ragusa, Maria Alessandra Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. (English) Zbl 1500.34004 Appl. Anal. 101, No. 9, 3231-3245 (2022). MSC: 34A08 34B15 33E12 47N20 45D05 PDF BibTeX XML Cite \textit{M. I. Abbas} and \textit{M. A. Ragusa}, Appl. Anal. 101, No. 9, 3231--3245 (2022; Zbl 1500.34004) Full Text: DOI arXiv OpenURL
Nemer, Ahlem; Mokhtari, Zouhir; Kaboul, Hanane Product integration method for treating a nonlinear Volterra integral equation with a weakly singular kernel. (English) Zbl 1486.65297 Math. Sci., Springer 16, No. 1, 71-78 (2022). MSC: 65R20 45E10 45G10 45D05 PDF BibTeX XML Cite \textit{A. Nemer} et al., Math. Sci., Springer 16, No. 1, 71--78 (2022; Zbl 1486.65297) Full Text: DOI OpenURL
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line. (English) Zbl 07529336 Appl. Math. Comput. 424, Article ID 127033, 19 p. (2022). MSC: 35R11 45G10 65R20 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} and \textit{Ł. Płociniczak}, Appl. Math. Comput. 424, Article ID 127033, 19 p. (2022; Zbl 07529336) Full Text: DOI arXiv OpenURL
Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel On the discretization of truncated integro-differential sweeping process and optimal control. (English) Zbl 1489.49008 J. Optim. Theory Appl. 193, No. 1-3, 785-830 (2022). MSC: 49J40 47J20 47J22 45D05 58E35 74M15 74M10 PDF BibTeX XML Cite \textit{A. Bouach} et al., J. Optim. Theory Appl. 193, No. 1--3, 785--830 (2022; Zbl 1489.49008) Full Text: DOI OpenURL
Chauhan, Harsh V. S.; Singh, Beenu; Tunç, Cemil; Tunç, Osman On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. (English) Zbl 1490.45012 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 101, 11 p. (2022). Reviewer: Gustaf Gripenberg (Aalto) MSC: 45N05 45G10 45D05 47N20 47H08 PDF BibTeX XML Cite \textit{H. V. S. Chauhan} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 101, 11 p. (2022; Zbl 1490.45012) Full Text: DOI OpenURL
Corsi, Livia; Genovese, Giuseppe Long time behaviour of a local perturbation in the isotropic XY chain under periodic forcing. (English) Zbl 1497.82012 Ann. Henri Poincaré 23, No. 5, 1555-1581 (2022). Reviewer: A. C. D. van Enter (Groningen) MSC: 82C10 82C20 37K10 37K55 45D05 35B10 35B40 35B34 35Q41 35Q55 35Q82 PDF BibTeX XML Cite \textit{L. Corsi} and \textit{G. Genovese}, Ann. Henri Poincaré 23, No. 5, 1555--1581 (2022; Zbl 1497.82012) Full Text: DOI arXiv OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 1490.65311 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 65R20 45J05 45G10 45B05 45D05 47H10 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 1490.65311) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 1499.45003 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 1499.45003) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Ramesh Kumar, D. Common solution to a pair of nonlinear Fredholm and Volterra integral equations and nonlinear fractional differential equations. (English) Zbl 07444661 J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022). MSC: 45G15 45B05 45D05 34A08 45G10 65R20 PDF BibTeX XML Cite \textit{D. Ramesh Kumar}, J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022; Zbl 07444661) Full Text: DOI OpenURL
Jia, Jinhong; Wang, Hong Analysis of a hidden memory variably distributed-order space-fractional diffusion equation. (English) Zbl 07443282 Appl. Math. Lett. 124, Article ID 107617, 7 p. (2022). Reviewer: Ogbu F. Imaga (Ota) MSC: 34A08 34B15 45D05 PDF BibTeX XML Cite \textit{J. Jia} and \textit{H. Wang}, Appl. Math. Lett. 124, Article ID 107617, 7 p. (2022; Zbl 07443282) Full Text: DOI OpenURL
Guemar, S.; Guebbai, H.; Lemita, S. On an integro-differential fractional nonlinear Volterra-Caputo equation. (Russian. English summary) Zbl 1502.45010 Sib. Zh. Vychisl. Mat. 24, No. 4, 365-382 (2021). MSC: 45J05 26A33 45D05 65R20 PDF BibTeX XML Cite \textit{S. Guemar} et al., Sib. Zh. Vychisl. Mat. 24, No. 4, 365--382 (2021; Zbl 1502.45010) Full Text: DOI MNR OpenURL
