Romijn, L. B.; ten Thije Boonkkamp, J. H. M.; Anthonissen, M. J. H.; Jzerman, W. L. An iterative least-squares method for generated Jacobian equations in freeform optical design. (English) Zbl 07331000 SIAM J. Sci. Comput. 43, No. 2, B298-B322 (2021). MSC: 35J66 35J96 49K20 65K10 65N99 PDF BibTeX XML Cite \textit{L. B. Romijn} et al., SIAM J. Sci. Comput. 43, No. 2, B298--B322 (2021; Zbl 07331000) Full Text: DOI
Mbarki, Lamine Existence results for perturbed weighted \(p(x)\)-biharmonic problem with Navier boundary conditions. (English) Zbl 07327585 Complex Var. Elliptic Equ. 66, No. 4, 569-582 (2021). MSC: 35D05 35J60 35J70 58E05 PDF BibTeX XML Cite \textit{L. Mbarki}, Complex Var. Elliptic Equ. 66, No. 4, 569--582 (2021; Zbl 07327585) Full Text: DOI
Han, Zheng; Fang, Daoyuan Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. (English) Zbl 07327301 Commun. Pure Appl. Anal. 20, No. 2, 737-754 (2021). MSC: 35L72 35L20 58J45 70K45 PDF BibTeX XML Cite \textit{Z. Han} and \textit{D. Fang}, Commun. Pure Appl. Anal. 20, No. 2, 737--754 (2021; Zbl 07327301) Full Text: DOI
Wu, Jinbiao Stochastic viscosity solutions for stochastic integral-partial differential equations. (English) Zbl 07326341 J. Math. Phys. 62, No. 2, 021501, 23 p. (2021). MSC: 35D40 35R60 35R09 PDF BibTeX XML Cite \textit{J. Wu}, J. Math. Phys. 62, No. 2, 021501, 23 p. (2021; Zbl 07326341) Full Text: DOI
Knopf, Patrik; Signori, Andrea On the nonlocal Cahn-Hilliard equation with nonlocal dynamic boundary condition and boundary penalization. (English) Zbl 07319432 J. Differ. Equations 280, 236-291 (2021). MSC: 35A01 35A02 35A15 35K61 35B40 35B41 45K05 47H05 47J35 80A22 PDF BibTeX XML Cite \textit{P. Knopf} and \textit{A. Signori}, J. Differ. Equations 280, 236--291 (2021; Zbl 07319432) Full Text: DOI
Akhtyamov, A. M. Nonexistence of degenerate boundary conditions in a spectral problem. (English. Russian original) Zbl 07314333 Differ. Equ. 57, No. 1, 117-121 (2021); translation from Differ. Uravn. 57, No. 1, 130-134 (2021). Reviewer: Andreas Fleige (Dortmund) MSC: 34B09 34B07 34L05 PDF BibTeX XML Cite \textit{A. M. Akhtyamov}, Differ. Equ. 57, No. 1, 117--121 (2021; Zbl 07314333); translation from Differ. Uravn. 57, No. 1, 130--134 (2021) Full Text: DOI
Biala, T. A.; Khaliq, Abdul Q. M. Predictor-corrector schemes for nonlinear space-fractional parabolic PDEs with time-dependent boundary conditions. (English) Zbl 07310760 Appl. Numer. Math. 160, 1-22 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65M06 65N06 65D32 65L10 41A21 35R11 PDF BibTeX XML Cite \textit{T. A. Biala} and \textit{A. Q. M. Khaliq}, Appl. Numer. Math. 160, 1--22 (2021; Zbl 07310760) Full Text: DOI
Henríquez-Amador, Javier; Vélez-Santiago, Alejandro Generalized anisotropic Neumann problems of Ambrosetti-Prodi type with nonstandard growth conditions. (English) Zbl 07310682 J. Math. Anal. Appl. 494, No. 2, Article ID 124668, 38 p. (2021). MSC: 35J60 35J67 35A01 PDF BibTeX XML Cite \textit{J. Henríquez-Amador} and \textit{A. Vélez-Santiago}, J. Math. Anal. Appl. 494, No. 2, Article ID 124668, 38 p. (2021; Zbl 07310682) Full Text: DOI
Kang, Hao; Ruan, Shigui Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions. (English) Zbl 07303714 J. Differ. Equations 278, 430-462 (2021). MSC: 35F31 35R09 92D25 35P20 45K05 45A05 45G10 47D06 PDF BibTeX XML Cite \textit{H. Kang} and \textit{S. Ruan}, J. Differ. Equations 278, 430--462 (2021; Zbl 07303714) Full Text: DOI
Metzger, Stefan An efficient and convergent finite element scheme for Cahn-Hilliard equations with dynamic boundary conditions. (English) Zbl 07302953 SIAM J. Numer. Anal. 59, No. 1, 219-248 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76T06 35G31 65M60 65M12 PDF BibTeX XML Cite \textit{S. Metzger}, SIAM J. Numer. Anal. 59, No. 1, 219--248 (2021; Zbl 07302953) Full Text: DOI
Cuesta, Mabel; Leadi, Liamidi Positive and sign-changing solutions for a quasilinear Steklov nonlinear boundary problem with critical growth. (English) Zbl 07301271 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021). MSC: 35B09 35D30 35J66 35J92 35J70 35J25 35J20 PDF BibTeX XML Cite \textit{M. Cuesta} and \textit{L. Leadi}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021; Zbl 07301271) Full Text: DOI
Chen, Rong; Pan, Shihang; Zhang, Baoshuai Global conservative solutions for a modified periodic coupled Camassa-Holm system. (English) Zbl 07300778 Electron Res. Arch. 29, No. 1, 1691-1708 (2021). MSC: 35B60 35A01 35A02 35D30 35G25 35G25 PDF BibTeX XML Cite \textit{R. Chen} et al., Electron Res. Arch. 29, No. 1, 1691--1708 (2021; Zbl 07300778) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 1454.35031 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 1454.35031) Full Text: DOI
