Marzban, Hamid Reza; Nezami, Atiyeh Analysis of nonlinear fractional optimal control systems described by delay Volterra-Fredholm integral equations via a new spectral collocation method. (English) Zbl 07642231 Chaos Solitons Fractals 162, Article ID 112499, 14 p. (2022). MSC: 65R20 45D05 45B05 26A33 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{A. Nezami}, Chaos Solitons Fractals 162, Article ID 112499, 14 p. (2022; Zbl 07642231) Full Text: DOI OpenURL
Bekkouche, M. Moumen; Mansouri, I.; Ahmed, A. A. Azeb Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral. (English) Zbl 07632349 J. Appl. Math. Comput. 68, No. 6, 4305-4316 (2022). MSC: 34A08 34B15 45D05 65R20 PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., J. Appl. Math. Comput. 68, No. 6, 4305--4316 (2022; Zbl 07632349) Full Text: DOI OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 1490.65311 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 65R20 45J05 45G10 45B05 45D05 47H10 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 1490.65311) Full Text: DOI OpenURL
Amin, Rohul; Alrabaiah, Hussam; Mahariq, Ibrahim; Zeb, Anwar Theoretical and computational results for mixed type Volterra-Fredholm fractional integral equations. (English) Zbl 1483.65209 Fractals 30, No. 1, Article ID 2240035, 9 p. (2022). MSC: 65R20 45G05 45E10 45B05 45D05 34A08 PDF BibTeX XML Cite \textit{R. Amin} et al., Fractals 30, No. 1, Article ID 2240035, 9 p. (2022; Zbl 1483.65209) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 1499.45003 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 1499.45003) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Khazaeian, Jafar; Parandin, Noradin; Yaghobi, Farajollah; Karamikabir, Nasrin Developing an iterative method to solve two- and three-dimensional mixed Volterra-Fredholm integral equations. (English) Zbl 07487921 J. Math. Ext. 16, No. 2, Paper No. 6, 18 p. (2022). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{J. Khazaeian} et al., J. Math. Ext. 16, No. 2, Paper No. 6, 18 p. (2022; Zbl 07487921) Full Text: DOI OpenURL
Moradi, Sirous; Audegani, Ebrahim Analouei; Anjedani, Mohammad Mohammadi Existence and uniqueness of solutions of Volterra-Fredholm nonlinear integral equation in partially ordered \(b\)-metric spaces. (English) Zbl 1501.45005 Appl. Math. E-Notes 21, 385-401 (2021). MSC: 45G10 45B05 45D05 47H10 54H25 PDF BibTeX XML Cite \textit{S. Moradi} et al., Appl. Math. E-Notes 21, 385--401 (2021; Zbl 1501.45005) Full Text: Link OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI OpenURL
Hou, Jinjiao; Niu, Jing; Xu, Minqiang; Ngolo, Welreach A new numerical method to solve nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1492.65361 Math. Model. Anal. 26, No. 3, 469-478 (2021). MSC: 65R20 45G10 45D05 45B05 PDF BibTeX XML Cite \textit{J. Hou} et al., Math. Model. Anal. 26, No. 3, 469--478 (2021; Zbl 1492.65361) Full Text: DOI OpenURL
Safavi, M.; Khajehnasiri, A. A.; Jafari, A.; Banar, J. A new approach to numerical solution of nonlinear partial mixed Volterra-Fredholm integral equations via two-dimensional triangular functions. (English) Zbl 1483.65229 Malays. J. Math. Sci. 15, No. 3, 489-507 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Safavi} et al., Malays. J. Math. Sci. 15, No. 3, 489--507 (2021; Zbl 1483.65229) Full Text: Link OpenURL
Ali, Faeem; Ali, Javid; Rodríguez-López, Rosana Approximation of fixed points and the solution of a nonlinear integral equation. (English) Zbl 1496.47111 Nonlinear Funct. Anal. Appl. 26, No. 5, 869-885 (2021). MSC: 47J26 47H09 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{F. Ali} et al., Nonlinear Funct. Anal. Appl. 26, No. 5, 869--885 (2021; Zbl 1496.47111) Full Text: Link OpenURL
Hamani, Fatima; Rahmoune, Azedine Solving nonlinear Volterra-Fredholm integral equations using an accurate spectral collocation method. (English) Zbl 1491.65169 Tatra Mt. Math. Publ. 80, 35-52 (2021). MSC: 65R20 45D05 45B05 45G10 PDF BibTeX XML Cite \textit{F. Hamani} and \textit{A. Rahmoune}, Tatra Mt. Math. Publ. 80, 35--52 (2021; Zbl 1491.65169) Full Text: DOI OpenURL
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 1499.49024 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 49J21 45A05 45J05 90C30 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 1499.49024) Full Text: DOI OpenURL
Okeke, Godwin Amechi; Francis, Daniel Fixed point theorems for Geraghty-type mappings applied to solving nonlinear Volterra-Fredholm integral equations in modular \(G\)-metric spaces. (English) Zbl 1477.54120 Arab J. Math. Sci. 27, No. 2, 214-234 (2021). MSC: 54H25 54E40 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{D. Francis}, Arab J. Math. Sci. 27, No. 2, 214--234 (2021; Zbl 1477.54120) Full Text: DOI OpenURL
