Gal, Sorin G. Volterra-Choquet integral equations. (English) Zbl 1443.45002 J. Integral Equations Appl. 31, No. 4, 495-504 (2019). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45D05 45G10 45L05 28A12 28A25 PDF BibTeX XML Cite \textit{S. G. Gal}, J. Integral Equations Appl. 31, No. 4, 495--504 (2019; Zbl 1443.45002) Full Text: DOI Euclid OpenURL
Baghani, Omid; Baghani, Hamid A new contraction condition and its application to weakly singular Volterra integral equations of the second kind. (English) Zbl 1390.45009 J. Fixed Point Theory Appl. 19, No. 4, 2601-2615 (2017). Reviewer: Jin Liang (Shanghai) MSC: 45G05 45D05 45E10 54H25 PDF BibTeX XML Cite \textit{O. Baghani} and \textit{H. Baghani}, J. Fixed Point Theory Appl. 19, No. 4, 2601--2615 (2017; Zbl 1390.45009) Full Text: DOI OpenURL
Abdou, M. A.; Hendi, F. A.; Alnaja, Kj. M. Abu Computational method for solving Volterra-Fredholm integral equation with singular Volterra kernel. (English) Zbl 1269.65135 Far East J. Appl. Math. 72, No. 1, 23-40 (2012). Reviewer: Pat Lumb (Chester) MSC: 65R20 45D05 45B05 45G15 45G05 PDF BibTeX XML Cite \textit{M. A. Abdou} et al., Far East J. Appl. Math. 72, No. 1, 23--40 (2012; Zbl 1269.65135) Full Text: Link OpenURL
Kabanikhin, Sergey I. Inverse and ill-posed problems. Theory and applications. (English) Zbl 1247.65077 Inverse and Ill-Posed Problems Series 55. Berlin: de Gruyter (ISBN 978-3-11-022400-9/hbk; 978-3-11-022401-6/ebook). xv, 459 p. (2012). Reviewer: Robert Plato (Siegen) MSC: 65J22 65J20 34B24 35R25 35R30 45Q05 47A52 65F20 65F22 65M30 65M32 65N20 65N21 80A23 35K20 35K58 35J25 35L05 35L20 45G10 45B05 45D05 35Q61 44A12 65R10 65R30 65R32 35-02 45-02 65-02 34A55 PDF BibTeX XML Cite \textit{S. I. Kabanikhin}, Inverse and ill-posed problems. Theory and applications. Berlin: de Gruyter (2012; Zbl 1247.65077) Full Text: DOI OpenURL
Jazbi, B.; Djalalvand, M.; Garshaasbi, M. A numerical algorithm based on Adomian decomposition and product integration methods to solve a class of nonlinear weakly singular integral equations. (English) Zbl 1243.65159 Int. J. Nonlinear Sci. 11, No. 3, 353-357 (2011). MSC: 65R20 45D05 45G05 PDF BibTeX XML Cite \textit{B. Jazbi} et al., Int. J. Nonlinear Sci. 11, No. 3, 353--357 (2011; Zbl 1243.65159) OpenURL
Rasty, M.; Hadizadeh, M. A product integration approach based on new orthogonal polynomials for nonlinear weakly singular integral equations. (English) Zbl 1192.65165 Acta Appl. Math. 109, No. 3, 861-873 (2010). Reviewer: Hu Chuangan (Cupertino) MSC: 65R20 45G05 45D05 PDF BibTeX XML Cite \textit{M. Rasty} and \textit{M. Hadizadeh}, Acta Appl. Math. 109, No. 3, 861--873 (2010; Zbl 1192.65165) Full Text: DOI Link OpenURL
Imanova, Mehriban N.; Ibrahimov, Vagif R. On the convergence of numerical method of the solution of nonlinear Volterra equation of the second kind. (English) Zbl 1267.65205 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 27, No. 4, Math. Mech., 167-176 (2007). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. N. Imanova} and \textit{V. R. Ibrahimov}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 27, No. 4, Math. Mech., 167--176 (2007; Zbl 1267.65205) OpenURL
Jung, Soon-Mo A fixed point approach to the stability of a Volterra integral equation. (English) Zbl 1155.45005 Fixed Point Theory Appl. 2007, Article ID 57064, 9 p. (2007). Reviewer: B. G. Pachpatte (Aurangabad) MSC: 45M10 45G10 PDF BibTeX XML Cite \textit{S.-M. Jung}, Fixed Point Theory Appl. 2007, Article ID 57064, 9 p. (2007; Zbl 1155.45005) Full Text: DOI EuDML OpenURL
