Arrutselvi, M.; Natarajan, E. Virtual element method for nonlinear time-dependent convection-diffusion-reaction equation. (English) Zbl 07522920 Comput. Math. Model. 32, No. 3, 376-386 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Arrutselvi} and \textit{E. Natarajan}, Comput. Math. Model. 32, No. 3, 376--386 (2021; Zbl 07522920) Full Text: DOI OpenURL
Arrutselvi, M.; Natarajan, E. Virtual element method for nonlinear convection-diffusion-reaction equation on polygonal meshes. (English) Zbl 1480.65327 Int. J. Comput. Math. 98, No. 9, 1852-1876 (2021). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{M. Arrutselvi} and \textit{E. Natarajan}, Int. J. Comput. Math. 98, No. 9, 1852--1876 (2021; Zbl 1480.65327) Full Text: DOI OpenURL
Manchanda, Geetan; Mohanty, R. K.; Khan, Arshad A high accuracy compact semi-constant mesh off-step discretization in exponential form for the solution of non-linear elliptic boundary value problems. (English) Zbl 1480.65314 J. Difference Equ. Appl. 27, No. 4, 531-556 (2021). MSC: 65N06 65N12 35J60 76R50 76D06 78A30 35Q53 PDF BibTeX XML Cite \textit{G. Manchanda} et al., J. Difference Equ. Appl. 27, No. 4, 531--556 (2021; Zbl 1480.65314) Full Text: DOI OpenURL
Liu, Xiaobin; Zhang, Dazhi; Meng, Xiong; Wu, Boying Superconvergence of the local discontinuous Galerkin method for one dimensional nonlinear convection-diffusion equations. (English) Zbl 1462.65148 J. Sci. Comput. 87, No. 1, Paper No. 39, 29 p. (2021). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Sci. Comput. 87, No. 1, Paper No. 39, 29 p. (2021; Zbl 1462.65148) Full Text: DOI OpenURL
Kazakov, A. L.; Spevak, L. F. Exact and approximate solutions of a problem with a singularity for a convection-diffusion equation. (English. Russian original) Zbl 1459.35242 J. Appl. Mech. Tech. Phys. 62, No. 1, 18-26 (2021); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 1, 22-31 (2021). MSC: 35K55 35C05 65M38 PDF BibTeX XML Cite \textit{A. L. Kazakov} and \textit{L. F. Spevak}, J. Appl. Mech. Tech. Phys. 62, No. 1, 18--26 (2021; Zbl 1459.35242); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 1, 22--31 (2021) Full Text: DOI OpenURL
Di Gironimo, Patrizia; Zecca, Gabriella Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO. (English) Zbl 1454.35136 J. Elliptic Parabol. Equ. 6, No. 2, 507-527 (2020). MSC: 35J60 35J25 35A01 PDF BibTeX XML Cite \textit{P. Di Gironimo} and \textit{G. Zecca}, J. Elliptic Parabol. Equ. 6, No. 2, 507--527 (2020; Zbl 1454.35136) Full Text: DOI OpenURL
Liu, Tao A multigrid-homotopy method for nonlinear inverse problems. (English) Zbl 1450.65049 Comput. Math. Appl. 79, No. 6, 1706-1717 (2020). MSC: 65J22 65M55 49N45 PDF BibTeX XML Cite \textit{T. Liu}, Comput. Math. Appl. 79, No. 6, 1706--1717 (2020; Zbl 1450.65049) Full Text: DOI OpenURL
Du, Yulong; Wang, Yahui; Yuan, Li A high-order modified finite-volume method on Cartesian grids for nonlinear convection-diffusion problems. (English) Zbl 1463.65262 Comput. Appl. Math. 39, No. 3, Paper No. 214, 20 p. (2020). MSC: 65M08 65M12 65M20 PDF BibTeX XML Cite \textit{Y. Du} et al., Comput. Appl. Math. 39, No. 3, Paper No. 214, 20 p. (2020; Zbl 1463.65262) Full Text: DOI OpenURL
Zhao, Yong; Wu, Yao; Chai, Zhenhua; Shi, Baochang A block triple-relaxation-time lattice Boltzmann model for nonlinear anisotropic convection-diffusion equations. (English) Zbl 1437.65222 Comput. Math. Appl. 79, No. 9, 2550-2573 (2020). MSC: 65N75 76M28 35Q20 76P05 76R50 35Q35 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Comput. Math. Appl. 79, No. 9, 2550--2573 (2020; Zbl 1437.65222) Full Text: DOI arXiv OpenURL
Haque, Md. Rabiul; Ogawa, Takayoshi; Sato, Ryuichi Existence of weak solutions to a convection-diffusion equation in a uniformly local Lebesgue space. (English) Zbl 1433.35180 Commun. Pure Appl. Anal. 19, No. 2, 677-697 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35K59 35D30 35K20 35K55 35A01 PDF BibTeX XML Cite \textit{Md. R. Haque} et al., Commun. Pure Appl. Anal. 19, No. 2, 677--697 (2020; Zbl 1433.35180) Full Text: DOI OpenURL
Hernández-Bermejo, Benito; Iagar, Razvan Gabriel; Gordoa, Pilar R.; Pickering, Andrew; Sánchez, Ariel Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations. (English) Zbl 1427.35142 J. Math. Anal. Appl. 482, No. 1, Article ID 123503, 16 p. (2020). MSC: 35K65 35K55 35B40 35K15 PDF BibTeX XML Cite \textit{B. Hernández-Bermejo} et al., J. Math. Anal. Appl. 482, No. 1, Article ID 123503, 16 p. (2020; Zbl 1427.35142) Full Text: DOI arXiv OpenURL
Jha, Navnit; Singh, Bhagat Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation. (English) Zbl 07484987 Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019). MSC: 65N06 65N12 65F10 35J25 35J65 PDF BibTeX XML Cite \textit{N. Jha} and \textit{B. Singh}, Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019; Zbl 07484987) Full Text: DOI OpenURL