Gal, Sorin G.; Iancu, Ionuţ T. Fredholm and Volterra nonlinear possibilistic integral equations. (English) Zbl 07577407 Stud. Univ. Babeș-Bolyai, Math. 66, No. 1, 105-113 (2021). MSC: 45B05 47H10 28E10 28A99 PDF BibTeX XML Cite \textit{S. G. Gal} and \textit{I. T. Iancu}, Stud. Univ. Babeș-Bolyai, Math. 66, No. 1, 105--113 (2021; Zbl 07577407) Full Text: DOI OpenURL
Ayyalappagari, Sreenivasulu; Rao, Bhogapurapu Venkata Appa Stability criteria for nonlinear Volterra integro-dynamic matrix Sylvester systems on measure chains. (English) Zbl 1494.45003 Adv. Difference Equ. 2021, Paper No. 514, 17 p. (2021). MSC: 45D05 45M10 34N05 26E70 PDF BibTeX XML Cite \textit{S. Ayyalappagari} and \textit{B. V. A. Rao}, Adv. Difference Equ. 2021, Paper No. 514, 17 p. (2021; Zbl 1494.45003) Full Text: DOI OpenURL
Nguyen Minh Dien Existence and continuity results for a nonlinear fractional Langevin equation with a weakly singular source. (English) Zbl 07543109 J. Integral Equations Appl. 33, No. 3, 349-369 (2021). Reviewer: Renu Chaudhary (Sohna) MSC: 34A08 34G20 34A12 26A33 45D05 26D10 PDF BibTeX XML Cite \textit{Nguyen Minh Dien}, J. Integral Equations Appl. 33, No. 3, 349--369 (2021; Zbl 07543109) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI OpenURL
Shahsavaran, A. Application of Newton-Cotes quadrature rule for nonlinear Hammerstein integral equations. (English) Zbl 1492.65369 Iran. J. Numer. Anal. Optim. 11, No. 2, 385-399 (2021). MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{A. Shahsavaran}, Iran. J. Numer. Anal. Optim. 11, No. 2, 385--399 (2021; Zbl 1492.65369) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Volterra integro-differential equations in the complex plane with periodic quasi-wavelets. (English) Zbl 1499.65349 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021). MSC: 65L60 44A45 45B05 65R20 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021; Zbl 1499.65349) Full Text: DOI OpenURL
Ali, Faeem; Ali, Javid; Rodríguez-López, Rosana Approximation of fixed points and the solution of a nonlinear integral equation. (English) Zbl 1496.47111 Nonlinear Funct. Anal. Appl. 26, No. 5, 869-885 (2021). MSC: 47J26 47H09 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{F. Ali} et al., Nonlinear Funct. Anal. Appl. 26, No. 5, 869--885 (2021; Zbl 1496.47111) Full Text: Link OpenURL
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 1499.45030 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45L05 45D05 65R20 65H20 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 1499.45030) Full Text: Link OpenURL
Assari, P.; Asadi-Mehregan, F.; Dehghan, M. A meshless local Galerkin integral equation method for solving a type of Darboux problems based on radial basis functions. (English) Zbl 1480.65328 ANZIAM J. 63, No. 4, 469-492 (2021). MSC: 65N30 65R20 45D05 45G10 65D12 65N15 PDF BibTeX XML Cite \textit{P. Assari} et al., ANZIAM J. 63, No. 4, 469--492 (2021; Zbl 1480.65328) Full Text: DOI OpenURL
Guidotti, Patrick; Merino, Sandro On the maximal parameter range of global stability for a nonlocal thermostat model. (English) Zbl 1480.35037 J. Evol. Equ. 21, No. 3, 3205-3241 (2021). MSC: 35B40 35B35 35B41 35K60 93D15 PDF BibTeX XML Cite \textit{P. Guidotti} and \textit{S. Merino}, J. Evol. Equ. 21, No. 3, 3205--3241 (2021; Zbl 1480.35037) Full Text: DOI arXiv OpenURL
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 1499.49024 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 49J21 45A05 45J05 90C30 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 1499.49024) Full Text: DOI OpenURL