Gapeev, P. V.; Peskir, G. The Wiener disorder problem with finite horizon. (English) Zbl 1105.60027 Stochastic Processes Appl. 116, No. 12, 1770-1791 (2006). MSC: 60G40 35R35 45G10 62C10 62L15 62M20 PDF BibTeX XML Cite \textit{P. V. Gapeev} and \textit{G. Peskir}, Stochastic Processes Appl. 116, No. 12, 1770--1791 (2006; Zbl 1105.60027) Full Text: DOI OpenURL
Bughgeim, A. L. Volterra equations and inverse problems. (English) Zbl 0947.65146 Inverse and Ill-Posed Problems Series. Utrecht: VSP. vi, 204 p. (1999). Reviewer: R.Plato (Berlin) MSC: 65R20 45Q05 65-02 45D05 45G10 45N05 45M10 35R30 65M32 PDF BibTeX XML Cite \textit{A. L. Bughgeim}, Volterra equations and inverse problems. Utrecht: VSP (1999; Zbl 0947.65146) OpenURL
Jumarhon, Bartur; McKee, Sean Product integration methods for solving a system of nonlinear Volterra integral equations. (English) Zbl 0858.65139 J. Comput. Appl. Math. 69, No. 2, 285-301 (1996). Reviewer: H.Brunner (St.John’s) MSC: 65R20 35K60 65M70 65M12 45G15 35K05 PDF BibTeX XML Cite \textit{B. Jumarhon} and \textit{S. McKee}, J. Comput. Appl. Math. 69, No. 2, 285--301 (1996; Zbl 0858.65139) Full Text: DOI OpenURL
Brunner, Hermann; Yan, Ningning On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. (English) Zbl 0857.65145 J. Comput. Appl. Math. 67, No. 1, 185-189 (1996). Reviewer: Hu Chuangan (Tianjin) MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{H. Brunner} and \textit{N. Yan}, J. Comput. Appl. Math. 67, No. 1, 185--189 (1996; Zbl 0857.65145) Full Text: DOI OpenURL
Villasenor, R. A comparative study between an integral equation approach and a finite difference formulation for heat diffusion with nonlinear boundary conditions. (English) Zbl 0806.65102 Appl. Math. Modelling 18, No. 6, 321-327 (1994). Reviewer: A.Kaneko (Komaba) MSC: 65M70 65M06 65R20 45G10 35K60 PDF BibTeX XML Cite \textit{R. Villasenor}, Appl. Math. Modelling 18, No. 6, 321--327 (1994; Zbl 0806.65102) Full Text: DOI OpenURL
Czarnowski, Krzysztof On the structure of the set of solutions of a Volterra integral equation in a Banach space. (English) Zbl 0828.45011 Ann. Pol. Math. 59, No. 1, 33-39 (1994). Reviewer: I.Vrabie (Iaşi) MSC: 45N05 45G10 47H09 PDF BibTeX XML Cite \textit{K. Czarnowski}, Ann. Pol. Math. 59, No. 1, 33--39 (1994; Zbl 0828.45011) Full Text: DOI OpenURL
Han, Guoqiang Asymptotic error expansion for the Nyström method of nonlinear Volterra integral equation of the second kind. (English) Zbl 0795.65097 J. Comput. Math. 12, No. 1, 31-35 (1994). Reviewer: W.Petry (Düsseldorf) MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{G. Han}, J. Comput. Math. 12, No. 1, 31--35 (1994; Zbl 0795.65097) OpenURL
Dobner, Hans-Jürgen Verified solution of integral equations with applications. (English) Zbl 0793.65101 Adams, E. (ed.) et al., Scientific computing with automatic result verification. Boston: Academic Press, Inc.. Math. Sci. Eng. 189, 225-253 (1993). Reviewer: G.Mayer (Rostock) MSC: 65R20 65G30 45B05 45D05 45G05 45E10 PDF BibTeX XML Cite \textit{H.-J. Dobner}, Math. Sci. Eng. 189, 225--253 (1993; Zbl 0793.65101) OpenURL
Banaś, Józef; El-Sayed, Wagdy Gomaa Monotonic solutions of a nonlinear Volterra integral equation. (English) Zbl 0727.45003 Math. Contrib. Mem. V. M. Onieva Aleixandre, 19-26 (1991). Reviewer: Y.Cherruault (Paris) MSC: 45G10 PDF BibTeX XML OpenURL