Roy, Bandita; Bora, Swaroop Nandan On existence and uniqueness of integral solutions for a class of nondensely defined mixed Volterra-Fredholm integro-fractional neutral differential equations. (English) Zbl 1486.45014 J. Nonlinear Evol. Equ. Appl. 2021, 41-62 (2021). Reviewer: Anar Assanova (Almaty) MSC: 45J05 45B05 45D05 47N20 26A33 34G20 47H10 47H08 PDF BibTeX XML Cite \textit{B. Roy} and \textit{S. N. Bora}, J. Nonlinear Evol. Equ. Appl. 2021, 41--62 (2021; Zbl 1486.45014) Full Text: Link OpenURL
Maleknejad, K.; Dehkordi, M. Soleiman Numerical solutions of two-dimensional nonlinear integral equations via Laguerre wavelet method with convergence analysis. (English) Zbl 1474.65502 Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 83-98 (2021). MSC: 65R20 45B05 45D05 45G10 65T60 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{M. S. Dehkordi}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 83--98 (2021; Zbl 1474.65502) Full Text: DOI OpenURL
Okeke, Godwin Amechi; Kim, Jong Kyu Fixed point theorems in complex valued Banach spaces with applications to a nonlinear integral equation. (English) Zbl 1481.47093 Nonlinear Funct. Anal. Appl. 25, No. 3, 411-436 (2020). MSC: 47J25 47H09 47N20 PDF BibTeX XML Cite \textit{G. A. Okeke} and \textit{J. K. Kim}, Nonlinear Funct. Anal. Appl. 25, No. 3, 411--436 (2020; Zbl 1481.47093) Full Text: Link OpenURL
Katani, R.; Mckee, S. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations. (English) Zbl 1436.65213 J. Comput. Appl. Math. 376, Article ID 112867, 12 p. (2020). MSC: 65R20 45G10 45D05 PDF BibTeX XML Cite \textit{R. Katani} and \textit{S. Mckee}, J. Comput. Appl. Math. 376, Article ID 112867, 12 p. (2020; Zbl 1436.65213) Full Text: DOI OpenURL
Mirzaee, Farshid; Samadyar, Nasrin Explicit representation of orthonormal Bernoulli polynomials and its application for solving Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1441.45001 S\(\vec{\text{e}}\)MA J. 77, No. 1, 81-96 (2020). Reviewer: Josef Kofroň (Praha) MSC: 45B05 45D05 45G10 65D30 65R20 42C05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, S\(\vec{\text{e}}\)MA J. 77, No. 1, 81--96 (2020; Zbl 1441.45001) Full Text: DOI OpenURL
Maleknejad, K.; Saeedipoor, E. Convergence analysis of hybrid functions method for two-dimensional nonlinear Volterra-Fredholm integral equations. (English) Zbl 1433.65354 J. Comput. Appl. Math. 368, Article ID 112533, 10 p. (2020). MSC: 65R20 45B05 45D05 45G10 45E10 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{E. Saeedipoor}, J. Comput. Appl. Math. 368, Article ID 112533, 10 p. (2020; Zbl 1433.65354) Full Text: DOI OpenURL
Amiri, Sadegh; Hajipour, Mojtaba; Baleanu, Dumitru A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations. (English) Zbl 1433.65347 Appl. Math. Comput. 370, Article ID 124915, 13 p. (2020). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{S. Amiri} et al., Appl. Math. Comput. 370, Article ID 124915, 13 p. (2020; Zbl 1433.65347) Full Text: DOI OpenURL
Beiglo, H.; Gachpazan, M. Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs. (English) Zbl 1433.65348 Appl. Math. Comput. 369, Article ID 124828, 9 p. (2020). MSC: 65R20 45B05 45D05 65T60 PDF BibTeX XML Cite \textit{H. Beiglo} and \textit{M. Gachpazan}, Appl. Math. Comput. 369, Article ID 124828, 9 p. (2020; Zbl 1433.65348) Full Text: DOI OpenURL
Binh, Ngo Thanh; Ninh, Khuat Van A numerical method for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1485.65129 Appl. Anal. Optim. 3, No. 1, 103-127 (2019). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{N. T. Binh} and \textit{K. Van Ninh}, Appl. Anal. Optim. 3, No. 1, 103--127 (2019; Zbl 1485.65129) Full Text: Link OpenURL
Zeghdane, Rebiba Block-pulse functions and operational matrix for the numerical solution of some classes of linear and nonlinear stochastic integral equations. (English) Zbl 1469.65180 Adv. Math. Sci. Appl. 28, No. 1, 139-153 (2019). MSC: 65R20 60H20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{R. Zeghdane}, Adv. Math. Sci. Appl. 28, No. 1, 139--153 (2019; Zbl 1469.65180) OpenURL
Işık, Hüseyin; Moeini, Bahman; Aydi, Hassen; Mlaiki, Nabil Fixed points of subadditive maps with an application to a system of Volterra-Fredholm type integrodifferential equations. (English) Zbl 1443.47052 Math. Probl. Eng. 2019, Article ID 6925891, 9 p. (2019). MSC: 47H10 45J05 45G10 45B05 45D05 54H25 PDF BibTeX XML Cite \textit{H. Işık} et al., Math. Probl. Eng. 2019, Article ID 6925891, 9 p. (2019; Zbl 1443.47052) Full Text: DOI OpenURL
Cheraghi Tofigh, A. A.; Ezzati, R. Introducing a new approach to solve nonlinear Volterra-Fredholm integral equations. (English) Zbl 1442.45001 TWMS J. Pure Appl. Math. 10, No. 2, 175-187 (2019). MSC: 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{A. A. Cheraghi Tofigh} and \textit{R. Ezzati}, TWMS J. Pure Appl. Math. 10, No. 2, 175--187 (2019; Zbl 1442.45001) Full Text: Link OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar functions in the complex plane. (English) Zbl 1445.65049 J. Math. Model. 7, No. 4, 399-416 (2019). MSC: 65R20 45G10 42C40 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, J. Math. Model. 7, No. 4, 399--416 (2019; Zbl 1445.65049) Full Text: DOI OpenURL