Hassani, Hossein; Naragirad, Eskandar A new optimization operational matrix algorithm for solving nonlinear variable-order time fractional convection-diffusion equation. (Persian. English summary) Zbl 1438.35409 JAMM, J. Adv. Math. Model. 9, No. 1, 98-119 (2019). MSC: 35Q90 35R11 74G15 PDF BibTeX XML Cite \textit{H. Hassani} and \textit{E. Naragirad}, JAMM, J. Adv. Math. Model. 9, No. 1, 98--119 (2019; Zbl 1438.35409) Full Text: DOI OpenURL
Zhan, Huashui; Feng, Zhaosheng Stability of the solutions of a convection-diffusion equation. (English) Zbl 1411.35156 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 193-208 (2019). MSC: 35K55 35B35 76A05 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 193--208 (2019; Zbl 1411.35156) Full Text: DOI OpenURL
Lan, Bin; Sheng, Zhiqiang; Yuan, Guangwei A monotone finite volume scheme with second order accuracy for convection-diffusion equations on deformed meshes. (English) Zbl 1475.65170 Commun. Comput. Phys. 24, No. 5, 1455-1476 (2018). MSC: 65N08 35J25 65N12 PDF BibTeX XML Cite \textit{B. Lan} et al., Commun. Comput. Phys. 24, No. 5, 1455--1476 (2018; Zbl 1475.65170) Full Text: DOI OpenURL
Brizitskii, R. V.; Saritskaya, Zh. Yu. Boundary control problem for a nonlinear convection-diffusion-reaction equation. (English. Russian original) Zbl 1433.35436 Comput. Math. Math. Phys. 58, No. 12, 2053-2063 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 2139-2152 (2018). Reviewer: Nicolae Cîndea (Aubière) MSC: 35Q93 35D30 93C20 35R30 49K20 80A19 PDF BibTeX XML Cite \textit{R. V. Brizitskii} and \textit{Zh. Yu. Saritskaya}, Comput. Math. Math. Phys. 58, No. 12, 2053--2063 (2018; Zbl 1433.35436); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 2139--2152 (2018) Full Text: DOI OpenURL
Balázsová, Monika; Feistauer, Miloslav; Vlasák, Miloslav Stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. (English) Zbl 1417.65166 ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2327-2356 (2018). MSC: 65M60 65M99 65M12 PDF BibTeX XML Cite \textit{M. Balázsová} et al., ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2327--2356 (2018; Zbl 1417.65166) Full Text: DOI Link OpenURL
Liu, Tao; Liu, Songshu Identification of diffusion parameters in a non-linear convection-diffusion equation using adaptive homotopy perturbation method. (English) Zbl 1388.76260 Inverse Probl. Sci. Eng. 26, No. 4, 464-478 (2018). MSC: 76M25 35R30 65H20 65M32 76S05 PDF BibTeX XML Cite \textit{T. Liu} and \textit{S. Liu}, Inverse Probl. Sci. Eng. 26, No. 4, 464--478 (2018; Zbl 1388.76260) Full Text: DOI OpenURL
Pažanin, Igor; Pereira, Marcone C. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. (English) Zbl 1378.35171 Commun. Pure Appl. Anal. 17, No. 2, 579-592 (2018). MSC: 35K57 35B25 35B40 35J91 35Q92 PDF BibTeX XML Cite \textit{I. Pažanin} and \textit{M. C. Pereira}, Commun. Pure Appl. Anal. 17, No. 2, 579--592 (2018; Zbl 1378.35171) Full Text: DOI OpenURL
Liu, Tao A wavelet multiscale method for the inverse problem of a nonlinear convection-diffusion equation. (English) Zbl 1376.65125 J. Comput. Appl. Math. 330, 165-176 (2018). MSC: 65M32 35R30 35K57 65T60 76S05 76M20 PDF BibTeX XML Cite \textit{T. Liu}, J. Comput. Appl. Math. 330, 165--176 (2018; Zbl 1376.65125) Full Text: DOI OpenURL
Barrenechea, Gabriel R.; Burman, Erik; Karakatsani, Fotini Blending low-order stabilised finite element methods: a positivity-preserving local projection method for the convection-diffusion equation. (English) Zbl 1439.65144 Comput. Methods Appl. Mech. Eng. 317, 1169-1193 (2017). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{G. R. Barrenechea} et al., Comput. Methods Appl. Mech. Eng. 317, 1169--1193 (2017; Zbl 1439.65144) Full Text: DOI OpenURL
Wang, Huili; Shi, Baochang; Liang, Hong; Chai, Zhenhua Finite-difference lattice Boltzmann model for nonlinear convection-diffusion equations. (English) Zbl 1411.76146 Appl. Math. Comput. 309, 334-349 (2017). MSC: 76M28 65M06 76P05 65M75 35K57 PDF BibTeX XML Cite \textit{H. Wang} et al., Appl. Math. Comput. 309, 334--349 (2017; Zbl 1411.76146) Full Text: DOI OpenURL
Wang, Jinfeng; Liu, Tianqi; Li, Hong; Liu, Yang; He, Siriguleng Second-order approximation scheme combined with \(H^1\)-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. (English) Zbl 1412.65157 Comput. Math. Appl. 73, No. 6, 1182-1196 (2017). MSC: 65M60 65M12 35R11 65M15 65M06 PDF BibTeX XML Cite \textit{J. Wang} et al., Comput. Math. Appl. 73, No. 6, 1182--1196 (2017; Zbl 1412.65157) Full Text: DOI OpenURL