Furtado, Marcelo Fernandes; de Sousa, Karla Carolina Vicente Multiplicity of solutions for a nonlinear boundary value problem in the upper half-space. (English) Zbl 1454.35150 J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021). MSC: 35J61 35J25 35A01 PDF BibTeX XML Cite \textit{M. F. Furtado} and \textit{K. C. V. de Sousa}, J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021; Zbl 1454.35150) Full Text: DOI
Erignoux, C.; Gonçalves, P.; Nahum, G. Hydrodynamics for SSEP with non-reversible slow boundary dynamics. I: The critical regime and beyond. (English) Zbl 07327448 J. Stat. Phys. 181, No. 4, 1433-1469 (2020). MSC: 82C22 35Q79 35D30 60K35 26A24 PDF BibTeX XML Cite \textit{C. Erignoux} et al., J. Stat. Phys. 181, No. 4, 1433--1469 (2020; Zbl 07327448) Full Text: DOI
Alotaibi, Trad; Hai, D. D.; Shivaji, R. Existence and nonexistence of positive radial solutions for a class of \(p\)-Laplacian superlinear problems with nonlinear boundary conditions. (English) Zbl 07326907 Commun. Pure Appl. Anal. 19, No. 9, 4655-4666 (2020). MSC: 35J92 35J66 35J75 35A01 PDF BibTeX XML Cite \textit{T. Alotaibi} et al., Commun. Pure Appl. Anal. 19, No. 9, 4655--4666 (2020; Zbl 07326907) Full Text: DOI
Bella, Peter; Schäffner, Mathias On the regularity of minimizers for scalar integral functionals with \((p,q)\)-growth. (English) Zbl 07324216 Anal. PDE 13, No. 7, 2241-2257 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 49N60 35B65 35J65 PDF BibTeX XML Cite \textit{P. Bella} and \textit{M. Schäffner}, Anal. PDE 13, No. 7, 2241--2257 (2020; Zbl 07324216) Full Text: DOI
Cîndea, Nicolae; Matei, Andaluzia; Micu, Sorin; Niţă, Constantin Boundary optimal control for antiplane contact problems with power-law friction. (English) Zbl 07323478 Appl. Math. Comput. 386, Article ID 125448, 15 p. (2020). MSC: 35J65 49J20 65K10 74M10 74M15 PDF BibTeX XML Cite \textit{N. Cîndea} et al., Appl. Math. Comput. 386, Article ID 125448, 15 p. (2020; Zbl 07323478) Full Text: DOI
Sarker, Pratik; Chakravarty, Uttam K. A generalization of the method of lines for the numerical solution of coupled, forced vibration of beams. (English) Zbl 07317982 Math. Comput. Simul. 170, 115-142 (2020). MSC: 74S 74H 74K PDF BibTeX XML Cite \textit{P. Sarker} and \textit{U. K. Chakravarty}, Math. Comput. Simul. 170, 115--142 (2020; Zbl 07317982) Full Text: DOI
Luca, Rodica Positive solutions for a nonlocal fractional boundary value problem with \(r\)-Laplacian operator. (English. English summary) Zbl 1454.34018 Int. J. Difference Equ. 15, No. 2, 461-471 (2020). MSC: 34A08 34B15 45G15 PDF BibTeX XML Cite \textit{R. Luca}, Int. J. Difference Equ. 15, No. 2, 461--471 (2020; Zbl 1454.34018) Full Text: Link
Kadari, Halima; Nieto, Juan J.; Ouahab, Abdelghani; Oumansour, Abderrahamane Existence of solutions for implicit impulsive differential systems with coupled nonlocal conditions. (English) Zbl 1454.34006 Int. J. Difference Equ. 15, No. 2, 429-451 (2020). MSC: 34A07 34B37 47H30 PDF BibTeX XML Cite \textit{H. Kadari} et al., Int. J. Difference Equ. 15, No. 2, 429--451 (2020; Zbl 1454.34006) Full Text: Link
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Alruwaily, Ymnah On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions. (English) Zbl 1454.34010 Int. J. Difference Equ. 15, No. 2, 209-241 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Int. J. Difference Equ. 15, No. 2, 209--241 (2020; Zbl 1454.34010) Full Text: Link
Cano-Casanova, Santiago Influence of the spatial heterogeneities in the existence of positive solutions of logistic BVPs with sublinear mixed boundary conditions. (English) Zbl 07312827 Rend. Ist. Mat. Univ. Trieste 52, 163-191 (2020). MSC: 35J91 35J25 35B09 PDF BibTeX XML Cite \textit{S. Cano-Casanova}, Rend. Ist. Mat. Univ. Trieste 52, 163--191 (2020; Zbl 07312827) Full Text: DOI Link
Kong, Lingju; Wang, Min Multiple and particular solutions of a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 07307860 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020). MSC: 39A10 34B15 49K30 PDF BibTeX XML Cite \textit{L. Kong} and \textit{M. Wang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020; Zbl 07307860) Full Text: DOI
Kvitko, A. N. A method for solving a local boundary-value problem for a nonlinear controlled system. (English. Russian original) Zbl 1455.93082 Autom. Remote Control 81, No. 2, 236-246 (2020); translation from Avtom. Telemekh. 2020, No. 2, 48-61 (2020). MSC: 93C15 93C10 PDF BibTeX XML Cite \textit{A. N. Kvitko}, Autom. Remote Control 81, No. 2, 236--246 (2020; Zbl 1455.93082); translation from Avtom. Telemekh. 2020, No. 2, 48--61 (2020) Full Text: DOI