Zhao, Xiaoxu; Li, Meiyi; Lv, Xueqin An algorithm for solving \(m\)th-order nonlinear Volterra-Fredholm integro-differential equations. (Chinese. English summary) Zbl 1449.65170 Math. Pract. Theory 49, No. 14, 208-216 (2019). MSC: 65L60 65R20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{X. Zhao} et al., Math. Pract. Theory 49, No. 14, 208--216 (2019; Zbl 1449.65170) OpenURL
Negarchi, Neda; Nouri, Kazem Solving the optimal control problems with constraint of integral equations via Müntz polynomials. (English) Zbl 1434.49003 Jordan J. Math. Stat. 12, No. 1, 89-102 (2019). MSC: 49J21 45G15 49M25 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{K. Nouri}, Jordan J. Math. Stat. 12, No. 1, 89--102 (2019; Zbl 1434.49003) Full Text: Link OpenURL
Sahlan, M. Nosrati Four computational approaches for solving a class of boundary value problems arising in chemical reactor industry. (English) Zbl 1429.65173 Appl. Math. Comput. 355, 253-268 (2019). MSC: 65L60 34B15 45B05 45D05 65L10 92E20 PDF BibTeX XML Cite \textit{M. N. Sahlan}, Appl. Math. Comput. 355, 253--268 (2019; Zbl 1429.65173) Full Text: DOI OpenURL
Laeli Dastjerdi, H.; Nili Ahmadabadi, M. An efficient method for the numerical solution of Hammerstein mixed VF integral equations on 2D irregular domains. (English) Zbl 1429.65315 Appl. Math. Comput. 344-345, 46-56 (2019). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{H. Laeli Dastjerdi} and \textit{M. Nili Ahmadabadi}, Appl. Math. Comput. 344--345, 46--56 (2019; Zbl 1429.65315) Full Text: DOI OpenURL
Abdeljawad, Thabet; Agarwal, Ravi P.; Karapınar, Erdal; Kumari, P. Sumati Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended \(b\)-metric space. (English) Zbl 1425.47016 Symmetry 11, No. 5, Paper No. 686, 18 p. (2019). MSC: 54H25 54E40 34A08 45D05 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Symmetry 11, No. 5, Paper No. 686, 18 p. (2019; Zbl 1425.47016) Full Text: DOI OpenURL
Darani, Narges Mahmoodi; Maleknejad, Khosrow; Mesgarani, Hamid A new approach for two-dimensional nonlinear mixed Volterra-Fredholm integral equations and its convergence analysis. (English) Zbl 1420.65135 TWMS J. Pure Appl. Math. 10, No. 1, 132-139 (2019). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{N. M. Darani} et al., TWMS J. Pure Appl. Math. 10, No. 1, 132--139 (2019; Zbl 1420.65135) Full Text: Link OpenURL
Ninh, Khuat Van; Binh, Ngo Thanh Analytical solution of Volterra-Fredholm integral equations using hybrid of the method of contractive mapping and parameter continuation method. (English) Zbl 1421.45002 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 76, 20 p. (2019). MSC: 45G10 45B05 45D05 45L05 47J25 65R20 PDF BibTeX XML Cite \textit{K. Van Ninh} and \textit{N. T. Binh}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 76, 20 p. (2019; Zbl 1421.45002) Full Text: DOI OpenURL
Negarchi, N.; Nouri, K. A new direct method for solving optimal control problem of nonlinear Volterra-Fredholm integral equation via the Müntz-Legendre polynomials. (English) Zbl 1412.49012 Bull. Iran. Math. Soc. 45, No. 3, 917-934 (2019). MSC: 49J21 45G10 33C47 33C90 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{K. Nouri}, Bull. Iran. Math. Soc. 45, No. 3, 917--934 (2019; Zbl 1412.49012) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equation. (English) Zbl 1463.65421 J. Indian Math. Soc., New Ser. 85, No. 1-2, 53-69 (2018). MSC: 65R20 45D05 45B05 45G15 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, J. Indian Math. Soc., New Ser. 85, No. 1--2, 53--69 (2018; Zbl 1463.65421) Full Text: DOI OpenURL
Safavi, M.; Khajehnasiri, A. A. Numerical solution of nonlinear mixed Volterra-Fredholm integro-differential equations by two-dimensional block-pulse functions. (English) Zbl 1426.65219 Cogent Math. Stat. 5, Article ID 1521084, 12 p. (2018). MSC: 65R20 45G10 45J05 45D05 45B05 PDF BibTeX XML Cite \textit{M. Safavi} and \textit{A. A. Khajehnasiri}, Cogent Math. Stat. 5, Article ID 1521084, 12 p. (2018; Zbl 1426.65219) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Issa, M. SH. Bani; Ghadle, Kirtiwant P. Existence and uniqueness results for nonlinear Volterra-Fredholm integro differential equations. (English) Zbl 1423.45005 Nonlinear Funct. Anal. Appl. 23, No. 4, 797-805 (2018). MSC: 45J05 45G10 45L05 65R20 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Nonlinear Funct. Anal. Appl. 23, No. 4, 797--805 (2018; Zbl 1423.45005) OpenURL