Li, Zhaoxiang; Wang, Zhi-Qiang; Zhou, Jianxin A new augmented singular transform and its partial Newton-correction method for finding more solutions. (English) Zbl 1384.65075 J. Sci. Comput. 71, No. 2, 634-659 (2017). MSC: 65M99 35K57 65M12 PDF BibTeX XML Cite \textit{Z. Li} et al., J. Sci. Comput. 71, No. 2, 634--659 (2017; Zbl 1384.65075) Full Text: DOI OpenURL
Andreucci, Daniele; Tedeev, Anatoli F. Large time behavior for the porous medium equation with convection. (English) Zbl 1382.35037 Meccanica 52, No. 13, 3255-3260 (2017). MSC: 35B40 35K15 35B45 35K59 35K65 PDF BibTeX XML Cite \textit{D. Andreucci} and \textit{A. F. Tedeev}, Meccanica 52, No. 13, 3255--3260 (2017; Zbl 1382.35037) Full Text: DOI OpenURL
Filbet, Francis; Herda, Maxime A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure. (English) Zbl 1381.65072 Numer. Math. 137, No. 3, 535-577 (2017). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M08 65M12 76S05 76X05 82D60 35K55 35Q84 PDF BibTeX XML Cite \textit{F. Filbet} and \textit{M. Herda}, Numer. Math. 137, No. 3, 535--577 (2017; Zbl 1381.65072) Full Text: DOI arXiv OpenURL
Ouyang, Miao; Zhan, Huashui On a convection diffusion equation with absorption term. (English) Zbl 1366.35078 Bull. Malays. Math. Sci. Soc. (2) 40, No. 2, 523-544 (2017). MSC: 35K55 35K65 35B40 PDF BibTeX XML Cite \textit{M. Ouyang} and \textit{H. Zhan}, Bull. Malays. Math. Sci. Soc. (2) 40, No. 2, 523--544 (2017; Zbl 1366.35078) Full Text: DOI OpenURL
Liu, Tao Reconstruction of a permeability field with the wavelet multiscale-homotopy method for a nonlinear convection-diffusion equation. (English) Zbl 1410.76432 Appl. Math. Comput. 275, 432-437 (2016). MSC: 76S05 76M25 65M32 PDF BibTeX XML Cite \textit{T. Liu}, Appl. Math. Comput. 275, 432--437 (2016; Zbl 1410.76432) Full Text: DOI OpenURL
Zhang, Jiansong; Zhu, Jiang; Yang, Danping; Guo, Hui A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem. (English) Zbl 1378.65170 J. Nonlinear Sci. Appl. 9, No. 11, 5806-5820 (2016). MSC: 65M60 65M25 65M12 65M15 35K55 76M10 76S05 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Nonlinear Sci. Appl. 9, No. 11, 5806--5820 (2016; Zbl 1378.65170) Full Text: DOI Link OpenURL
You, Tongshun The three-step implicit-explicit hp-local discontinuous Galerkin finite element method for nonlinear convection diffusion problems. (Chinese. English summary) Zbl 1374.65172 Appl. Math., Ser. A (Chin. Ed.) 31, No. 4, 491-500 (2016). MSC: 65M60 35K55 35Q53 65M15 PDF BibTeX XML Cite \textit{T. You}, Appl. Math., Ser. A (Chin. Ed.) 31, No. 4, 491--500 (2016; Zbl 1374.65172) OpenURL
Brizitskii, R. V.; Saritskaya, Zh. Yu. Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition. (English. Russian original) Zbl 1366.35082 Comput. Math. Math. Phys. 56, No. 12, 2011-2022 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 12, 2042-2053 (2016). MSC: 35K57 35B34 PDF BibTeX XML Cite \textit{R. V. Brizitskii} and \textit{Zh. Yu. Saritskaya}, Comput. Math. Math. Phys. 56, No. 12, 2011--2022 (2016; Zbl 1366.35082); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 12, 2042--2053 (2016) Full Text: DOI OpenURL
Bitsindou, André; Massamba, A. S. Nkokolo; Nkounkou, Hilaire; Mampassi, Benjamin; Bissanga, Gabriel A strategy for solving numerically nonlinear parabolic equations over two dimensional domain with complex geometry. (English) Zbl 1360.65209 Int. J. Numer. Methods Appl. 15, No. 1, 19-30 (2016). MSC: 65M06 35K55 65M12 PDF BibTeX XML Cite \textit{A. Bitsindou} et al., Int. J. Numer. Methods Appl. 15, No. 1, 19--30 (2016; Zbl 1360.65209) Full Text: DOI OpenURL
Shu, Chi-Wang Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods. (English) Zbl 1357.65179 Barrenechea, Gabriel R. (ed.) et al., Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Selected papers based on the presentations at the 101st LMS-EPSRC symposium, Durham, UK, July 8–16, 2014. Cham: Springer (ISBN 978-3-319-41638-0/hbk; 978-3-319-41640-3/ebook). Lecture Notes in Computational Science and Engineering 114, 371-399 (2016). MSC: 65M60 35L65 35K55 35Q53 65-02 PDF BibTeX XML Cite \textit{C.-W. Shu}, Lect. Notes Comput. Sci. Eng. 114, 371--399 (2016; Zbl 1357.65179) Full Text: DOI OpenURL
May, Sandra Spacetime discontinuous Galerkin methods for convection-diffusion equations. (English) Zbl 1360.65238 Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 561-573 (2016). Reviewer: Dana Černá (Liberec) MSC: 65M60 65M12 35L65 35K55 35Q53 35L20 PDF BibTeX XML Cite \textit{S. May}, Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 561--573 (2016; Zbl 1360.65238) Full Text: DOI OpenURL
Zhang, Junjun; Zhang, Jun Conservation laws for nonlinear convection-diffusion equation. (Chinese. English summary) Zbl 1363.35246 Pure Appl. Math. 32, No. 3, 296-304 (2016). MSC: 35L65 37K05 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Zhang}, Pure Appl. Math. 32, No. 3, 296--304 (2016; Zbl 1363.35246) Full Text: DOI OpenURL