Tudorache, Alexandru; Luca, Rodica Positive solutions for a singular fractional boundary value problem. (English) Zbl 07292727 Math. Methods Appl. Sci. 43, No. 17, 10190-10203 (2020). MSC: 34A08 34B15 34B10 34B18 34B16 45G15 PDF BibTeX XML Cite \textit{A. Tudorache} and \textit{R. Luca}, Math. Methods Appl. Sci. 43, No. 17, 10190--10203 (2020; Zbl 07292727) Full Text: DOI
Duru, Kenneth; Rannabauer, Leonhard; Gabriel, Alice-Agnes; Kreiss, Gunilla; Bader, Michael A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form. (English) Zbl 1455.65166 Numer. Math. 146, No. 4, 729-782 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M08 65M12 65M15 35F55 35F46 35Q74 74B10 44A10 PDF BibTeX XML Cite \textit{K. Duru} et al., Numer. Math. 146, No. 4, 729--782 (2020; Zbl 1455.65166) Full Text: DOI
Zeĭnally, F. M. Pontryagin’s maximum principle for optimal control problems with nonlocal boundary conditions. (Russian) Zbl 07291766 J. Contemp. Appl. Math. 10, No. 1, 14-23 (2020). MSC: 49K15 34B10 34B15 PDF BibTeX XML Cite \textit{F. M. Zeĭnally}, J. Contemp. Appl. Math. 10, No. 1, 14--23 (2020; Zbl 07291766) Full Text: Link
Ge, Fudong; Chen, Yangquan Distributed event-triggered output feedback control for semilinear time fractional diffusion systems. (English) Zbl 1454.93160 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 245-253 (2020). MSC: 93C65 93B52 93D05 93C20 35R11 93C10 PDF BibTeX XML Cite \textit{F. Ge} and \textit{Y. Chen}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 245--253 (2020; Zbl 1454.93160) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. (English) Zbl 1454.35032 SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020; Zbl 1454.35032) Full Text: DOI
Min, Dandan; Chen, Fangqi Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach. (English) Zbl 07279041 Math. Methods Appl. Sci. 43, No. 15, 9151-9168 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34A08 34B09 34B24 34B37 47J30 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, Math. Methods Appl. Sci. 43, No. 15, 9151--9168 (2020; Zbl 07279041) Full Text: DOI
Mali, Ashwini D.; Kucche, Kishor D. Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations. (English) Zbl 07279007 Math. Methods Appl. Sci. 43, No. 15, 8608-8631 (2020). MSC: 34A08 34A09 34B10 34D10 34A40 47N20 45G10 PDF BibTeX XML Cite \textit{A. D. Mali} and \textit{K. D. Kucche}, Math. Methods Appl. Sci. 43, No. 15, 8608--8631 (2020; Zbl 07279007) Full Text: DOI
Haghshenas, Hadi; Afrouzi, Ghasem A. Existence results for a fourth-order elastic beam equation via the variational approach. (English) Zbl 07274487 Afr. Mat. 31, No. 7-8, 1379-1386 (2020). MSC: 34B15 74K10 PDF BibTeX XML Cite \textit{H. Haghshenas} and \textit{G. A. Afrouzi}, Afr. Mat. 31, No. 7--8, 1379--1386 (2020; Zbl 07274487) Full Text: DOI
Kvitko, A. N. Solution of the local boundary value problem for a nonlinear non-stationary system in the class of synthesising controls with account of perturbations. (English) Zbl 1453.93179 Int. J. Control 93, No. 8, 1931-1941 (2020). MSC: 93D05 93C15 93C10 93C85 PDF BibTeX XML Cite \textit{A. N. Kvitko}, Int. J. Control 93, No. 8, 1931--1941 (2020; Zbl 1453.93179) Full Text: DOI
Berdyshev, A. S.; Aitzhanov, S. E.; Zhumagul, G. O. Solvability of pseudoparabolic equations with non-linear boundary condition. (English) Zbl 1452.35081 Lobachevskii J. Math. 41, No. 9, 1772-1783 (2020). MSC: 35K70 35K61 35A01 PDF BibTeX XML Cite \textit{A. S. Berdyshev} et al., Lobachevskii J. Math. 41, No. 9, 1772--1783 (2020; Zbl 1452.35081) Full Text: DOI
Jleli, Mohamed; Kirane, Mokhtar; Samet, Bessem Solution blow-up for a fractional in time acoustic wave equation. (English) Zbl 1452.35046 Math. Methods Appl. Sci. 43, No. 10, 6566-6575 (2020). MSC: 35B44 35L05 35L20 35R11 26A33 PDF BibTeX XML Cite \textit{M. Jleli} et al., Math. Methods Appl. Sci. 43, No. 10, 6566--6575 (2020; Zbl 1452.35046) Full Text: DOI
Mosazadeh, Seyfollah A new approach to asymptotic formulas for eigenfunctions of discontinuous non-selfadjoint Sturm-Liouville operators. (English) Zbl 07270938 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1805-1820 (2020). Reviewer: Fatma Hıra (Atakum) MSC: 34B09 34B07 34L20 34L10 PDF BibTeX XML Cite \textit{S. Mosazadeh}, J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1805--1820 (2020; Zbl 07270938) Full Text: DOI
Wang, Han; Jiang, Jiqiang Positive solutions to semipositone boundary value problems for fractional differential equations with multi-point boundary conditions. (Chinese. English summary) Zbl 07266984 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 9-14 (2020). MSC: 34B18 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{J. Jiang}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 9--14 (2020; Zbl 07266984) Full Text: DOI