Kucche, Kishor D.; Shikhare, Pallavi U Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations. (English) Zbl 1412.45016 Int. J. Nonlinear Anal. Appl. 9, No. 2, 145-159 (2018). MSC: 45N05 45M10 34G20 35A23 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{P. U Shikhare}, Int. J. Nonlinear Anal. Appl. 9, No. 2, 145--159 (2018; Zbl 1412.45016) Full Text: DOI OpenURL
Maleknejad, Khosrow; Mohammadikia, Hossein; Rashidinia, Jalil A numerical method for solving a system of Volterra-Fredholm integral equations of the second kind based on the meshless method. (English) Zbl 1413.65487 Afr. Mat. 29, No. 5-6, 955-965 (2018). MSC: 65R20 45G15 45D05 45B05 PDF BibTeX XML Cite \textit{K. Maleknejad} et al., Afr. Mat. 29, No. 5--6, 955--965 (2018; Zbl 1413.65487) Full Text: DOI OpenURL
Erfanian, M. The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane. (English) Zbl 1383.65156 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 31, 13 p. (2018). MSC: 65R20 45B05 45D05 45G10 45P05 65T60 PDF BibTeX XML Cite \textit{M. Erfanian}, Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 31, 13 p. (2018; Zbl 1383.65156) Full Text: DOI OpenURL
Atalan, Yunus; Karakaya, Vatan Iterative solution of functional Volterra-Fredholm integral equation with deviating argument. (English) Zbl 1469.45009 J. Nonlinear Convex Anal. 18, No. 4, 675-684 (2017). MSC: 45L05 45B05 45D05 45G10 47J25 65R20 PDF BibTeX XML Cite \textit{Y. Atalan} and \textit{V. Karakaya}, J. Nonlinear Convex Anal. 18, No. 4, 675--684 (2017; Zbl 1469.45009) Full Text: Link OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations. (English) Zbl 1488.65744 Korean J. Math. 25, No. 3, 323-334 (2017). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Korean J. Math. 25, No. 3, 323--334 (2017; Zbl 1488.65744) Full Text: DOI OpenURL
Wang, Jiangfeng; Meng, Fanwei; Gu, Juan Estimates on some power nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales. (English) Zbl 1422.34263 Adv. Difference Equ. 2017, Paper No. 257, 16 p. (2017). MSC: 34N05 26D15 45B05 45D05 26E70 PDF BibTeX XML Cite \textit{J. Wang} et al., Adv. Difference Equ. 2017, Paper No. 257, 16 p. (2017; Zbl 1422.34263) Full Text: DOI OpenURL
Sivasankari, A.; Leelamani, A. Existence of mild solutions for an impulsive fractional neutral integro-differential equations with non-local conditions in Banach spaces. (English) Zbl 1375.45004 Nonlinear Stud. 24, No. 3, 603-618 (2017). MSC: 45D05 45J05 34A37 34G20 34A08 PDF BibTeX XML Cite \textit{A. Sivasankari} and \textit{A. Leelamani}, Nonlinear Stud. 24, No. 3, 603--618 (2017; Zbl 1375.45004) Full Text: Link OpenURL
Hendi, F. A.; Al-Qarni, M. M. The homotopy perturbation method for solving nonlinear Volterra-Fredholm integral equation with singular Volterra kernel. (English) Zbl 1373.45001 Far East J. Appl. Math. 96, No. 4, 233-243 (2017). MSC: 45B05 45E10 PDF BibTeX XML Cite \textit{F. A. Hendi} and \textit{M. M. Al-Qarni}, Far East J. Appl. Math. 96, No. 4, 233--243 (2017; Zbl 1373.45001) Full Text: DOI OpenURL
Lin, Yuanhua; Wang, Wusheng A class of nonlinear Volterra-Fredholm type integral inequalities involving four iterated infinite integrals. (Chinese. English summary) Zbl 1389.26046 J. Sichuan Norm. Univ., Nat. Sci. 40, No. 2, 184-188 (2017). MSC: 26D15 45G10 PDF BibTeX XML Cite \textit{Y. Lin} and \textit{W. Wang}, J. Sichuan Norm. Univ., Nat. Sci. 40, No. 2, 184--188 (2017; Zbl 1389.26046) Full Text: DOI OpenURL
Ghomanjani, Fateme; Farahi, M. H.; Pariz, N. A new approach for numerical solution of a linear system with distributed delays, Volterra delay-integro-differential equations, and nonlinear Volterra-Fredholm integral equation by Bézier curves. (A new approach for numerical solution of a linear system with distributed delays, Volterra delay-integro-differential equations, and nonlinear Volterra-Fredholm integral equation by Bezier curves.) (English) Zbl 1376.65155 Comput. Appl. Math. 36, No. 3, 1349-1365 (2017). MSC: 65R20 45J05 45B05 45D05 45F05 45G10 PDF BibTeX XML Cite \textit{F. Ghomanjani} et al., Comput. Appl. Math. 36, No. 3, 1349--1365 (2017; Zbl 1376.65155) Full Text: DOI OpenURL
Mirzaee, Farshid; Hadadiyan, Elham Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. (English) Zbl 1376.65157 Math. Methods Appl. Sci. 40, No. 10, 3433-3444 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65R20 45D05 45B05 45G10 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{E. Hadadiyan}, Math. Methods Appl. Sci. 40, No. 10, 3433--3444 (2017; Zbl 1376.65157) Full Text: DOI OpenURL
Erfanian, M.; Gachpazan, M.; Beiglo, H. A new sequential approach for solving the integro-differential equation via Haar wavelet bases. (English) Zbl 1379.65101 Comput. Math. Math. Phys. 57, No. 2, 297-305 (2017). Reviewer: Xiaosheng Zhuang (Hong Kong) MSC: 65R20 45B05 45D05 45J05 45G10 65T60 PDF BibTeX XML Cite \textit{M. Erfanian} et al., Comput. Math. Math. Phys. 57, No. 2, 297--305 (2017; Zbl 1379.65101) Full Text: DOI OpenURL