Shen, Jie; Tang, Tao; Yang, Jiang On the maximum principle preserving schemes for the generalized Allen-Cahn equation. (English) Zbl 1361.65059 Commun. Math. Sci. 14, No. 6, 1517-1534 (2016). Reviewer: Gisbert Stoyan (Budapest) MSC: 65M06 65M12 65M20 65M15 35Q35 35B50 35K57 65M50 PDF BibTeX XML Cite \textit{J. Shen} et al., Commun. Math. Sci. 14, No. 6, 1517--1534 (2016; Zbl 1361.65059) Full Text: DOI OpenURL
Boscarino, Sebastiano; Filbet, Francis; Russo, Giovanni High order semi-implicit schemes for time dependent partial differential equations. (English) Zbl 1353.65075 J. Sci. Comput. 68, No. 3, 975-1001 (2016). MSC: 65L06 34A34 65L05 65M20 35K57 35Q84 65L04 76D27 76R50 PDF BibTeX XML Cite \textit{S. Boscarino} et al., J. Sci. Comput. 68, No. 3, 975--1001 (2016; Zbl 1353.65075) Full Text: DOI HAL OpenURL
Alekseev, G. V.; Brizitskiĭ, R. V.; Saritskaya, Zh. Yu. Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation. (Russian, English) Zbl 1349.80028 Sib. Zh. Ind. Mat. 19, No. 2, 3-16 (2016); translation in J. Appl. Ind. Math. 10, No. 2, 155-167 (2016). MSC: 80A23 35R30 PDF BibTeX XML Cite \textit{G. V. Alekseev} et al., Sib. Zh. Ind. Mat. 19, No. 2, 3--16 (2016; Zbl 1349.80028); translation in J. Appl. Ind. Math. 10, No. 2, 155--167 (2016) Full Text: DOI OpenURL
Yang, Pei; Xiong, Tao; Qiu, Jing-Mei; Xu, Zhengfu High order maximum principle preserving finite volume method for convection dominated problems. (English) Zbl 1350.65095 J. Sci. Comput. 67, No. 2, 795-820 (2016). Reviewer: Vasilis Dimitriou (Chania) MSC: 65M08 65M20 65L06 35B50 35K55 PDF BibTeX XML Cite \textit{P. Yang} et al., J. Sci. Comput. 67, No. 2, 795--820 (2016; Zbl 1350.65095) Full Text: DOI arXiv Link OpenURL
Li, Qianhuan; Chai, Zhenhua; Shi, Baochang Lattice Boltzmann model for a class of convection-diffusion equations with variable coefficients. (English) Zbl 1443.76180 Comput. Math. Appl. 70, No. 4, 548-561 (2015). MSC: 76M28 35F20 65M75 PDF BibTeX XML Cite \textit{Q. Li} et al., Comput. Math. Appl. 70, No. 4, 548--561 (2015; Zbl 1443.76180) Full Text: DOI OpenURL
Aminikhah, H.; Alavi, J. Numerical study of the nonlinear Cauchy diffusion problem and Newell-Whitehead equation via cubic B-spline quasi-interpolation. (English) Zbl 1330.65128 Iran. J. Numer. Anal. Optim. 5, No. 1, 63-72 (2015). MSC: 65M06 35K55 65M30 PDF BibTeX XML Cite \textit{H. Aminikhah} and \textit{J. Alavi}, Iran. J. Numer. Anal. Optim. 5, No. 1, 63--72 (2015; Zbl 1330.65128) Full Text: DOI OpenURL
Harko, T.; Mak, M. K. Exact travelling wave solutions of non-linear reaction-convection-diffusion equations – an Abel equation based approach. (English) Zbl 1328.35096 J. Math. Phys. 56, No. 11, 111501, 24 p. (2015). MSC: 35K57 35K55 35C07 35A01 PDF BibTeX XML Cite \textit{T. Harko} and \textit{M. K. Mak}, J. Math. Phys. 56, No. 11, 111501, 24 p. (2015; Zbl 1328.35096) Full Text: DOI arXiv OpenURL
Wang, Yue-Peng; Tao, Su-Lin; Chen, Qun Retrieving the variable coefficient for a nonlinear convection-diffusion problem with spectral conjugate gradient method. (English) Zbl 1326.65080 Inverse Probl. Sci. Eng. 23, No. 8, 1342-1365 (2015). MSC: 65K10 PDF BibTeX XML Cite \textit{Y.-P. Wang} et al., Inverse Probl. Sci. Eng. 23, No. 8, 1342--1365 (2015; Zbl 1326.65080) Full Text: DOI OpenURL
Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr Some analytical results for an algebraic flux correction scheme for a steady convection-diffusion equation in one dimension. (English) Zbl 1332.65105 IMA J. Numer. Anal. 35, No. 4, 1729-1756 (2015). Reviewer: Maria Gousidou-Koutita (Thessaloniki) MSC: 65L10 65L60 34B15 PDF BibTeX XML Cite \textit{G. R. Barrenechea} et al., IMA J. Numer. Anal. 35, No. 4, 1729--1756 (2015; Zbl 1332.65105) Full Text: DOI OpenURL
Acosta, Carlos D.; Amador, Pedro A.; Mejía, Carlos E. Stability analysis of a finite difference scheme for a nonlinear time fractional convection diffusion equation. (English) Zbl 1317.65164 Tost, Gerard Olivar (ed.) et al., Analysis, modelling, optimization, and numerical techniques. ICAMI, San Andres Island, Colombia, November 2013. Cham: Springer (ISBN 978-3-319-12582-4/hbk; 978-3-319-12583-1/ebook). Springer Proceedings in Mathematics & Statistics 121, 139-150 (2015). MSC: 65M06 35K55 35R11 65M12 PDF BibTeX XML Cite \textit{C. D. Acosta} et al., Springer Proc. Math. Stat. 121, 139--150 (2015; Zbl 1317.65164) Full Text: DOI OpenURL