Ramazanov, M. I.; Jenaliyev, M. T.; Tanin, A. O. Two-dimensional boundary value problem of heat conduction in a cone with special boundary conditions. (English) Zbl 1480.35096 Lobachevskii J. Math. 42, No. 12, 2913-2925 (2021). MSC: 35C15 35K60 PDF BibTeX XML Cite \textit{M. I. Ramazanov} et al., Lobachevskii J. Math. 42, No. 12, 2913--2925 (2021; Zbl 1480.35096) Full Text: DOI OpenURL
Lienert, Matthias; Nöth, Markus Existence of relativistic dynamics for two directly interacting Dirac particles in \(1+3\) dimensions. (English) Zbl 1483.81078 Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021). MSC: 81Q40 45E99 45P05 81V25 81R20 51B20 83F05 PDF BibTeX XML Cite \textit{M. Lienert} and \textit{M. Nöth}, Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021; Zbl 1483.81078) Full Text: DOI arXiv OpenURL
Ilea, Veronica; Otrocol, Diana Functional differential equations with maxima, via step by step contraction principle. (English) Zbl 1478.34072 Carpathian J. Math. 37, No. 2, 195-202 (2021). MSC: 34K05 34K38 34K12 45D05 45G10 47N20 PDF BibTeX XML Cite \textit{V. Ilea} and \textit{D. Otrocol}, Carpathian J. Math. 37, No. 2, 195--202 (2021; Zbl 1478.34072) Full Text: DOI Link OpenURL
Hamaguchi, Yushi Infinite horizon backward stochastic Volterra integral equations and discounted control problems. (English) Zbl 1490.60197 ESAIM, Control Optim. Calc. Var. 27, Paper No. 101, 47 p. (2021). MSC: 60H20 45G05 49K45 49N15 PDF BibTeX XML Cite \textit{Y. Hamaguchi}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 101, 47 p. (2021; Zbl 1490.60197) Full Text: DOI arXiv OpenURL
Wijnand, Marc; d’Andréa-Novel, Brigitte; Rosier, Lionel Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension. (English) Zbl 1478.93608 ESAIM, Control Optim. Calc. Var. 27, Paper No. 94, 30 p. (2021). MSC: 93D40 93C20 93C15 93B52 PDF BibTeX XML Cite \textit{M. Wijnand} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 94, 30 p. (2021; Zbl 1478.93608) Full Text: DOI arXiv OpenURL
Özdemir, İsmet An existence theorem for some nonlinear Volterra-Fredholm integral equations in the space of continuous tempered functions. (English) Zbl 1477.45003 Numer. Funct. Anal. Optim. 42, No. 11, 1287-1307 (2021). MSC: 45G10 45B05 45D05 47H08 47H10 PDF BibTeX XML Cite \textit{İ. Özdemir}, Numer. Funct. Anal. Optim. 42, No. 11, 1287--1307 (2021; Zbl 1477.45003) Full Text: DOI OpenURL
Agram, Nacira; Djehiche, Boualem On a class of reflected backward stochastic Volterra integral equations and related time-inconsistent optimal stopping problems. (English) Zbl 1475.60127 Syst. Control Lett. 155, Article ID 104989, 9 p. (2021). MSC: 60H20 45D05 45G10 60G40 PDF BibTeX XML Cite \textit{N. Agram} and \textit{B. Djehiche}, Syst. Control Lett. 155, Article ID 104989, 9 p. (2021; Zbl 1475.60127) Full Text: DOI arXiv OpenURL
Wang, Xiu-Bin; Han, Bo The nonlinear steepest descent approach for long time behavior of the two-component coupled Sasa-Satsuma equation with a \(5 \times 5\) Lax pair. (English) Zbl 1479.35729 Taiwanese J. Math. 25, No. 2, 381-407 (2021). MSC: 35Q51 35Q53 35Q15 35Q55 35C08 35A22 37K35 35B40 78A60 68W30 74J35 45D05 45C05 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Taiwanese J. Math. 25, No. 2, 381--407 (2021; Zbl 1479.35729) Full Text: DOI arXiv OpenURL
Kumar, Santosh Fixed points and continuity for a pair of contractive maps with application to nonlinear Volterra integral equations. (English) Zbl 1486.54060 J. Funct. Spaces 2021, Article ID 9982217, 13 p. (2021). MSC: 54H25 54E40 45D05 45G10 PDF BibTeX XML Cite \textit{S. Kumar}, J. Funct. Spaces 2021, Article ID 9982217, 13 p. (2021; Zbl 1486.54060) Full Text: DOI OpenURL
Askhabov, Sultan N. Nonlinear convolution integro-differential equation with variable coefficient. (English) Zbl 1498.45005 Fract. Calc. Appl. Anal. 24, No. 3, 848-864 (2021). MSC: 45G10 45D05 26A33 47H05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Fract. Calc. Appl. Anal. 24, No. 3, 848--864 (2021; Zbl 1498.45005) Full Text: DOI OpenURL