Maleknejad, K.; Saeedipoor, E. Hybrid function method and convergence analysis for two-dimensional nonlinear integral equations. (English) Zbl 1365.65284 J. Comput. Appl. Math. 322, 96-108 (2017). MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{E. Saeedipoor}, J. Comput. Appl. Math. 322, 96--108 (2017; Zbl 1365.65284) Full Text: DOI OpenURL
Sadri, K.; Amini, A.; Cheng, C. Low cost numerical solution for three-dimensional linear and nonlinear integral equations via three-dimensional Jacobi polynomials. (English) Zbl 1360.65310 J. Comput. Appl. Math. 319, 493-513 (2017). MSC: 65R20 45A05 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{K. Sadri} et al., J. Comput. Appl. Math. 319, 493--513 (2017; Zbl 1360.65310) Full Text: DOI OpenURL
Xie, Jiaquan; Huang, Qingxue; Zhao, Fuqiang Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions. (English) Zbl 1357.65327 J. Comput. Appl. Math. 317, 565-572 (2017). MSC: 65R20 45B05 45D05 45G10 47H30 PDF BibTeX XML Cite \textit{J. Xie} et al., J. Comput. Appl. Math. 317, 565--572 (2017; Zbl 1357.65327) Full Text: DOI OpenURL
Hesameddini, Esmail; Shahbazi, Mehdi Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. (English) Zbl 1352.45007 J. Comput. Appl. Math. 315, 182-194 (2017). MSC: 45G10 65R20 68U20 65C20 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, J. Comput. Appl. Math. 315, 182--194 (2017; Zbl 1352.45007) Full Text: DOI OpenURL
Mirzaee, Farshid; Hadadiyan, Elham Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. (English) Zbl 1410.65501 Appl. Math. Comput. 280, 110-123 (2016). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{E. Hadadiyan}, Appl. Math. Comput. 280, 110--123 (2016; Zbl 1410.65501) Full Text: DOI OpenURL
Mirzaee, Farshid; Hoseini, Seyede Fatemeh Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations. (English) Zbl 1410.65070 Appl. Math. Comput. 273, 637-644 (2016). MSC: 65D30 41A10 45G10 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{S. F. Hoseini}, Appl. Math. Comput. 273, 637--644 (2016; Zbl 1410.65070) Full Text: DOI OpenURL
El-Kalla, I. L.; Abd-Elmonem, R. A.; Gomaa, A. M. Numerical approach for solving a class of nonlinear mixed Volterra Fredholm integral equations. (English) Zbl 1404.65320 Electron. J. Math. Anal. Appl. 4, No. 1, 1-10 (2016). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{I. L. El-Kalla} et al., Electron. J. Math. Anal. Appl. 4, No. 1, 1--10 (2016; Zbl 1404.65320) Full Text: Link OpenURL
Hendi, F. A.; Al-Qarni, M. M. Numerical solution of nonlinear mixed integral equations with singular Volterra kernel. (English) Zbl 1367.45001 Int. J. Adv. Appl. Math. Mech. 3, No. 4, 41-48 (2016). MSC: 45B05 PDF BibTeX XML Cite \textit{F. A. Hendi} and \textit{M. M. Al-Qarni}, Int. J. Adv. Appl. Math. Mech. 3, No. 4, 41--48 (2016; Zbl 1367.45001) Full Text: Link OpenURL
Gürsoy, Faik A Picard-S iterative method for approximating fixed point of weak-contraction mappings. (English) Zbl 1465.47054 Filomat 30, No. 10, 2829-2845 (2016). MSC: 47J26 47H09 45G99 PDF BibTeX XML Cite \textit{F. Gürsoy}, Filomat 30, No. 10, 2829--2845 (2016; Zbl 1465.47054) Full Text: DOI OpenURL
Ebadian, Ali; Farahrooz, Foroozan; Khajehnasiri, Amirahmad On the convergence of two-dimensional fuzzy Volterra-Fredholm integral equations by using Picard method. (English) Zbl 1356.65255 Appl. Appl. Math. 11, No. 2, 585-598 (2016). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{A. Ebadian} et al., Appl. Appl. Math. 11, No. 2, 585--598 (2016; Zbl 1356.65255) Full Text: Link OpenURL
Mirzaee, Farshid; Hadadiyan, Elham A new numerical method for solving two-dimensional Volterra-Fredholm integral equations. (English) Zbl 1354.65278 J. Appl. Math. Comput. 52, No. 1-2, 489-513 (2016). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{E. Hadadiyan}, J. Appl. Math. Comput. 52, No. 1--2, 489--513 (2016; Zbl 1354.65278) Full Text: DOI OpenURL
Sahu, P. K.; Ray, S. Saha A numerical approach for solving nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions. (English) Zbl 1354.65279 Int. J. Wavelets Multiresolut. Inf. Process. 14, No. 5, Article ID 1650036, 15 p. (2016). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 45B05 45G10 45J05 PDF BibTeX XML Cite \textit{P. K. Sahu} and \textit{S. S. Ray}, Int. J. Wavelets Multiresolut. Inf. Process. 14, No. 5, Article ID 1650036, 15 p. (2016; Zbl 1354.65279) Full Text: DOI OpenURL
Gouyandeh, Z.; Allahviranloo, T.; Armand, A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via tau-collocation method with convergence analysis. (English) Zbl 1346.65075 J. Comput. Appl. Math. 308, 435-446 (2016). MSC: 65R20 45B05 45D05 45G10 47H30 PDF BibTeX XML Cite \textit{Z. Gouyandeh} et al., J. Comput. Appl. Math. 308, 435--446 (2016; Zbl 1346.65075) Full Text: DOI OpenURL