Gryn’, V. I. Determination of the absorption coefficient in the spherically symmetric case. (English. Russian original) Zbl 0796.76075 U.S.S.R. Comput. Math. Math. Phys. 30, No. 5, 42-54 (1990); translation from Zh. Vychisl. Mat. Mat. Fiz. 30, No. 9, 1341-1356 (1990). MSC: 76N15 85A25 45D05 PDF BibTeX XML Cite \textit{V. I. Gryn'}, U.S.S.R. Comput. Math. Math. Phys. 30, No. 5, 42--54 (1990; Zbl 0796.76075); translation from Zh. Vychisl. Mat. Mat. Fiz. 30, No. 9, 1341--1356 (1990) Full Text: DOI OpenURL
Lazo, Dimov A. Solution of a class of linear Volterra integral equations of the second kind. (Resolution d’une classe des équations linéaires intégrales de Volterra de seconde espèce.) (Macedonian. French summary) Zbl 0783.45001 Mat. Bilt. 14, 87-90 (1990). MSC: 45D05 34A34 PDF BibTeX XML Cite \textit{D. A. Lazo}, Mat. Bilt. 14, 87--90 (1990; Zbl 0783.45001) OpenURL
Lin, J. Y.; Westmann, R. A. Viscoelastic winding mechanics. (English) Zbl 0724.73073 J. Appl. Mech. 56, No. 4, 821-827 (1989). MSC: 74D05 74D10 PDF BibTeX XML Cite \textit{J. Y. Lin} and \textit{R. A. Westmann}, J. Appl. Mech. 56, No. 4, 821--827 (1989; Zbl 0724.73073) Full Text: DOI OpenURL
Korobkin, A. A. Unsteady flow over a rough bottom. (English. Russian original) Zbl 0707.76015 Fluid Dyn. 24, No. 6, 919-925 (1989); translation from Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1989, No. 6, 111-119 (1989). MSC: 76B15 35Q30 PDF BibTeX XML Cite \textit{A. A. Korobkin}, Fluid Dyn. 24, No. 6, 919--925 (1989; Zbl 0707.76015); translation from Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1989, No. 6, 111--119 (1989) Full Text: DOI OpenURL
Kuzhmuratov, A. Ya. On functional-operator equations of Volterra type of second kind. (Russian) Zbl 0701.45006 Dokl. Akad. Nauk Tadzh. SSR 32, No. 7, 434-438 (1989). Reviewer: J.Banaś MSC: 45N05 45L05 45G10 45D05 PDF BibTeX XML Cite \textit{A. Ya. Kuzhmuratov}, Dokl. Akad. Nauk Tadzh. SSR 32, No. 7, 434--438 (1989; Zbl 0701.45006) OpenURL
Gavrilyuk, I. P.; Zhuk, P. F.; Bondarenko, L. N. Numerical solution of the mathematical model of internal-diffusion kinetics of adsorption. (English. Russian original) Zbl 0792.65105 J. Sov. Math. 66, No. 2, 2149-2155 (1993); translation from Vychisl. Prikl. Mat., Kiev 63, 30-38 (1987). MSC: 65R20 45G05 80A30 PDF BibTeX XML Cite \textit{I. P. Gavrilyuk} et al., J. Sov. Math. 66, No. 2, 1 (1987; Zbl 0792.65105); translation from Vychisl. Prikl. Mat., Kiev 63, 30--38 (1987) OpenURL
Gavrilyuk, I. P.; Zhuk, P. F.; Bondarenko, L. N. Numerical solution of the mathematical model of intradiffusion adsorption kinetics. (Russian) Zbl 0726.65155 Vychisl. Prikl. Mat., Kiev 63, 30-38 (1987). MSC: 65R20 45G05 80A30 PDF BibTeX XML Cite \textit{I. P. Gavrilyuk} et al., Vychisl. Prikl. Mat. 63, 30--38 (1987; Zbl 0726.65155) OpenURL
Baev, A. V.; Lavritova, E. V. On an algorithm of regularized inversion of the difference scheme for an inverse hyperbolic problem. (Russian) Zbl 0645.65086 Mathematical models and numerical methods, Work Collect., Moskva 1987, 41-45 (1987). Reviewer: R.S.Anderssen MSC: 65Z05 65N22 65R20 35R30 35L05 35C15 45G10 PDF BibTeX XML OpenURL
Frankel, J. I.; Vick, Brian An exact methodology for solving nonlinear diffusion equations based on integral transforms. (English) Zbl 0628.65108 Appl. Numer. Math. 3, 467-477 (1987). Reviewer: St.Burys MSC: 65N35 65R10 35K60 45G10 35C15 PDF BibTeX XML Cite \textit{J. I. Frankel} and \textit{B. Vick}, Appl. Numer. Math. 3, 467--477 (1987; Zbl 0628.65108) Full Text: DOI OpenURL