Appell, Jürgen; Dutkiewicz, Aldona; López, Belén; Reinwand, Simon; Sadarangani, Kishin Hölder-type spaces, singular operators, and fixed point theorems. (English) Zbl 07370660 Fixed Point Theory 22, No. 1, 31-58 (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47-XX 26A33 47H10 47J05 26A15 26A16 34B16 45D05 45E05 45G05 47H30 PDF BibTeX XML Cite \textit{J. Appell} et al., Fixed Point Theory 22, No. 1, 31--58 (2021; Zbl 07370660) Full Text: Link OpenURL
Roy, Bandita; Bora, Swaroop Nandan On existence and uniqueness of integral solutions for a class of nondensely defined mixed Volterra-Fredholm integro-fractional neutral differential equations. (English) Zbl 1486.45014 J. Nonlinear Evol. Equ. Appl. 2021, 41-62 (2021). Reviewer: Anar Assanova (Almaty) MSC: 45J05 45B05 45D05 47N20 26A33 34G20 47H10 47H08 PDF BibTeX XML Cite \textit{B. Roy} and \textit{S. N. Bora}, J. Nonlinear Evol. Equ. Appl. 2021, 41--62 (2021; Zbl 1486.45014) Full Text: Link OpenURL
Assari, Pouria; Asadi-Mehregan, Fatemeh; Dehghan, Mehdi Local Gaussian-collocation scheme to approximate the solution of nonlinear fractional differential equations using Volterra integral equations. (English) Zbl 1474.65247 J. Comput. Math. 39, No. 2, 261-282 (2021). MSC: 65L60 65L20 65L70 45D05 PDF BibTeX XML Cite \textit{P. Assari} et al., J. Comput. Math. 39, No. 2, 261--282 (2021; Zbl 1474.65247) Full Text: DOI OpenURL
Guidotti, Patrick; Merino, Sandro On Wiener’s violent oscillations, Popov’s curves, and Hopf’s supercritical bifurcation for a scalar heat equation. (English) Zbl 1467.35037 Stud. Appl. Math. 146, No. 3, 677-729 (2021). MSC: 35B32 35B35 35K20 35K57 35R09 93B52 93D10 93D15 PDF BibTeX XML Cite \textit{P. Guidotti} and \textit{S. Merino}, Stud. Appl. Math. 146, No. 3, 677--729 (2021; Zbl 1467.35037) Full Text: DOI arXiv OpenURL
Georgieva, Atanaska Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method. (English) Zbl 1467.45002 Demonstr. Math. 54, 11-24 (2021). MSC: 45D05 45L05 65R20 PDF BibTeX XML Cite \textit{A. Georgieva}, Demonstr. Math. 54, 11--24 (2021; Zbl 1467.45002) Full Text: DOI OpenURL
Kharin, Stanislav Nikolaevich; Nauryz, Targyn Atanbekovich One-phase spherical Stefan problem with temperature dependent coefficients. (English) Zbl 1474.80006 Eurasian Math. J. 12, No. 1, 49-56 (2021). MSC: 80A22 35K05 45D05 PDF BibTeX XML Cite \textit{S. N. Kharin} and \textit{T. A. Nauryz}, Eurasian Math. J. 12, No. 1, 49--56 (2021; Zbl 1474.80006) Full Text: DOI MNR OpenURL
Shashiashvili, Malkhaz; Dochviri, Besarion; Lominashvili, Giorgi A note on the nonlinear Volterra integral equation for the early exercise boundary. (English) Zbl 1473.91024 Georgian Math. J. 28, No. 2, 305-311 (2021). MSC: 91G20 45D05 60G40 91G80 PDF BibTeX XML Cite \textit{M. Shashiashvili} et al., Georgian Math. J. 28, No. 2, 305--311 (2021; Zbl 1473.91024) Full Text: DOI OpenURL
Bessenyei, Mihály; Páles, Zsolt Applications of the Bielecki renorming technique. (English) Zbl 07328305 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 15, 23 p. (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47H10 34A12 35L30 45D05 45G10 PDF BibTeX XML Cite \textit{M. Bessenyei} and \textit{Z. Páles}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 15, 23 p. (2021; Zbl 07328305) Full Text: DOI arXiv OpenURL
Wang, Hanxiao Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. (English) Zbl 1470.60143 Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021). MSC: 60H05 60H20 45D05 35K40 35K59 PDF BibTeX XML Cite \textit{H. Wang}, Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021; Zbl 1470.60143) Full Text: DOI arXiv OpenURL
Cakir, Musa; Gunes, Baransel; Duru, Hakki A novel computational method for solving nonlinear Volterra integro-differential equation. (English) Zbl 1474.65492 Kuwait J. Sci. 48, No. 1, 1-9 (2021). MSC: 65R20 45D05 45K05 45G10 PDF BibTeX XML Cite \textit{M. Cakir} et al., Kuwait J. Sci. 48, No. 1, 1--9 (2021; Zbl 1474.65492) Full Text: DOI OpenURL