Chen, Zhong; Jiang, Wei An efficient algorithm for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1448.65278 Appl. Math. Comput. 259, 614-619 (2015). MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{W. Jiang}, Appl. Math. Comput. 259, 614--619 (2015; Zbl 1448.65278) Full Text: DOI OpenURL
El-Gamel, M.; Mohsen, A. Sinc and the numerical solution of Volterra-Fredholm integro-differential equations. (English) Zbl 1374.65212 Acta Univ. Apulensis, Math. Inform. 43, 169-186 (2015). MSC: 65R20 45J05 45B05 45D05 45A05 45G10 65Y20 45G05 PDF BibTeX XML Cite \textit{M. El-Gamel} and \textit{A. Mohsen}, Acta Univ. Apulensis, Math. Inform. 43, 169--186 (2015; Zbl 1374.65212) OpenURL
Nemati, S.; Lima, P.; Ordokhani, Y. Numerical method for the mixed Volterra-Fredholm integral equations using hybrid Legendre functions. (English) Zbl 1363.65222 Brandts, J. (ed.) et al., Proceedings of the international conference ‘Applications of mathematics’, Prague, Czech Republic, November 18–21, 2015. In honor of the birthday anniversaries of Ivo Babuška (90), Milan Práger (85), and Emil Vitásek (85). Prague: Czech Academy of Sciences, Institute of Mathematics (ISBN 978-80-85823-65-3). 184-193 (2015). MSC: 65R20 45A05 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{S. Nemati} et al., in: Proceedings of the international conference `Applications of mathematics', Prague, Czech Republic, November 18--21, 2015. In honor of the birthday anniversaries of Ivo Babuška (90), Milan Práger (85), and Emil Vitásek (85). Prague: Czech Academy of Sciences, Institute of Mathematics. 184--193 (2015; Zbl 1363.65222) Full Text: Link OpenURL
Das, Payel; Nelakanti, Gnaneshwar Convergence analysis of Legendre spectral Galerkin method for Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1337.65176 Agrawal, P. N. (ed.) et al., Mathematical analysis and its applications. Proceedings of the international conference on recent trends in mathematical analyis and its applications, ICRTMAA 2014, Roorkee, India, December 21–23, 2014. New Delhi: Springer (ISBN 978-81-322-2484-6/hbk; 978-81-322-2485-3/ebook). Springer Proceedings in Mathematics & Statistics 143, 3-15 (2015). MSC: 65R20 45B05 45D05 45G10 47H30 PDF BibTeX XML Cite \textit{P. Das} and \textit{G. Nelakanti}, Springer Proc. Math. Stat. 143, 3--15 (2015; Zbl 1337.65176) Full Text: DOI OpenURL
Borzabadi, Akbar Hashemi; Heidari, Mohammad A successive numerical scheme for some classes of Volterra-Fredholm integral equations. (English) Zbl 1342.65239 Iran. J. Math. Sci. Inform. 10, No. 2, 1-10 (2015). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{A. H. Borzabadi} and \textit{M. Heidari}, Iran. J. Math. Sci. Inform. 10, No. 2, 1--10 (2015; Zbl 1342.65239) Full Text: Link OpenURL
Darania, Parviz; Shali, Jafar Ahmadi Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations. (English) Zbl 1335.65101 Sahand Commun. Math. Anal. 2, No. 1, 57-69 (2015). MSC: 65R20 45D05 45G05 45B05 PDF BibTeX XML Cite \textit{P. Darania} and \textit{J. A. Shali}, Sahand Commun. Math. Anal. 2, No. 1, 57--69 (2015; Zbl 1335.65101) Full Text: Link OpenURL
Hetmaniok, Edyta; Nowak, Iwona; Słota, Damian; Wituła, Roman Convergence and error estimation of homotopy analysis method for some type of nonlinear and linear integral equations. (English) Zbl 1328.65272 J. Numer. Math. 23, No. 4, 331-344 (2015). MSC: 65R20 45G10 45A05 PDF BibTeX XML Cite \textit{E. Hetmaniok} et al., J. Numer. Math. 23, No. 4, 331--344 (2015; Zbl 1328.65272) Full Text: DOI OpenURL
Dhakne, Machindra B.; Bora, Poonam S. On nonlinear second order Volterra-Fredholm functional integrodifferential equation with nonlocal condition in Banach spaces. (English) Zbl 1332.45007 Fasc. Math. 54, 75-96 (2015). Reviewer: J. Vasundhara Devi (Visakhapatnam) MSC: 45J05 47H10 45D05 45B05 45G10 47H08 PDF BibTeX XML Cite \textit{M. B. Dhakne} and \textit{P. S. Bora}, Fasc. Math. 54, 75--96 (2015; Zbl 1332.45007) Full Text: DOI OpenURL
Moradi, S.; Mohammadi Anjedani, M.; Analoei, E. On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation. (English) Zbl 1322.45002 Int. J. Nonlinear Anal. Appl. 6, No. 1, 62-68 (2015). MSC: 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{S. Moradi} et al., Int. J. Nonlinear Anal. Appl. 6, No. 1, 62--68 (2015; Zbl 1322.45002) Full Text: Link OpenURL
Hosseini, S. A.; Shahmorad, S.; Talati, F. A matrix based method for two dimensional nonlinear Volterra-Fredholm integral equations. (English) Zbl 1317.65252 Numer. Algorithms 68, No. 3, 511-529 (2015). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{S. A. Hosseini} et al., Numer. Algorithms 68, No. 3, 511--529 (2015; Zbl 1317.65252) Full Text: DOI OpenURL
Bazm, S. Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. (English) Zbl 1297.65202 J. Comput. Appl. Math. 275, 44-60 (2015). MSC: 65R20 PDF BibTeX XML Cite \textit{S. Bazm}, J. Comput. Appl. Math. 275, 44--60 (2015; Zbl 1297.65202) Full Text: DOI OpenURL