Ryazhskikh, V. I.; Boger, A. A.; Ryazhskikh, A. V. A linear model of the motion of a low-concentration suspension of monodisperse Stokes particles in a flat channel. (Russian. English summary) Zbl 1333.35118 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 7, No. 4, 65-75 (2014). MSC: 35K60 35Q35 35K57 PDF BibTeX XML Cite \textit{V. I. Ryazhskikh} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 7, No. 4, 65--75 (2014; Zbl 1333.35118) Full Text: DOI OpenURL
Chatard, M.; Chainais-Hillairet, C.; Filbet, F. Discrete functional inequalities for finite volume schemes. (Quelques inégalités fonctionnelles discrètes pour des schémas volumes finis.) (French) Zbl 1312.65142 Dogbe, Christian (ed.), Actes du colloque “EDP-Normandie”, Caen, France, Octobre 24–25, 2013. [s.l.]: Fédération Normandie-Mathématiques (ISBN 978-2-9541221-2-0/pbk). Normandie-Mathématiques, 220-223 (2014). MSC: 65M08 65M15 65M12 35K55 26D10 PDF BibTeX XML Cite \textit{M. Chatard} et al., in: Actes du colloque ``EDP-Normandie'', Caen, France, Octobre 24--25, 2013. [s.l.]: Fédération Normandie-Mathématiques. 220--223 (2014; Zbl 1312.65142) OpenURL
Geiser, Jürgen Model order reduction for numerical simulation of particle transport based on numerical integration approaches. (English) Zbl 1298.93098 Math. Comput. Model. Dyn. Syst. 20, No. 4, 317-344 (2014). MSC: 93B11 35K57 65N12 65M08 93C10 93B18 PDF BibTeX XML Cite \textit{J. Geiser}, Math. Comput. Model. Dyn. Syst. 20, No. 4, 317--344 (2014; Zbl 1298.93098) Full Text: DOI OpenURL
Mohanty, R. K.; Setia, N. A new compact off-step discretization for the system of 2D quasi-linear elliptic equations on unequal mesh. (English) Zbl 1294.35028 Comput. Math. Model. 25, No. 3, 381-403 (2014). MSC: 35J62 65N06 65N12 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{N. Setia}, Comput. Math. Model. 25, No. 3, 381--403 (2014; Zbl 1294.35028) Full Text: DOI OpenURL
Shao, Wenting; Wu, Xionghua Chebyshev tau meshless method based on the highest derivative for solving a class of two-dimensional parabolic problems. (English) Zbl 1292.65094 Gao, X. W. (ed.) et al., Boundary elements and other mesh reduction methods XXXVI. Selected papers based on the presentations at the 36th international conference (BEM/MRM), New Forest, UK, June 8–11, 2014. Southampton: WIT Press (ISBN 978-1-84564-841-1/hbk; 978-1-84564-842-8/ebook). WIT Transactions on Modelling and Simulation 56, 81-91 (2014). MSC: 65M06 35K20 35K55 35Q53 PDF BibTeX XML Cite \textit{W. Shao} and \textit{X. Wu}, WIT Trans. Model. Simul. 56, 81--91 (2014; Zbl 1292.65094) Full Text: DOI OpenURL
Kučera, Václav On diffusion-uniform error estimates for the DG method applied to singularly perturbed problems. (English) Zbl 1305.65203 IMA J. Numer. Anal. 34, No. 2, 820-861 (2014). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M15 65M60 35K55 35B25 PDF BibTeX XML Cite \textit{V. Kučera}, IMA J. Numer. Anal. 34, No. 2, 820--861 (2014; Zbl 1305.65203) Full Text: DOI OpenURL
Biswas, Animikh; Tadmor, Eitan Dissipation versus quadratic nonlinearity: from a priori energy bound to higher order regularizing effect. (English) Zbl 1293.35061 Nonlinearity 27, No. 3, 545-562 (2014). MSC: 35B45 35K55 35B65 35K90 35R11 35Q35 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{E. Tadmor}, Nonlinearity 27, No. 3, 545--562 (2014; Zbl 1293.35061) Full Text: DOI arXiv OpenURL
Wang, Chunpeng; Nie, Yuanyuan; Yin, Jingxue Young measure solutions for a class of forward-backward convection-diffusion equations. (English) Zbl 1282.35421 Q. Appl. Math. 72, No. 1, 177-192 (2014). MSC: 35R35 35K55 PDF BibTeX XML Cite \textit{C. Wang} et al., Q. Appl. Math. 72, No. 1, 177--192 (2014; Zbl 1282.35421) Full Text: DOI OpenURL
Abgrall, R.; Baurin, G.; Krust, A.; De Santis, D.; Ricchiuto, M. Numerical approximation of parabolic problems by residual distribution schemes. (English) Zbl 1431.65211 Int. J. Numer. Methods Fluids 71, No. 9, 1191-1206 (2013). MSC: 65N30 35Q35 PDF BibTeX XML Cite \textit{R. Abgrall} et al., Int. J. Numer. Methods Fluids 71, No. 9, 1191--1206 (2013; Zbl 1431.65211) Full Text: DOI OpenURL
Kučera, Václav Error estimates for nonlinear convective problems in the finite element method. (English) Zbl 1340.65196 Chleboun, J. (ed.) et al., Programs and algorithms of numerical mathematics 16. Proceedings of the 16th seminar (PANM), Dolní Maxov, Czech Republic, June 3–8, 2012. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-62-2). 136-141 (2013). MSC: 65M15 65M60 35K55 65M20 PDF BibTeX XML Cite \textit{V. Kučera}, in: Programs and algorithms of numerical mathematics 16. Proceedings of the 16th seminar (PANM), Dolní Maxov, Czech Republic, June 3--8, 2012. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 136--141 (2013; Zbl 1340.65196) Full Text: Link OpenURL