Yuldashev, T. K. Nonlinear optimal control of thermal processes in a nonlinear inverse problem. (English) Zbl 1450.35295 Lobachevskii J. Math. 41, No. 1, 124-136 (2020). MSC: 35R30 35Q93 35K20 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Lobachevskii J. Math. 41, No. 1, 124--136 (2020; Zbl 1450.35295) Full Text: DOI
Isayeva, S. E. Existence of solutions of nonlinear strongly dissipative wave equations with acoustic transmission conditions. (English. Russian original) Zbl 1450.35169 Comput. Math. Math. Phys. 60, No. 2, 286-301 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 281-296 (2020). MSC: 35L53 35L71 PDF BibTeX XML Cite \textit{S. E. Isayeva}, Comput. Math. Math. Phys. 60, No. 2, 286--301 (2020; Zbl 1450.35169); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 281--296 (2020) Full Text: DOI
Wu, Chunyan; Xiang, Zhaoyin Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. (English) Zbl 1452.35228 Math. Models Methods Appl. Sci. 30, No. 7, 1325-1374 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35K55 76S05 35A01 35B40 PDF BibTeX XML Cite \textit{C. Wu} and \textit{Z. Xiang}, Math. Models Methods Appl. Sci. 30, No. 7, 1325--1374 (2020; Zbl 1452.35228) Full Text: DOI
Ebenbeck, Matthias; Knopf, Patrik Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth. (English) Zbl 1451.35233 ESAIM, Control Optim. Calc. Var. 26, Paper No. 71, 38 p. (2020). MSC: 35Q92 35K61 76D07 76S05 49J20 92C50 92C37 35A02 PDF BibTeX XML Cite \textit{M. Ebenbeck} and \textit{P. Knopf}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 71, 38 p. (2020; Zbl 1451.35233) Full Text: DOI
Campos Cordero, Judith; Koumatos, Konstantinos Necessary and sufficient conditions for the strong local minimality of \(C^1\) extremals on a class of non-smooth domains. (English) Zbl 1448.35179 ESAIM, Control Optim. Calc. Var. 26, Paper No. 49, 34 p. (2020). MSC: 35J50 35J60 49K10 49K20 PDF BibTeX XML Cite \textit{J. Campos Cordero} and \textit{K. Koumatos}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 49, 34 p. (2020; Zbl 1448.35179) Full Text: DOI
Barbosa, Pricila S.; Pereira, Antonio L. Continuity of attractors for \(\mathcal{C}^1\) perturbations of a smooth domain. (English) Zbl 1450.35074 Electron. J. Differ. Equ. 2020, Paper No. 97, 31 p. (2020). MSC: 35B41 35K61 35K58 35B30 PDF BibTeX XML Cite \textit{P. S. Barbosa} and \textit{A. L. Pereira}, Electron. J. Differ. Equ. 2020, Paper No. 97, 31 p. (2020; Zbl 1450.35074) Full Text: Link
Khludnev, A. M.; Popova, T. S. The junction problem for two weakly curved inclusions in an elastic body. (English. Russian original) Zbl 1454.35375 Sib. Math. J. 61, No. 4, 743-754 (2020); translation from Sib. Mat. Zh. 61, No. 4, 932-945 (2020). MSC: 35Q74 74R10 74K30 74B20 PDF BibTeX XML Cite \textit{A. M. Khludnev} and \textit{T. S. Popova}, Sib. Math. J. 61, No. 4, 743--754 (2020; Zbl 1454.35375); translation from Sib. Mat. Zh. 61, No. 4, 932--945 (2020) Full Text: DOI
Kim, Tujin; Cao, Daomin Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating. (English) Zbl 1448.35241 Methods Appl. Anal. 27, No. 2, 87-124 (2020). MSC: 35J87 35Q35 49J40 76D03 76D05 PDF BibTeX XML Cite \textit{T. Kim} and \textit{D. Cao}, Methods Appl. Anal. 27, No. 2, 87--124 (2020; Zbl 1448.35241) Full Text: DOI
Popova, T. S. On equilibrium of a two-dimensional viscoelastic body with a thin Timoshenko inclusion. (English) Zbl 1443.74159 Sib. Èlektron. Mat. Izv. 17, 1463-1477 (2020). MSC: 74D05 PDF BibTeX XML Cite \textit{T. S. Popova}, Sib. Èlektron. Mat. Izv. 17, 1463--1477 (2020; Zbl 1443.74159) Full Text: DOI
Signori, Andrea Optimal distributed control of an extended model of tumor growth with logarithmic potential. (English) Zbl 1448.35521 Appl. Math. Optim. 82, No. 2, 517-549 (2020). MSC: 35Q92 35K61 92C37 49J20 49K20 92C50 PDF BibTeX XML Cite \textit{A. Signori}, Appl. Math. Optim. 82, No. 2, 517--549 (2020; Zbl 1448.35521) Full Text: DOI
Yassine, Hassan Asymptotic stability of solutions to a semilinear viscoelastic equation with analytic nonlinearity. (English) Zbl 1447.35067 J. Evol. Equ. 20, No. 3, 931-955 (2020). MSC: 35B40 35L20 35L71 35R09 74D10 PDF BibTeX XML Cite \textit{H. Yassine}, J. Evol. Equ. 20, No. 3, 931--955 (2020; Zbl 1447.35067) Full Text: DOI
Fard, Omid Solaymani; Sarani, Farhad; Nosratipour, Hadi An efficient nonmonotone method for state-constrained elliptic optimal control problems. (English) Zbl 1447.49038 Bull. Iran. Math. Soc. 46, No. 4, 943-963 (2020). MSC: 49K20 65N06 90C30 49M15 PDF BibTeX XML Cite \textit{O. S. Fard} et al., Bull. Iran. Math. Soc. 46, No. 4, 943--963 (2020; Zbl 1447.49038) Full Text: DOI