Kucche, Kishor D.; Dhakne, M. B. Sobolev-type Volterra-Fredholm functional integrodifferential equations in Banach spaces. (English) Zbl 1413.45022 Bol. Soc. Parana. Mat. (3) 32, No. 1, 239-255 (2014). MSC: 45N05 45D05 45B05 47D06 47H20 35A23 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{M. B. Dhakne}, Bol. Soc. Parana. Mat. (3) 32, No. 1, 239--255 (2014; Zbl 1413.45022) Full Text: Link OpenURL
Bousselsal, Mahmoud; Jah, Sidi Hamidou Integrable solutions of a nonlinear integral equation via noncompactness measure and Krasnoselskii’s fixed point theorem. (English) Zbl 1390.45014 Int. J. Anal. 2014, Article ID 280709, 10 p. (2014). MSC: 45G10 45D05 PDF BibTeX XML Cite \textit{M. Bousselsal} and \textit{S. H. Jah}, Int. J. Anal. 2014, Article ID 280709, 10 p. (2014; Zbl 1390.45014) Full Text: DOI OpenURL
Turkyilmazoglu, M. High-order nonlinear Volterra-Fredholm-Hammerstein integro-differential equations and their effective computation. (English) Zbl 1338.45007 Appl. Math. Comput. 247, 410-416 (2014). MSC: 45G10 45J05 65R20 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, Appl. Math. Comput. 247, 410--416 (2014; Zbl 1338.45007) Full Text: DOI OpenURL
Mirzaee, Farshid; Hadadiyan, Elham; Bimesl, Saeed Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via three-dimensional block-pulse functions. (English) Zbl 1334.65209 Appl. Math. Comput. 237, 168-175 (2014). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{F. Mirzaee} et al., Appl. Math. Comput. 237, 168--175 (2014; Zbl 1334.65209) Full Text: DOI OpenURL
Abd-Elhameed, W. M.; Youssri, Y. H. Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm. (English) Zbl 1318.65082 Adv. Math. Sci. Appl. 24, No. 1, 129-141 (2014). MSC: 65R20 45B05 45G10 45D05 47H30 PDF BibTeX XML Cite \textit{W. M. Abd-Elhameed} and \textit{Y. H. Youssri}, Adv. Math. Sci. Appl. 24, No. 1, 129--141 (2014; Zbl 1318.65082) OpenURL
Golbabai, A. A numerical technique based on operational matrices for solving nonlinear integro-differential equations. (English) Zbl 1312.65223 Iran. J. Numer. Anal. Optim. 4, No. 1, 41-56 (2014). MSC: 65R20 65R10 34A08 45B05 45D05 PDF BibTeX XML Cite \textit{A. Golbabai}, Iran. J. Numer. Anal. Optim. 4, No. 1, 41--56 (2014; Zbl 1312.65223) Full Text: DOI OpenURL
Almasieh, H.; Nazari Meleh, J. Numerical solution of a class of mixed two-dimensional nonlinear Volterra-Fredholm integral equations using multiquadric radial basis functions. (English) Zbl 1293.65165 J. Comput. Appl. Math. 260, 173-179 (2014). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{H. Almasieh} and \textit{J. Nazari Meleh}, J. Comput. Appl. Math. 260, 173--179 (2014; Zbl 1293.65165) Full Text: DOI OpenURL
Aziz, Imran; Siraj-ul-Islam; Khan, Fawad A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. (English) Zbl 1310.65162 J. Comput. Appl. Math. 272, 70-80 (2014). MSC: 65R20 65T60 42C40 PDF BibTeX XML Cite \textit{I. Aziz} et al., J. Comput. Appl. Math. 272, 70--80 (2014; Zbl 1310.65162) Full Text: DOI OpenURL
Mirzaee, Farshid; Hadadiyan, Elham A computational method for nonlinear mixed Volterra-Fredholm integral equations. (English) Zbl 1412.45002 Casp. J. Math. Sci. 2, No. 2, 113-123 (2013). MSC: 45A05 65D30 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{E. Hadadiyan}, Casp. J. Math. Sci. 2, No. 2, 113--123 (2013; Zbl 1412.45002) Full Text: Link OpenURL
Assari, Pouria; Adibi, Hojatollah; Dehghan, Mehdi A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. (English) Zbl 1427.65415 Appl. Math. Modelling 37, No. 22, 9269-9294 (2013). MSC: 65R20 45B05 45G10 45D05 PDF BibTeX XML Cite \textit{P. Assari} et al., Appl. Math. Modelling 37, No. 22, 9269--9294 (2013; Zbl 1427.65415) Full Text: DOI OpenURL
Wang, Keyan; Wang, Qisheng; Guan, Kaizhong Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation. (English) Zbl 1334.65212 Appl. Math. Comput. 225, 631-637 (2013). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{K. Wang} et al., Appl. Math. Comput. 225, 631--637 (2013; Zbl 1334.65212) Full Text: DOI OpenURL
Roodaki, Masood; JafariBehbahani, Zahra A projection method for solving nonlinear Volterra-Fredholm integral equations using Legendre hybrid functions. (English) Zbl 1312.65230 J. Math. Ext. 7, No. 3, 77-93 (2013). MSC: 65R20 65L20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Roodaki} and \textit{Z. JafariBehbahani}, J. Math. Ext. 7, No. 3, 77--93 (2013; Zbl 1312.65230) OpenURL
Kucche, Kishor D.; Dhakne, M. B. On existence results and qualitative properties of mild solution of semilinear mixed Volterra-Fredholm functional integrodifferential equations in Banach spaces. (English) Zbl 1298.45017 Appl. Math. Comput. 219, No. 22, 10806-10816 (2013). MSC: 45N05 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{M. B. Dhakne}, Appl. Math. Comput. 219, No. 22, 10806--10816 (2013; Zbl 1298.45017) Full Text: DOI OpenURL