Dehbozorgi, Raziyeh; Nedaiasl, Khadijeh Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: an hp-version collocation approach. (English) Zbl 1471.65222 Appl. Numer. Math. 161, 111-136 (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{R. Dehbozorgi} and \textit{K. Nedaiasl}, Appl. Numer. Math. 161, 111--136 (2021; Zbl 1471.65222) Full Text: DOI arXiv OpenURL
Assanova, A. T.; Vasilina, G. K.; Imanchiev, A. E. Initial-boundary-value problem for an integrodifferential equation of the third order. (English. Russian original) Zbl 1458.35403 J. Math. Sci., New York 253, No. 2, 181-203 (2021); translation from Neliniĭni Kolyvannya 22, No. 3, 291-311 (2019). MSC: 35Q74 74D10 35R09 45D05 35A01 35A02 35A09 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., J. Math. Sci., New York 253, No. 2, 181--203 (2021; Zbl 1458.35403); translation from Neliniĭni Kolyvannya 22, No. 3, 291--311 (2019) Full Text: DOI OpenURL
Ben Amar, Afif; Derbel, Saoussen Fixed point theorems for countably asymptotically \(\Phi\)-nonexpansive maps in locally convex spaces and application. (English) Zbl 1498.47101 Filomat 34, No. 3, 879-904 (2020). MSC: 47H09 47H10 47H30 45D05 PDF BibTeX XML Cite \textit{A. Ben Amar} and \textit{S. Derbel}, Filomat 34, No. 3, 879--904 (2020; Zbl 1498.47101) Full Text: DOI OpenURL
El-Sayed, Ahmed Mohamed; Al-Issa, Shorouk Mahmoud On the existence of solutions of a set-valued functional integral equation of Volterra-Stieltjes type and some applications. (English) Zbl 1487.45014 Adv. Difference Equ. 2020, Paper No. 59, 16 p. (2020). MSC: 45N05 45G10 PDF BibTeX XML Cite \textit{A. M. El-Sayed} and \textit{S. M. Al-Issa}, Adv. Difference Equ. 2020, Paper No. 59, 16 p. (2020; Zbl 1487.45014) Full Text: DOI OpenURL
Ullah, Zia; Ullah, Aman; Shah, Kamal; Baleanu, Dumitru Computation of semi-analytical solutions of fuzzy nonlinear integral equations. (English) Zbl 1486.45005 Adv. Difference Equ. 2020, Paper No. 542, 10 p. (2020). MSC: 45G05 45B05 45D05 03E72 26E50 65R20 PDF BibTeX XML Cite \textit{Z. Ullah} et al., Adv. Difference Equ. 2020, Paper No. 542, 10 p. (2020; Zbl 1486.45005) Full Text: DOI OpenURL
Ho, Vu; Van Hoa, Ngo Ulam-Hyers stability for a nonlinear Volterra integro-differential equation. (English) Zbl 1499.45006 Hacet. J. Math. Stat. 49, No. 4, 1261-1269 (2020). MSC: 45D05 45J05 45L05 45M10 PDF BibTeX XML Cite \textit{V. Ho} and \textit{N. Van Hoa}, Hacet. J. Math. Stat. 49, No. 4, 1261--1269 (2020; Zbl 1499.45006) Full Text: DOI OpenURL
Nikam, Vishal; Gopal, Dhananjay; Rehman, Habib Ur; Bantaojai, Thanatporn New Geraghty type condensing operators and solvability of nonlinear quadratic Volterra-Stieltjes integral equation. (English) Zbl 07413222 Nonlinear Funct. Anal. Appl. 25, No. 4, 769-797 (2020). Reviewer: Jürgen Appell (Würzburg) MSC: 47H08 45G10 47H10 PDF BibTeX XML Cite \textit{V. Nikam} et al., Nonlinear Funct. Anal. Appl. 25, No. 4, 769--797 (2020; Zbl 07413222) Full Text: Link OpenURL
Toranj-Simin, M.; Hadizadeh, M. Spectral collocation method for a class of integro-differential equations with Erdélyi-Kober fractional operator. (English) Zbl 1499.65356 Adv. Appl. Math. Mech. 12, No. 2, 386-406 (2020). MSC: 65L60 34K37 45J05 47G20 65R20 PDF BibTeX XML Cite \textit{M. Toranj-Simin} and \textit{M. Hadizadeh}, Adv. Appl. Math. Mech. 12, No. 2, 386--406 (2020; Zbl 1499.65356) Full Text: DOI OpenURL
Kharin, Stanislav N.; Nauryz, Targyn A. Two-phase spherical Stefan problem with nonlinear thermal conductivity. (English) Zbl 1488.80009 Mat. Zh. 20, No. 1, 27-37 (2020). MSC: 80A22 35K05 45D05 65R20 34A34 PDF BibTeX XML Cite \textit{S. N. Kharin} and \textit{T. A. Nauryz}, Mat. Zh. 20, No. 1, 27--37 (2020; Zbl 1488.80009) OpenURL