Trofimov, Vyacheslav; Loginova, Maria; Egorenkov, Vladimir Conservative finite-difference scheme for computer simulation of contrast 3D spatial-temporal structures induced by a laser pulse in a semiconductor. (English) Zbl 1446.65078 Math. Methods Appl. Sci. 43, No. 7, 4895-4917 (2020). MSC: 65M06 65T50 78M20 78A60 35Q60 82D37 35Q81 PDF BibTeX XML Cite \textit{V. Trofimov} et al., Math. Methods Appl. Sci. 43, No. 7, 4895--4917 (2020; Zbl 1446.65078) Full Text: DOI
Pastukhova, Svetlana; Chiadò Piat, Valeria Homogenization of multivalued monotone operators with variable growth exponent. (English) Zbl 1448.35198 Netw. Heterog. Media 15, No. 2, 281-305 (2020). MSC: 35J60 35J57 35J99 PDF BibTeX XML Cite \textit{S. Pastukhova} and \textit{V. Chiadò Piat}, Netw. Heterog. Media 15, No. 2, 281--305 (2020; Zbl 1448.35198) Full Text: DOI
Signori, Andrea Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. (English) Zbl 1453.35032 Math. Control Relat. Fields 10, No. 2, 305-331 (2020). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 35B40 35K61 49J20 49K20 35K86 92C50 35Q93 PDF BibTeX XML Cite \textit{A. Signori}, Math. Control Relat. Fields 10, No. 2, 305--331 (2020; Zbl 1453.35032) Full Text: DOI
Shikhare, Pallavi U.; Kucche, Kishor D.; Vanterler da Costa Sousa, José Analysis of Volterra integrodifferential equations with nonlocal and boundary conditions via Picard operator. (English) Zbl 07241633 Comput. Appl. Math. 39, No. 3, Paper No. 208, 18 p. (2020). MSC: 45J05 34G20 47H10 34B15 65L10 PDF BibTeX XML Cite \textit{P. U. Shikhare} et al., Comput. Appl. Math. 39, No. 3, Paper No. 208, 18 p. (2020; Zbl 07241633) Full Text: DOI
Guliyev, Namig J. On two-spectra inverse problems. (English) Zbl 07237852 Proc. Am. Math. Soc. 148, No. 10, 4491-4502 (2020). MSC: 34A55 34B07 34L40 34B24 47A75 47E05 PDF BibTeX XML Cite \textit{N. J. Guliyev}, Proc. Am. Math. Soc. 148, No. 10, 4491--4502 (2020; Zbl 07237852) Full Text: DOI
Pankrashkin, Konstantin An eigenvalue estimate for a Robin \(p\)-Laplacian in \(C^1\) domains. (English) Zbl 1453.35105 Proc. Am. Math. Soc. 148, No. 10, 4471-4477 (2020). Reviewer: Vladimir Bobkov (Plzeň) MSC: 35J92 35P15 35P30 PDF BibTeX XML Cite \textit{K. Pankrashkin}, Proc. Am. Math. Soc. 148, No. 10, 4471--4477 (2020; Zbl 1453.35105) Full Text: DOI
Kovtunenko, Victor A.; Reichelt, Sina; Zubkova, Anna V. Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains. (English) Zbl 1446.35017 Math. Methods Appl. Sci. 43, No. 4, 1838-1856 (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 82C24 35K20 35K58 PDF BibTeX XML Cite \textit{V. A. Kovtunenko} et al., Math. Methods Appl. Sci. 43, No. 4, 1838--1856 (2020; Zbl 1446.35017) Full Text: DOI
Latrach, Khalid; Oummi, Hssaine; Zeghal, Ahmed Existence results for a class of nonlinear singular transport equations in bounded spatial domains. (English) Zbl 1445.35121 Math. Methods Appl. Sci. 43, No. 4, 1685-1700 (2020). MSC: 35F31 35Q49 45K05 47H10 PDF BibTeX XML Cite \textit{K. Latrach} et al., Math. Methods Appl. Sci. 43, No. 4, 1685--1700 (2020; Zbl 1445.35121) Full Text: DOI
Jadamba, Baasansuren; Khan, Akhtar A.; Richards, Michael; Sama, Miguel A convex inversion framework for identifying parameters in saddle point problems with applications to inverse incompressible elasticity. (English) Zbl 07236583 Inverse Probl. 36, No. 7, Article ID 074003, 25 p. (2020). MSC: 65N21 65N20 65N30 65K10 65N12 49K20 90C25 74B20 92C55 35Q92 PDF BibTeX XML Cite \textit{B. Jadamba} et al., Inverse Probl. 36, No. 7, Article ID 074003, 25 p. (2020; Zbl 07236583) Full Text: DOI
Sun, Shi-Li; Chen, Yu-Hang; Hu, Jian; Xu, Wei-Jun; Yang, Heng Fully nonlinear investigation on water entry of a rigid paraboloid. (English) Zbl 07228773 Eng. Anal. Bound. Elem. 117, 57-65 (2020). MSC: 74 76 PDF BibTeX XML Cite \textit{S.-L. Sun} et al., Eng. Anal. Bound. Elem. 117, 57--65 (2020; Zbl 07228773) Full Text: DOI
Kang, Di; Choi, Patrick; Kao, Chiu-Yen Minimization of the first nonzero eigenvalue problem for two-phase conductors with Neumann boundary conditions. (English) Zbl 1443.49053 SIAM J. Appl. Math. 80, No. 4, 1607-1628 (2020). MSC: 49R05 49J20 35P15 47J30 47A55 PDF BibTeX XML Cite \textit{D. Kang} et al., SIAM J. Appl. Math. 80, No. 4, 1607--1628 (2020; Zbl 1443.49053) Full Text: DOI
Mahadevan, Rajesh; Nandakumaran, A. K.; Prakash, Ravi Homogenization of an elliptic equation in a domain with oscillating boundary with non-homogeneous non-linear boundary conditions. (English) Zbl 1445.35148 Appl. Math. Optim. 82, No. 1, 245-278 (2020). MSC: 35J25 35J20 PDF BibTeX XML Cite \textit{R. Mahadevan} et al., Appl. Math. Optim. 82, No. 1, 245--278 (2020; Zbl 1445.35148) Full Text: DOI