Zarebnia, M. A numerical solution of nonlinear Volterra-Fredholm integral equations. (English) Zbl 1293.65175 J. Appl. Anal. Comput. 3, No. 1, 95-104 (2013). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{M. Zarebnia}, J. Appl. Anal. Comput. 3, No. 1, 95--104 (2013; Zbl 1293.65175) OpenURL
Dhakne, M. B.; Kucche, Kishor D. Second order Volterra-Fredholm functional integrodifferential equations. (English) Zbl 1369.45004 Malaya J. Mat., Spec. Iss., 1-7 (2012). MSC: 45G10 47H10 35R10 PDF BibTeX XML Cite \textit{M. B. Dhakne} and \textit{K. D. Kucche}, Malaya J. Mat., 1--7 (2012; Zbl 1369.45004) Full Text: Link OpenURL
Sohrabi, Saeed An efficient spectral method for nonlinear integro-differential equations. (English) Zbl 1289.65296 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 74, No. 3, 75-88 (2012). MSC: 65R20 45G10 45B05 45D05 45J05 PDF BibTeX XML Cite \textit{S. Sohrabi}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 74, No. 3, 75--88 (2012; Zbl 1289.65296) OpenURL
Wei, Jinxia; Shan, Rui; Liu, Wen; Jin, Fei A CAS wavelet method for the numerical solution of high-order nonlinear integro-differential equations with weak singularity. (Chinese. English summary) Zbl 1274.65346 J. Hefei Univ. Technol., Nat. Sci. 35, No. 9, 1293-1296 (2012). MSC: 65R20 65T60 45B05 45D05 45G05 45J05 PDF BibTeX XML Cite \textit{J. Wei} et al., J. Hefei Univ. Technol., Nat. Sci. 35, No. 9, 1293--1296 (2012; Zbl 1274.65346) Full Text: DOI OpenURL
Marzban, Hamid Reza; Hoseini, Sayyed Mohammad Solution of nonlinear Volterra-Fredholm integrodifferential equations via hybrid of block-pulse functions and Lagrange interpolating polynomials. (English) Zbl 1268.65168 Adv. Numer. Anal. 2012, Article ID 868279, 14 p. (2012). MSC: 65R20 45J05 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{S. M. Hoseini}, Adv. Numer. Anal. 2012, Article ID 868279, 14 p. (2012; Zbl 1268.65168) Full Text: DOI OpenURL
Bugajewski, Dariusz; Kasprzak, Piotr On mappings of higher order and their applications to nonlinear equations. (English) Zbl 1285.47073 Commun. Pure Appl. Anal. 11, No. 2, 627-647 (2012). Reviewer: Peter Zabreiko (Minsk) MSC: 47J05 47H30 46T20 47H09 26A45 47N20 PDF BibTeX XML Cite \textit{D. Bugajewski} and \textit{P. Kasprzak}, Commun. Pure Appl. Anal. 11, No. 2, 627--647 (2012; Zbl 1285.47073) Full Text: DOI OpenURL
Abdou, M. A.; Hendi, F. A.; Alnaja, Kj. M. Abu Computational method for solving Volterra-Fredholm integral equation with singular Volterra kernel. (English) Zbl 1269.65135 Far East J. Appl. Math. 72, No. 1, 23-40 (2012). Reviewer: Pat Lumb (Chester) MSC: 65R20 45D05 45B05 45G15 45G05 PDF BibTeX XML Cite \textit{M. A. Abdou} et al., Far East J. Appl. Math. 72, No. 1, 23--40 (2012; Zbl 1269.65135) Full Text: Link OpenURL
Liu, Xing-Yan Volterra-Fredholm integral inequalities with two nonlinear terms. (English) Zbl 1272.45008 Panam. Math. J. 22, No. 4, 123-131 (2012). Reviewer: Adrian Carabineanu (Bucureşti) MSC: 45G99 47J05 26D10 45B05 45D05 PDF BibTeX XML Cite \textit{X.-Y. Liu}, Panam. Math. J. 22, No. 4, 123--131 (2012; Zbl 1272.45008) OpenURL
Tidke, Haribhau L.; Dhakne, Machindra B. Nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. (English) Zbl 1265.45012 Appl. Math., Praha 57, No. 3, 297-307 (2012). Reviewer: Marius-Marinel Stanescu (Craiova) MSC: 45G10 45N05 47G20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{H. L. Tidke} and \textit{M. B. Dhakne}, Appl. Math., Praha 57, No. 3, 297--307 (2012; Zbl 1265.45012) Full Text: DOI Link OpenURL
Dhakne, Machindra Baburao; Kucche, Kishor D. Global existence for abstract nonlinear Volterra-Fredholm functional integrodifferential equation. (English) Zbl 1255.45006 Demonstr. Math. 45, No. 1, 117-127 (2012). Reviewer: Kun Soo Chang (Seoul) MSC: 45N05 45J05 45G10 PDF BibTeX XML Cite \textit{M. B. Dhakne} and \textit{K. D. Kucche}, Demonstr. Math. 45, No. 1, 117--127 (2012; Zbl 1255.45006) Full Text: DOI OpenURL
Yazdani, S.; Hadizadeh, M. Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations. (English) Zbl 1259.65220 Comput. Appl. Math. 31, No. 2, 305-322 (2012). Reviewer: Alexandru Mihai Bica (Oradea) MSC: 65R20 65G20 45G10 65G40 45D05 45B05 PDF BibTeX XML Cite \textit{S. Yazdani} and \textit{M. Hadizadeh}, Comput. Appl. Math. 31, No. 2, 305--322 (2012; Zbl 1259.65220) Full Text: DOI Link OpenURL
Maleknejad, Khosrow; Hashemizadeh, Elham; Basirat, B. Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1244.65243 Commun. Nonlinear Sci. Numer. Simul. 17, No. 1, 52-61 (2012). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{K. Maleknejad} et al., Commun. Nonlinear Sci. Numer. Simul. 17, No. 1, 52--61 (2012; Zbl 1244.65243) Full Text: DOI OpenURL