You, Tongshun An implicit-explicit \(hp\)-local discontinuous Galerkin finite element method for nonlinear convection diffusion problems. (Chinese. English summary) Zbl 1299.65239 Appl. Math., Ser. A (Chin. Ed.) 28, No. 4, 447-456 (2013). MSC: 65M60 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{T. You}, Appl. Math., Ser. A (Chin. Ed.) 28, No. 4, 447--456 (2013; Zbl 1299.65239) OpenURL
Yang, Lufeng A predictor-corrector compact finite difference scheme for the nonlinear convection diffusion equation. (Chinese. English summary) Zbl 1299.65199 J. Nat. Sci. Heilongjiang Univ. 30, No. 4, 462-465, 470 (2013). MSC: 65M06 65M20 35K55 PDF BibTeX XML Cite \textit{L. Yang}, J. Nat. Sci. Heilongjiang Univ. 30, No. 4, 462--465, 470 (2013; Zbl 1299.65199) OpenURL
Priyadharshini, Rajarammohanroy Mythili; Ramanujam, Narashimhan Uniformly-convergent numerical methods for a system of coupled singularly perturbed convection–diffusion equations with mixed type boundary conditions. (English) Zbl 1293.65108 Math. Model. Anal. 18, No. 5, 577-598 (2013). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65L20 65L10 65L12 65L70 65L11 65L50 34B15 34E15 PDF BibTeX XML Cite \textit{R. M. Priyadharshini} and \textit{N. Ramanujam}, Math. Model. Anal. 18, No. 5, 577--598 (2013; Zbl 1293.65108) Full Text: DOI OpenURL
Jiang, Yi; Xu, Zhengfu Parametrized maximum principle preserving limiter for finite difference WENO schemes solving convection-dominated diffusion equations. (English) Zbl 1290.65077 SIAM J. Sci. Comput. 35, No. 6, A2524-A2553 (2013). Reviewer: Fernando Casas (Castellon) MSC: 65M06 35K55 35B50 35Q30 35Q35 76S05 76M20 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{Z. Xu}, SIAM J. Sci. Comput. 35, No. 6, A2524--A2553 (2013; Zbl 1290.65077) Full Text: DOI OpenURL
Zhan, Huashui Solutions to a convection diffusion equation. (Chinese. English summary) Zbl 1299.35163 Chin. Ann. Math., Ser. A 34, No. 2, 235-256 (2013). MSC: 35K55 35K57 35K65 35B40 PDF BibTeX XML Cite \textit{H. Zhan}, Chin. Ann. Math., Ser. A 34, No. 2, 235--256 (2013; Zbl 1299.35163) OpenURL
Rostamy, D.; Zabihi, F. The general analytical and numerical solution for the modified KdV equation with convergence analysis. (English) Zbl 1269.65101 Math. Methods Appl. Sci. 36, No. 8, 896-907 (2013). Reviewer: H. P. Dikshit (Bhopal) MSC: 65M60 65M12 35Q53 65L06 PDF BibTeX XML Cite \textit{D. Rostamy} and \textit{F. Zabihi}, Math. Methods Appl. Sci. 36, No. 8, 896--907 (2013; Zbl 1269.65101) Full Text: DOI OpenURL
Boscarino, S.; Pareschi, L.; Russo, G. Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. (English) Zbl 1264.65150 SIAM J. Sci. Comput. 35, No. 1, A22-A51 (2013). MSC: 65M20 35L65 35K55 65L06 65M12 65L04 PDF BibTeX XML Cite \textit{S. Boscarino} et al., SIAM J. Sci. Comput. 35, No. 1, A22--A51 (2013; Zbl 1264.65150) Full Text: DOI arXiv OpenURL
Yan, Jue A new nonsymmetric discontinuous Galerkin method for time dependent convection diffusion equations. (English) Zbl 1269.65102 J. Sci. Comput. 54, No. 2-3, 663-683 (2013). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M60 65M12 35K05 35K55 35K20 35K57 35K65 76S05 76M10 PDF BibTeX XML Cite \textit{J. Yan}, J. Sci. Comput. 54, No. 2--3, 663--683 (2013; Zbl 1269.65102) Full Text: DOI OpenURL
Mohanty, R. K.; Setia, Nikita A new fourth-order compact off-step discretization for the system of 2D nonlinear elliptic partial differential equations. (English) Zbl 1287.65098 East Asian J. Appl. Math. 2, No. 1, 59-82 (2012). MSC: 65N06 35J47 35J60 35Q30 65N12 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{N. Setia}, East Asian J. Appl. Math. 2, No. 1, 59--82 (2012; Zbl 1287.65098) Full Text: DOI OpenURL
Zarin, Helena; Gordić, Snežana Numerical solving of singularly perturbed boundary value problems with discontinuities. (English) Zbl 1289.65166 Novi Sad J. Math. 42, No. 1, 131-145 (2012). Reviewer: Boško Jovanović (Beograd) MSC: 65L11 65L10 34B15 34E15 65L20 65L60 65L50 PDF BibTeX XML Cite \textit{H. Zarin} and \textit{S. Gordić}, Novi Sad J. Math. 42, No. 1, 131--145 (2012; Zbl 1289.65166) OpenURL
Acosta, Carlos D.; Bürger, Raimund Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions. (English) Zbl 1258.65074 IMA J. Numer. Anal. 32, No. 4, 1509-1540 (2012). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 35K55 35K65 65M12 PDF BibTeX XML Cite \textit{C. D. Acosta} and \textit{R. Bürger}, IMA J. Numer. Anal. 32, No. 4, 1509--1540 (2012; Zbl 1258.65074) Full Text: DOI Link OpenURL
Li, Shishun; Huang, Zhengda Two-grid algorithms for linear and nonlinear elliptic problems based on HSS iteration method. (English) Zbl 1262.65174 J. Comput. Anal. Appl. 14, No. 5, 880-889 (2012). Reviewer: Petr Sváček (Praha) MSC: 65N30 65N55 35J60 35Q53 65N12 PDF BibTeX XML Cite \textit{S. Li} and \textit{Z. Huang}, J. Comput. Anal. Appl. 14, No. 5, 880--889 (2012; Zbl 1262.65174) OpenURL