Guliyev, Namig J. Essentially isospectral transformations and their applications. (English) Zbl 1448.34064 Ann. Mat. Pura Appl. (4) 199, No. 4, 1621-1648 (2020). Reviewer: Fatma Hıra (Atakum) MSC: 34B24 34A55 34B07 34C10 34L20 34L40 PDF BibTeX XML Cite \textit{N. J. Guliyev}, Ann. Mat. Pura Appl. (4) 199, No. 4, 1621--1648 (2020; Zbl 1448.34064) Full Text: DOI
Chiyo, Yutaro; Mizukami, Masaaki; Yokota, Tomomi Global existence and boundedness in a fully parabolic attraction-repulsion chemotaxis system with signal-dependent sensitivities and logistic source. (English) Zbl 1447.35052 J. Math. Anal. Appl. 489, No. 1, Article ID 124153, 17 p. (2020). Reviewer: Neng Zhu (Nanchang) MSC: 35B40 35K55 35Q92 92C17 35K51 PDF BibTeX XML Cite \textit{Y. Chiyo} et al., J. Math. Anal. Appl. 489, No. 1, Article ID 124153, 17 p. (2020; Zbl 1447.35052) Full Text: DOI
Puvaneswari, A.; Valanarasu, T.; Ramesh Babu, A. A system of singularly perturbed periodic boundary value problem: hybrid difference scheme. (English) Zbl 1442.65133 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L11 65L60 34B16 PDF BibTeX XML Cite \textit{A. Puvaneswari} et al., Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020; Zbl 1442.65133) Full Text: DOI
Qu, Peng Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions. (English. French summary) Zbl 1440.35207 J. Math. Pures Appl. (9) 139, 356-382 (2020). MSC: 35L50 35L60 35B10 35B40 35A09 93D15 PDF BibTeX XML Cite \textit{P. Qu}, J. Math. Pures Appl. (9) 139, 356--382 (2020; Zbl 1440.35207) Full Text: DOI
Mazón, José M.; Solera, Marcos; Toledo, Julián Evolution problems of Leray-Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces. (English) Zbl 1448.35312 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111813, 37 p. (2020). MSC: 35K59 35K61 35R02 47H06 47J35 35K55 PDF BibTeX XML Cite \textit{J. M. Mazón} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111813, 37 p. (2020; Zbl 1448.35312) Full Text: DOI
Zinsou, Bertin Dependence of eigenvalues of fourth-order boundary value problems with transmission conditions. (English) Zbl 1443.34096 Rocky Mt. J. Math. 50, No. 1, 369-382 (2020). MSC: 34L05 34L15 34B07 34B08 34B09 PDF BibTeX XML Cite \textit{B. Zinsou}, Rocky Mt. J. Math. 50, No. 1, 369--382 (2020; Zbl 1443.34096) Full Text: DOI Euclid
Kmit, Irina; Recke, Lutz; Tkachenko, Viktor Classical bounded and almost periodic solutions to quasilinear first-order hyperbolic systems in a strip. (English) Zbl 1439.35322 J. Differ. Equations 269, No. 3, 2532-2579 (2020). MSC: 35L60 35L50 35B15 PDF BibTeX XML Cite \textit{I. Kmit} et al., J. Differ. Equations 269, No. 3, 2532--2579 (2020; Zbl 1439.35322) Full Text: DOI
Ma, Ruyun Connected component of positive solutions for singular superlinear semi-positone problems. (English) Zbl 1453.34034 Topol. Methods Nonlinear Anal. 55, No. 1, 51-62 (2020). Reviewer: Smail Djebali (Algiers) MSC: 34B18 34B16 34B24 34C23 47H10 34B09 PDF BibTeX XML Cite \textit{R. Ma}, Topol. Methods Nonlinear Anal. 55, No. 1, 51--62 (2020; Zbl 1453.34034) Full Text: DOI Euclid
Li, Xin; Zhang, Luming An efficient spectral-collocation difference method for two-dimensional Schrödinger equation with Neumann boundary conditions. (English) Zbl 1437.65214 Comput. Math. Appl. 79, No. 8, 2322-2335 (2020). MSC: 65N35 65M06 65T50 35Q55 35Q41 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Zhang}, Comput. Math. Appl. 79, No. 8, 2322--2335 (2020; Zbl 1437.65214) Full Text: DOI
Oh, Tadahiro; Tzvetkov, Nikolay Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation. (English) Zbl 1441.35175 J. Eur. Math. Soc. (JEMS) 22, No. 6, 1785-1826 (2020). MSC: 35L71 35L20 60H30 PDF BibTeX XML Cite \textit{T. Oh} and \textit{N. Tzvetkov}, J. Eur. Math. Soc. (JEMS) 22, No. 6, 1785--1826 (2020; Zbl 1441.35175) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. (English) Zbl 1441.34006 Fract. Calc. Appl. Anal. 23, No. 1, 268-291 (2020). MSC: 34A08 34G20 34H05 93B05 34B10 PDF BibTeX XML Cite \textit{P. Chen} et al., Fract. Calc. Appl. Anal. 23, No. 1, 268--291 (2020; Zbl 1441.34006) Full Text: DOI
Gou, Haide; Li, Yongxiang Existence of mild solutions for impulsive fractional evolution equations with periodic boundary conditions. (English) Zbl 1441.34073 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 425-445 (2020). Reviewer: Panagiotis Koumantos (Athens) MSC: 34G20 34A08 34A37 34B15 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Pseudo-Differ. Oper. Appl. 11, No. 1, 425--445 (2020; Zbl 1441.34073) Full Text: DOI