Lubich, Ch. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. (English) Zbl 0584.65090 Math. Comput. 45, 463-469 (1985). Reviewer: E.Hairer MSC: 65R20 65L05 45G05 PDF BibTeX XML Cite \textit{Ch. Lubich}, Math. Comput. 45, 463--469 (1985; Zbl 0584.65090) Full Text: DOI OpenURL
Peluso, Roberto; Piazza, Giuseppe Runge-Kutta type methods for Volterra integral equations of the second kind. (Italian. English summary) Zbl 0576.65131 Boll. Unione Mat. Ital., VI. Ser., B 4, 155-165 (1985). Reviewer: Raoul F. Gloden (Ispra) MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{R. Peluso} and \textit{G. Piazza}, Boll. Unione Mat. Ital., VI. Ser., B 4, 155--165 (1985; Zbl 0576.65131) OpenURL
Jackiewicz, Zdzisław; Kwapisz, Marian A note on the stability of \(\Theta\)-methods for Volterra integral equations of the second kind. (English) Zbl 0575.65140 Czech. Math. J. 34(109), 349-354 (1984). Reviewer: J.Kofron MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{Z. Jackiewicz} and \textit{M. Kwapisz}, Czech. Math. J. 34(109), 349--354 (1984; Zbl 0575.65140) Full Text: EuDML OpenURL
Garey, L. E.; Shaw, R. E. Locating zeros for Volterra second kind equations. (English) Zbl 0547.65042 Util. Math. 25, 325-330 (1984). MSC: 65H05 45G10 PDF BibTeX XML Cite \textit{L. E. Garey} and \textit{R. E. Shaw}, Util. Math. 25, 325--330 (1984; Zbl 0547.65042) OpenURL
Rubinstein, L. Free boundary problem for a nonlinear system of parabolic equations, including one with reversed time. (English) Zbl 0558.35078 Ann. Mat. Pura Appl., IV. Ser. 135, 27-71 (1983). Reviewer: I.Athanasopoulos MSC: 35R35 35K60 45D05 45B05 35K10 35K40 PDF BibTeX XML Cite \textit{L. Rubinstein}, Ann. Mat. Pura Appl. (4) 135, 27--71 (1983; Zbl 0558.35078) Full Text: DOI OpenURL
Pelekh, Ya. N. Numerical solution methods for Volterra integral equations. (Russian) Zbl 0533.65093 Mat. Metody Fiz.-Mekh. Polya 18, 15-18 (1983). Reviewer: E.Ihle MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{Ya. N. Pelekh}, Mat. Metody Fiz.-Mekh. Polya 18, 15--18 (1983; Zbl 0533.65093) OpenURL
Garey, L. E. A stable fourth order method for Volterra integral equations. (English) Zbl 0537.65095 Numerical mathematics and computing, Proc. 11th Manitoba Conf., Winnipeg/Manit. 1981, Congr. Numerantium 34, 259-268 (1982). MSC: 65R20 45G10 PDF BibTeX XML OpenURL
te Riele, Herman J. J. Collocation methods for weakly singular second kind Volterra integral equations with non-smooth solution. (English) Zbl 0464.65093 Math. Cent., Amst., Afd. Numer. Wiskd. NW 115/81, 19 p. (1981). MSC: 65R20 45G05 PDF BibTeX XML OpenURL
Porath, Günter Ein Approximations-Iterationsverfahren für nichtlineare Volterrasche Integralgleichungen zweiter Art. (German) Zbl 0462.65071 Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech. 1981, No. 2N, 379-383 (1981). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{G. Porath}, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech. 1981, No. 2N, 379--383 (1981; Zbl 0462.65071) OpenURL
McKee, S.; Brunner, H. The repetition factor and numerical stability of Volterra integral equations. (English) Zbl 0458.65109 Comput. Math. Appl. 6, 339-347 (1980). MSC: 65R20 45D05 45G05 PDF BibTeX XML Cite \textit{S. McKee} and \textit{H. Brunner}, Comput. Math. Appl. 6, 339--347 (1980; Zbl 0458.65109) Full Text: DOI OpenURL