Bessemoulin-Chatard, Marianne A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. (English) Zbl 1271.65124 Numer. Math. 121, No. 4, 637-670 (2012). Reviewer: S. Burys (Kraków) MSC: 65M08 65M12 82D37 35K55 76S05 76M12 PDF BibTeX XML Cite \textit{M. Bessemoulin-Chatard}, Numer. Math. 121, No. 4, 637--670 (2012; Zbl 1271.65124) Full Text: DOI arXiv OpenURL
Macías-Díaz, J. E. A bounded numerical method for approximating a hyperbolic and convective generalization of Fisher’s model with nonlinear damping. (English) Zbl 1242.65165 Appl. Math. Lett. 25, No. 6, 946-951 (2012). MSC: 65M06 35L70 92D25 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Appl. Math. Lett. 25, No. 6, 946--951 (2012; Zbl 1242.65165) Full Text: DOI OpenURL
Renac, Florent; Marmignon, Claude; Coquel, Frédéric Time implicit high-order discontinuous Galerkin method with reduced evaluation cost. (English) Zbl 1241.65085 SIAM J. Sci. Comput. 34, No. 1, A370-A394 (2012). MSC: 65M60 35K55 35L70 65M12 PDF BibTeX XML Cite \textit{F. Renac} et al., SIAM J. Sci. Comput. 34, No. 1, A370--A394 (2012; Zbl 1241.65085) Full Text: DOI Link OpenURL
Brdar, S.; Dedner, A.; Klöfkorn, R. Compact and stable discontinuous Galerkin methods for convection-diffusion problems. (English) Zbl 1251.65137 SIAM J. Sci. Comput. 34, No. 1, A263-A282 (2012). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M60 65M12 35Q30 35K55 35K05 35J05 65N30 76D05 76M10 PDF BibTeX XML Cite \textit{S. Brdar} et al., SIAM J. Sci. Comput. 34, No. 1, A263--A282 (2012; Zbl 1251.65137) Full Text: DOI Link OpenURL
Le Potier, Christophe; Mahamane, Amadou A nonlinear correction and maximum principle for diffusion operators with hybrid schemes. (Correction non linéaire et principe du maximum avec des schémas hybrides pour la discrétisation d’opérateurs de diffusion.) (French. Abridged English version) Zbl 1236.65138 C. R., Math., Acad. Sci. Paris 350, No. 1-2, 101-106 (2012). MSC: 65N08 35J25 PDF BibTeX XML Cite \textit{C. Le Potier} and \textit{A. Mahamane}, C. R., Math., Acad. Sci. Paris 350, No. 1--2, 101--106 (2012; Zbl 1236.65138) Full Text: DOI OpenURL
Wang, Yue-Peng; Tao, Su-Lin Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem. (English) Zbl 1244.65133 Appl. Math. Comput. 218, No. 8, 4475-4482 (2011). MSC: 65M32 35K61 35R30 65M06 PDF BibTeX XML Cite \textit{Y.-P. Wang} and \textit{S.-L. Tao}, Appl. Math. Comput. 218, No. 8, 4475--4482 (2011; Zbl 1244.65133) Full Text: DOI OpenURL
Hayek, Mohamed Exact and traveling-wave solutions for convection-diffusion-reaction equation with power-law nonlinearity. (English) Zbl 1239.35068 Appl. Math. Comput. 218, No. 6, 2407-2420 (2011). MSC: 35K57 35C07 35Q92 PDF BibTeX XML Cite \textit{M. Hayek}, Appl. Math. Comput. 218, No. 6, 2407--2420 (2011; Zbl 1239.35068) Full Text: DOI OpenURL
Cockburn, Bernardo Numerical analysis and scientific computing the hybridizable discontinuous Galerkin methods. (English) Zbl 1228.65221 Bhatia, Rajendra (ed.) et al., Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. IV: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency (ISBN 978-981-4324-34-2/hbk; 978-81-85931-08-3/hbk; 978-981-4324-31-1/set; 978-981-4324-35-9/ebook). 2749-2775 (2011). MSC: 65N30 35J25 76D05 76M10 65N12 PDF BibTeX XML Cite \textit{B. Cockburn}, in: Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19--27, 2010. Vol. IV: Invited lectures. Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency. 2749--2775 (2011; Zbl 1228.65221) Full Text: Link OpenURL
Vlasák, M.; Dolejší, V.; Hájek, J. A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. (English) Zbl 1237.65105 Numer. Methods Partial Differ. Equations 27, No. 6, 1456-1482 (2011). Reviewer: Angela Handlovičová (Bratislava) MSC: 65M15 65M60 35K55 76N15 76M10 PDF BibTeX XML Cite \textit{M. Vlasák} et al., Numer. Methods Partial Differ. Equations 27, No. 6, 1456--1482 (2011; Zbl 1237.65105) Full Text: DOI OpenURL
de Frutos, Javier; García-Archilla, Bosco; Novo, Julia Nonlinear convection-diffusion problems: fully discrete approximations and a posteriori error estimates. (English) Zbl 1236.65129 IMA J. Numer. Anal. 31, No. 4, 1402-1430 (2011). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M60 35K55 65M15 PDF BibTeX XML Cite \textit{J. de Frutos} et al., IMA J. Numer. Anal. 31, No. 4, 1402--1430 (2011; Zbl 1236.65129) Full Text: DOI OpenURL
Lu, Jianhua; Chai, Zhenhua; Shi, Baochang; Guo, Zhaoli; Hou, Guoxiang Rectangular lattice Boltzmann model for nonlinear convection-diffusion equations. (English) Zbl 1223.76084 Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 369, No. 1944, 2311-2319 (2011). MSC: 76M28 65M75 PDF BibTeX XML Cite \textit{J. Lu} et al., Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 369, No. 1944, 2311--2319 (2011; Zbl 1223.76084) Full Text: DOI OpenURL