Unhale, S. I.; Kendre, Subhash D. On existence and uniqueness results for iterative mixed integrodifferential equation of fractional order. (English) Zbl 1474.45080 J. Appl. Anal. 26, No. 2, 263-272 (2020). MSC: 45L05 45B05 45D05 45N05 45G15 PDF BibTeX XML Cite \textit{S. I. Unhale} and \textit{S. D. Kendre}, J. Appl. Anal. 26, No. 2, 263--272 (2020; Zbl 1474.45080) Full Text: DOI OpenURL
Okeke, Godwin Amechi; Kim, Jong Kyu Fixed point theorems in complex valued Banach spaces with applications to a nonlinear integral equation. (English) Zbl 1481.47093 Nonlinear Funct. Anal. Appl. 25, No. 3, 411-436 (2020). MSC: 47J25 47H09 47N20 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{J. K. Kim}, Nonlinear Funct. Anal. Appl. 25, No. 3, 411--436 (2020; Zbl 1481.47093) Full Text: Link OpenURL
Guebbai, Hamza; Lemita, Samir; Segni, Sami; Merchela, Wassim Difference derivative for an integro-differential nonlinear Volterra equation. (English) Zbl 1480.65375 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30, No. 2, 176-188 (2020). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{H. Guebbai} et al., Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 30, No. 2, 176--188 (2020; Zbl 1480.65375) Full Text: DOI MNR OpenURL
Matani, Behnam; Rezaei Roshan, Jamal Multivariate generalized Meir-Keeler condensing operators and their applications to systems of integral equations. (English) Zbl 1484.47088 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 87, 28 p. (2020). MSC: 47H08 47H10 45G15 45D05 PDF BibTeX XML Cite \textit{B. Matani} and \textit{J. Rezaei Roshan}, J. Fixed Point Theory Appl. 22, No. 4, Paper No. 87, 28 p. (2020; Zbl 1484.47088) Full Text: DOI OpenURL
Safavi, M.; Banar, J.; Khajehnasiri, A. A. Application of Legendre operational matrix to solution of two dimensional non-linear Volterra integro-differential equation. (English) Zbl 1488.65756 Casp. J. Math. Sci. 9, No. 2, 321-339 (2020). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{M. Safavi} et al., Casp. J. Math. Sci. 9, No. 2, 321--339 (2020; Zbl 1488.65756) Full Text: DOI OpenURL
Islam, Muhammad N.; Neugebauer, Jeffrey T. Initial value problems for fractional differential equations of Riemann-Liouville type. (English) Zbl 1454.34017 Adv. Dyn. Syst. Appl. 15, No. 2, 113-124 (2020). MSC: 34A08 34A12 45D05 45E10 45G05 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 2, 113--124 (2020; Zbl 1454.34017) Full Text: Link OpenURL
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of Volterra type integral equations on time scales. (English) Zbl 1454.45001 Adv. Dyn. Syst. Appl. 15, No. 1, 39-48 (2020). MSC: 45D05 45G10 34N05 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Adv. Dyn. Syst. Appl. 15, No. 1, 39--48 (2020; Zbl 1454.45001) Full Text: Link OpenURL
Ali, Faeem; Ali, Javid Convergence, stability, and data dependence of a new iterative algorithm with an application. (English) Zbl 1463.47204 Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020). MSC: 47J26 47H05 47H09 65J15 45D05 PDF BibTeX XML Cite \textit{F. Ali} and \textit{J. Ali}, Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020; Zbl 1463.47204) Full Text: DOI OpenURL
Seif, Yaser; Lotfi, Taher An efficient multistep iteration scheme for systems of nonlinear algebraic equations associated with integral equations. (English) Zbl 1452.65093 Math. Methods Appl. Sci. 43, No. 14, 8105-8115 (2020). MSC: 65H10 45D05 PDF BibTeX XML Cite \textit{Y. Seif} and \textit{T. Lotfi}, Math. Methods Appl. Sci. 43, No. 14, 8105--8115 (2020; Zbl 1452.65093) Full Text: DOI OpenURL
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 1462.45005 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 123-131 (2020). MSC: 45D05 45M10 34N05 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Springer Proc. Math. Stat. 333, 123--131 (2020; Zbl 1462.45005) Full Text: DOI OpenURL