Kounadis, G.; Dougalis, V. A. Galerkin finite element methods for the shallow water equations over variable bottom. (English) Zbl 1436.65140 J. Comput. Appl. Math. 373, Article ID 112315, 15 p. (2020). MSC: 65M60 65L06 65M12 65M15 76B15 35Q35 PDF BibTeX XML Cite \textit{G. Kounadis} and \textit{V. A. Dougalis}, J. Comput. Appl. Math. 373, Article ID 112315, 15 p. (2020; Zbl 1436.65140) Full Text: DOI
Mazzoleni, Dario; Terracini, Susanna; Velichkov, Bozhidar Regularity of the free boundary for the vectorial Bernoulli problem. (English) Zbl 1445.35342 Anal. PDE 13, No. 3, 741-764 (2020). MSC: 35R35 35J60 49K10 49Q20 PDF BibTeX XML Cite \textit{D. Mazzoleni} et al., Anal. PDE 13, No. 3, 741--764 (2020; Zbl 1445.35342) Full Text: DOI
Delarue, François; Lagoutière, Frédéric; Vauchelet, Nicolas Convergence analysis of upwind type schemes for the aggregation equation with pointy potential. (English) Zbl 1436.65120 Ann. Henri Lebesgue 3, 217-260 (2020). MSC: 65M08 65M12 35D30 35L60 92D25 35Q92 35Q49 49K20 35R06 PDF BibTeX XML Cite \textit{F. Delarue} et al., Ann. Henri Lebesgue 3, 217--260 (2020; Zbl 1436.65120) Full Text: DOI
Hu, Yunxia; Li, Hongwei; Jiang, Ziwen Efficient semi-implicit compact finite difference scheme for nonlinear Schrödinger equations on unbounded domain. (English) Zbl 1436.65103 Appl. Numer. Math. 153, 319-343 (2020). MSC: 65M06 35Q41 35Q55 PDF BibTeX XML Cite \textit{Y. Hu} et al., Appl. Numer. Math. 153, 319--343 (2020; Zbl 1436.65103) Full Text: DOI
Kim, Youchan; Ryu, Seungjin; Shin, Pilsoo Higher integrability result for nonlinear elliptic systems with conormal boundary conditions. (English) Zbl 1437.35353 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111406, 16 p. (2020). MSC: 35J62 35J57 PDF BibTeX XML Cite \textit{Y. Kim} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111406, 16 p. (2020; Zbl 1437.35353) Full Text: DOI
Biagi, Stefano On the existence of weak solutions for singular strongly nonlinear boundary value problems on the half-line. (English) Zbl 1441.34044 Ann. Mat. Pura Appl. (4) 199, No. 2, 589-618 (2020). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B40 34C37 34B16 34L30 PDF BibTeX XML Cite \textit{S. Biagi}, Ann. Mat. Pura Appl. (4) 199, No. 2, 589--618 (2020; Zbl 1441.34044) Full Text: DOI
Berná, Pablo M.; Rossi, Julio D. Nonlocal diffusion equations with dynamical boundary conditions. (English) Zbl 1447.45006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111751, 25 p. (2020). MSC: 45G10 45J05 47H06 PDF BibTeX XML Cite \textit{P. M. Berná} and \textit{J. D. Rossi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111751, 25 p. (2020; Zbl 1447.45006) Full Text: DOI
Xiang, Qiaomin; Yang, Qigui Nonisotropic chaotic vibrations of a 2D hyperbolic PDE. (English) Zbl 1435.35224 Chaos 30, No. 2, 023127, 16 p. (2020). MSC: 35L20 37D45 PDF BibTeX XML Cite \textit{Q. Xiang} and \textit{Q. Yang}, Chaos 30, No. 2, 023127, 16 p. (2020; Zbl 1435.35224) Full Text: DOI
Xia, Bo Preservation of log-Sobolev inequalities under some Hamiltonian flows. (English) Zbl 1435.35018 Pac. J. Math. 305, No. 1, 339-352 (2020). MSC: 35A23 35F31 PDF BibTeX XML Cite \textit{B. Xia}, Pac. J. Math. 305, No. 1, 339--352 (2020; Zbl 1435.35018) Full Text: DOI
Cano-Casanova, Santiago Heterogeneous elliptic BVPs with a bifurcation-continuation parameter in the nonlinear mixed boundary conditions. (English) Zbl 1437.35365 Adv. Nonlinear Stud. 20, No. 1, 31-51 (2020). MSC: 35J65 35J25 35B09 PDF BibTeX XML Cite \textit{S. Cano-Casanova}, Adv. Nonlinear Stud. 20, No. 1, 31--51 (2020; Zbl 1437.35365) Full Text: DOI
Signori, Andrea Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach. (English) Zbl 1431.35079 Evol. Equ. Control Theory 9, No. 1, 193-217 (2020). MSC: 35K61 35Q92 49J20 49K20 35K86 92C50 PDF BibTeX XML Cite \textit{A. Signori}, Evol. Equ. Control Theory 9, No. 1, 193--217 (2020; Zbl 1431.35079) Full Text: DOI
Soradi-Zeid, Samaneh Efficient radial basis functions approaches for solving a class of fractional optimal control problems. (English) Zbl 1449.49029 Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020). MSC: 49M37 49M05 49L99 65K05 PDF BibTeX XML Cite \textit{S. Soradi-Zeid}, Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020; Zbl 1449.49029) Full Text: DOI
Marynets, Kateryna Solvability analysis of a special type fractional differential system. (English) Zbl 1449.34028 Comput. Appl. Math. 39, No. 1, Paper No. 3, 13 p. (2020). MSC: 34A08 34B15 34A45 PDF BibTeX XML Cite \textit{K. Marynets}, Comput. Appl. Math. 39, No. 1, Paper No. 3, 13 p. (2020; Zbl 1449.34028) Full Text: DOI