Nabil, Tamer Existence results for nonlinear coupled system of integral equations of Urysohn Volterra-Chandrasekhar mixed type. (English) Zbl 1498.45009 Demonstr. Math. 53, 236-248 (2020). MSC: 45G15 45D05 45N05 47N20 PDF BibTeX XML Cite \textit{T. Nabil}, Demonstr. Math. 53, 236--248 (2020; Zbl 1498.45009) Full Text: DOI OpenURL
Ghiat, Mourad; Guebbai, Hamza; Kurulay, Muhammet; Segni, Sami On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term. (English) Zbl 1463.45008 Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020). MSC: 45D05 45G05 45J99 45E99 65R20 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020; Zbl 1463.45008) Full Text: DOI OpenURL
Tunç, Osman; Korkmaz, Erdal; Atan, Özkan On the qualitative analysis of Volterra IDDEs with infinite delay. (English) Zbl 1463.45042 Appl. Appl. Math. 15, No. 1, 446-457 (2020). MSC: 45J05 45D05 45M10 PDF BibTeX XML Cite \textit{O. Tunç} et al., Appl. Appl. Math. 15, No. 1, 446--457 (2020; Zbl 1463.45042) Full Text: Link OpenURL
Moosavi Nora, Seyyedeh Roodabeh; Taghizadeh, Nasir Study on solving two-dimensional linear and nonlinear Volterra partial integro-differential equations by reduced differential transform method. (English) Zbl 1439.35115 Appl. Appl. Math. 15, No. 1, 394-407 (2020). MSC: 35C05 35E15 45D05 45G10 PDF BibTeX XML Cite \textit{S. R. Moosavi Nora} and \textit{N. Taghizadeh}, Appl. Appl. Math. 15, No. 1, 394--407 (2020; Zbl 1439.35115) Full Text: Link OpenURL
Boukrouche, Mahdi; Tarzia, Domingo A. A heat conduction problem with sources depending on the average of the heat flux on the boundary. (English) Zbl 1439.35203 Rev. Unión Mat. Argent. 61, No. 1, 87-101 (2020). MSC: 35K20 35C15 35K05 35K60 45D05 45E10 80A19 80A21 PDF BibTeX XML Cite \textit{M. Boukrouche} and \textit{D. A. Tarzia}, Rev. Unión Mat. Argent. 61, No. 1, 87--101 (2020; Zbl 1439.35203) Full Text: DOI arXiv OpenURL
Okeke, Godwin Amechi; Abbas, Mujahid Fejér monotonicity and fixed point theorems with applications to a nonlinear integral equation in complex valued Banach spaces. (English) Zbl 07216313 Appl. Gen. Topol. 21, No. 1, 135-158 (2020). MSC: 47H09 47H10 49M05 54H25 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{M. Abbas}, Appl. Gen. Topol. 21, No. 1, 135--158 (2020; Zbl 07216313) Full Text: Link OpenURL
Yaghoobnia, A. R.; Ezzati, R. Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system. (English) Zbl 1449.65371 Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020). MSC: 65R20 45D05 45G15 41A58 PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} and \textit{R. Ezzati}, Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020; Zbl 1449.65371) Full Text: DOI OpenURL
Botosaru, Irene Nonparametric analysis of a duration model with stochastic unobserved heterogeneity. (English) Zbl 1456.62274 J. Econom. 217, No. 1, 112-139 (2020). MSC: 62P20 62M99 62N05 62G05 62G20 PDF BibTeX XML Cite \textit{I. Botosaru}, J. Econom. 217, No. 1, 112--139 (2020; Zbl 1456.62274) Full Text: DOI Link OpenURL
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz; Rocha, Juan; Sadarangani, Kishin Solvability in Hölder spaces of an integral equation which models dynamics of the capillary rise. (English) Zbl 1467.45004 J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45G10 65R20 76B45 76D45 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} et al., J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020; Zbl 1467.45004) Full Text: DOI OpenURL
Sapountzoglou, Niklas Entropy solutions to doubly nonlinear integro-differential equations. (English) Zbl 1447.45012 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020). MSC: 45K05 47J35 45D05 35D99 PDF BibTeX XML Cite \textit{N. Sapountzoglou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020; Zbl 1447.45012) Full Text: DOI OpenURL