Lv, Zhi-Wei Existence of positive solution for fractional differential systems with multipoint boundary value conditions. (English) Zbl 1437.34009 J. Funct. Spaces 2020, Article ID 9520430, 9 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34A08 34B18 34B10 PDF BibTeX XML Cite \textit{Z.-W. Lv}, J. Funct. Spaces 2020, Article ID 9520430, 9 p. (2020; Zbl 1437.34009) Full Text: DOI
Yan, Yonggui; Zhang, Jiwei; Zheng, Chunxiong Numerical computations of nonlocal Schrödinger equations on the real line. (English) Zbl 1449.82004 Commun. Appl. Math. Comput. 2, No. 2, 241-260 (2020). MSC: 82C21 65R20 65M60 46N20 45A05 65D32 35Q55 PDF BibTeX XML Cite \textit{Y. Yan} et al., Commun. Appl. Math. Comput. 2, No. 2, 241--260 (2020; Zbl 1449.82004) Full Text: DOI
Yang, Chuan-Fu; Bondarenko, Natalia Pavlovna; Xu, Xiao-Chuan An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. (English) Zbl 1436.34013 Inverse Probl. Imaging 14, No. 1, 153-169 (2020). Reviewer: Vjacheslav Yurko (Saratov) MSC: 34A55 34B07 34B09 34L40 34B24 PDF BibTeX XML Cite \textit{C.-F. Yang} et al., Inverse Probl. Imaging 14, No. 1, 153--169 (2020; Zbl 1436.34013) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Approximate controllability of non-autonomous evolution system with nonlocal conditions. (English) Zbl 1439.34065 J. Dyn. Control Syst. 26, No. 1, 1-16 (2020). MSC: 34G20 37C60 34B10 93B05 34H05 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Dyn. Control Syst. 26, No. 1, 1--16 (2020; Zbl 1439.34065) Full Text: DOI
Zerouali, Abdellah; Karim, Belhadj; Chakrone, Omar; Boukhsas, Abdelmajid On a positive solution for \((p,q)\)-Laplace equation with nonlinear boundary conditions and indefinite weights. (English) Zbl 1431.35027 Bol. Soc. Parana. Mat. (3) 38, No. 4, 219-233 (2020). MSC: 35J20 35J62 35J70 35P05 PDF BibTeX XML Cite \textit{A. Zerouali} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 219--233 (2020; Zbl 1431.35027) Full Text: Link
Ye, Weikui; Yin, Zhaoyang Global existence for the periodic dispersive Hunter-Saxton equation. (English) Zbl 1432.35053 Monatsh. Math. 191, No. 2, 267-278 (2020). MSC: 35G31 35A01 35L03 35L05 35L60 35B10 PDF BibTeX XML Cite \textit{W. Ye} and \textit{Z. Yin}, Monatsh. Math. 191, No. 2, 267--278 (2020; Zbl 1432.35053) Full Text: DOI
Faminskii, Andrei V. Regular solutions to initial-boundary value problems in a half-strip for two-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1430.35059 Nonlinear Anal., Real World Appl. 51, Article ID 102959, 21 p. (2020). MSC: 35G31 35B65 35B40 PDF BibTeX XML Cite \textit{A. V. Faminskii}, Nonlinear Anal., Real World Appl. 51, Article ID 102959, 21 p. (2020; Zbl 1430.35059) Full Text: DOI
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI
Baldé, Mouhamadou A. M. T.; Seck, Diaraf Homogenization and corrector result for a coupled parabolic hyperbolic system. (English) Zbl 1437.35028 J. Math. Anal. Appl. 484, No. 1, Article ID 123677, 19 p. (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35B27 35G61 35Q53 PDF BibTeX XML Cite \textit{M. A. M. T. Baldé} and \textit{D. Seck}, J. Math. Anal. Appl. 484, No. 1, Article ID 123677, 19 p. (2020; Zbl 1437.35028) Full Text: DOI
Guliyev, Namig J. A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter. (English) Zbl 1428.42057 Anal. Math. Phys. 10, No. 1, Paper No. 2, 8 p. (2020). MSC: 42C15 42C30 15B05 34B07 34L10 34L40 46B15 46C05 46E30 47A20 47B25 47E05 PDF BibTeX XML Cite \textit{N. J. Guliyev}, Anal. Math. Phys. 10, No. 1, Paper No. 2, 8 p. (2020; Zbl 1428.42057) Full Text: DOI
Jerez-Hanckes, Carlos; Pettersson, Irina; Rybalko, Volodymyr Derivation of cable equation by multiscale analysis for a model of myelinated axons. (English) Zbl 1437.35042 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 815-839 (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35Q92 35J66 PDF BibTeX XML Cite \textit{C. Jerez-Hanckes} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 815--839 (2020; Zbl 1437.35042) Full Text: DOI arXiv
Infante, Gennaro Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. (English) Zbl 1443.45008 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691-699 (2020). MSC: 45G15 45M20 34B10 34B18 47H30 PDF BibTeX XML Cite \textit{G. Infante}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691--699 (2020; Zbl 1443.45008) Full Text: DOI
Boukhatem, Yamna; Benabderrahmane, Benyattou Asymptotic behavior for a past history viscoelastic problem with acoustic boundary conditions. (English) Zbl 1428.35220 Appl. Anal. 99, No. 2, 249-269 (2020). MSC: 35L70 35B40 93D15 PDF BibTeX XML Cite \textit{Y. Boukhatem} and \textit{B. Benabderrahmane}, Appl. Anal. 99, No. 2, 249--269 (2020; Zbl 1428.35220) Full Text: DOI