Wang, Tongke; Qin, Meng; Zhang, Zhiyue The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind. (English) Zbl 1437.65248 J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020; Zbl 1437.65248) Full Text: DOI OpenURL
Nedaiasl, Khadijeh; Dehbozorgi, Raziyeh; Maleknejad, Khosrow \(hp\)-version collocation method for a class of nonlinear Volterra integral equations of the first kind. (English) Zbl 1437.65244 Appl. Numer. Math. 150, 452-477 (2020). MSC: 65R20 65L60 45J05 45D05 65L20 PDF BibTeX XML Cite \textit{K. Nedaiasl} et al., Appl. Numer. Math. 150, 452--477 (2020; Zbl 1437.65244) Full Text: DOI arXiv OpenURL
Zhang, Xiao-Yong; Li, Jun-Lin A multistep Legendre pseudo-spectral method for nonlinear Volterra integral equations. (English) Zbl 07168433 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23-35 (2020). MSC: 45D05 45G10 41A10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-Y. Zhang} and \textit{J.-L. Li}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23--35 (2020; Zbl 07168433) Full Text: DOI OpenURL
Zhang, Xiao-yong A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays. (English) Zbl 1433.65361 Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020). MSC: 65R20 45D05 45G10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-y. Zhang}, Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020; Zbl 1433.65361) Full Text: DOI OpenURL
Lin, Ping; Yong, Jiongmin Controlled singular Volterra integral equations and Pontryagin maximum principle. (English) Zbl 1444.45003 SIAM J. Control Optim. 58, No. 1, 136-164 (2020). MSC: 45D05 45G05 34A08 49K15 49K21 PDF BibTeX XML Cite \textit{P. Lin} and \textit{J. Yong}, SIAM J. Control Optim. 58, No. 1, 136--164 (2020; Zbl 1444.45003) Full Text: DOI arXiv OpenURL
Dobriţoiu, Maria The study of the solution of a Fredholm-Volterra integral equation by Picard operators. (English) Zbl 07560071 Stud. Univ. Babeș-Bolyai, Math. 64, No. 4, 551-563 (2019). MSC: 45G10 47H10 PDF BibTeX XML Cite \textit{M. Dobriţoiu}, Stud. Univ. Babeș-Bolyai, Math. 64, No. 4, 551--563 (2019; Zbl 07560071) Full Text: DOI OpenURL
Burton, Theodore A.; Purnaras, Ioannis K. Progressive contractions, product contractions, quadratic integro-differential equations. (English) Zbl 1484.45002 AIMS Math. 4, No. 3, 482-496 (2019). MSC: 45D05 34K05 45G05 47H10 PDF BibTeX XML Cite \textit{T. A. Burton} and \textit{I. K. Purnaras}, AIMS Math. 4, No. 3, 482--496 (2019; Zbl 1484.45002) Full Text: DOI OpenURL
Amiraliyev, Gabil M.; Yapman, Ömer; Kudu, Mustafa A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. (English) Zbl 1488.65735 Hacet. J. Math. Stat. 48, No. 5, 1417-1429 (2019). MSC: 65R20 45J05 45G10 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} et al., Hacet. J. Math. Stat. 48, No. 5, 1417--1429 (2019; Zbl 1488.65735) Full Text: Link OpenURL
Zeghdane, Rebiba Block-pulse functions and operational matrix for the numerical solution of some classes of linear and nonlinear stochastic integral equations. (English) Zbl 1469.65180 Adv. Math. Sci. Appl. 28, No. 1, 139-153 (2019). MSC: 65R20 60H20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{R. Zeghdane}, Adv. Math. Sci. Appl. 28, No. 1, 139--153 (2019; Zbl 1469.65180) OpenURL
Erfanian, Majid; Mansoori, Amin Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. (English) Zbl 07316746 Math. Comput. Simul. 165, 223-237 (2019). MSC: 45Gxx 44Axx 45Dxx 65Rxx 45Jxx PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{A. Mansoori}, Math. Comput. Simul. 165, 223--237 (2019; Zbl 07316746) Full Text: DOI OpenURL
Gal, Sorin G. Volterra-Choquet integral equations. (English) Zbl 1443.45002 J. Integral Equations Appl. 31, No. 4, 495-504 (2019). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45D05 45G10 45L05 28A12 28A25 PDF BibTeX XML Cite \textit{S. G. Gal}, J. Integral Equations Appl. 31, No. 4, 495--504 (2019; Zbl 1443.45002) Full Text: DOI Euclid OpenURL