Shishkin, G. I.; Shishkina, L. P. Iterative Newton solution method for the Richardson scheme for a semilinear singular perturbed elliptic convection-diffusion equation. (English) Zbl 1226.65089 Russ. J. Numer. Anal. Math. Model. 26, No. 4, 427-445 (2011). MSC: 65N06 65H10 35B25 35J61 65N12 PDF BibTeX XML Cite \textit{G. I. Shishkin} and \textit{L. P. Shishkina}, Russ. J. Numer. Anal. Math. Model. 26, No. 4, 427--445 (2011; Zbl 1226.65089) Full Text: DOI OpenURL
Maekawa, Yasunori On Gaussian decay estimates of solutions to some linear elliptic equations and their applications. (English) Zbl 1261.35049 Z. Angew. Math. Phys. 62, No. 1, 1-30 (2011). Reviewer: Denis Bonheure (Bruxelles) MSC: 35J15 35J60 35K05 35J10 PDF BibTeX XML Cite \textit{Y. Maekawa}, Z. Angew. Math. Phys. 62, No. 1, 1--30 (2011; Zbl 1261.35049) Full Text: DOI Link OpenURL
Andreianov, Boris; Bendahmane, Mostafa; Saad, Mazen Finite volume methods for degenerate chemotaxis model. (English) Zbl 1228.65179 J. Comput. Appl. Math. 235, No. 14, 4015-4031 (2011). Reviewer: Michael Jung (Dresden) MSC: 65M08 35K55 35K65 92C17 65M12 PDF BibTeX XML Cite \textit{B. Andreianov} et al., J. Comput. Appl. Math. 235, No. 14, 4015--4031 (2011; Zbl 1228.65179) Full Text: DOI OpenURL
Iyer, Gautam; Novikov, Alexei; Ryzhik, Lenya; Zlatoš, Andrej Exit times of diffusions with incompressible drift. (English) Zbl 1387.35493 SIAM J. Math. Anal. 42, No. 6, 2484-2498 (2010). MSC: 35Q35 76R50 35J25 35J60 35J05 35B40 PDF BibTeX XML Cite \textit{G. Iyer} et al., SIAM J. Math. Anal. 42, No. 6, 2484--2498 (2010; Zbl 1387.35493) Full Text: DOI arXiv Link OpenURL
Platte, R. B.; Trefethen, L. N. Chebfun: A new kind of numerical computing. (English) Zbl 1220.65100 Fitt, Alistair D. (ed.) et al., Progress in industrial mathematics at ECMI 2008. Proceedings of the 15th European conference on mathematics for industry, London, UK, June 30 - July 4, 2008. Berlin: Springer (ISBN 978-3-642-12109-8/hbk; 978-3-642-12110-4/ebook). Mathematics in Industry 15, 69-87 (2010). MSC: 65L10 68W30 65Y15 34B05 65L15 34L16 65D15 35K20 65M06 35Q55 PDF BibTeX XML Cite \textit{R. B. Platte} and \textit{L. N. Trefethen}, Math. Ind. 15, 69--87 (2010; Zbl 1220.65100) Full Text: DOI OpenURL
Vlasák, Miloslav; Dolejší, Vít Implicit-explicit backward difference formulae discontinuous Galerkin finite element methods for convection-diffusion problems. (English) Zbl 1216.65120 Kreiss, Gunilla (ed.) et al., Numerical mathematics and advanced applications 2009. Proceedings of ENUMATH 2009, the 8th European conference on numerical mathematics and advanced applications, Uppsala, Sweden, June 29–July 3, 2009. Berlin: Springer (ISBN 978-3-642-11794-7/hbk; 978-3-642-11795-4/ebook). 921-928 (2010). MSC: 65M20 35K55 65M06 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{M. Vlasák} and \textit{V. Dolejší}, in: Numerical mathematics and advanced applications 2009. Proceedings of ENUMATH 2009, the 8th European conference on numerical mathematics and advanced applications, Uppsala, Sweden, June 29--July 3, 2009. Berlin: Springer. 921--928 (2010; Zbl 1216.65120) Full Text: DOI OpenURL
Hozman, J.; Dolejší, V. A priori error estimates for DGFEM applied to nonstationary nonlinear convection-diffusion equation. (English) Zbl 1216.65115 Kreiss, Gunilla (ed.) et al., Numerical mathematics and advanced applications 2009. Proceedings of ENUMATH 2009, the 8th European conference on numerical mathematics and advanced applications, Uppsala, Sweden, June 29–July 3, 2009. Berlin: Springer (ISBN 978-3-642-11794-7/hbk; 978-3-642-11795-4/ebook). 459-467 (2010). MSC: 65M15 35K55 65M60 65M12 35Q30 76D05 76M10 PDF BibTeX XML Cite \textit{J. Hozman} and \textit{V. Dolejší}, in: Numerical mathematics and advanced applications 2009. Proceedings of ENUMATH 2009, the 8th European conference on numerical mathematics and advanced applications, Uppsala, Sweden, June 29--July 3, 2009. Berlin: Springer. 459--467 (2010; Zbl 1216.65115) Full Text: DOI OpenURL
Rashidinia, J.; Ghasemi, M.; Jalilian, R. A collocation method for the solution of nonlinear one-dimensional parabolic equations. (English) Zbl 1211.65135 Math. Sci. Q. J. 4, No. 1, 87-104 (2010). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 65M70 35B25 35K61 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{J. Rashidinia} et al., Math. Sci. Q. J. 4, No. 1, 87--104 (2010; Zbl 1211.65135) Full Text: Link OpenURL
Havle, Oto; Dolejší, Vít; Feistauer, Miloslav Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions. (English) Zbl 1224.65219 Appl. Math., Praha 55, No. 5, 353-372 (2010). MSC: 65M20 65M60 65M12 65M15 35K55 65M50 PDF BibTeX XML Cite \textit{O. Havle} et al., Appl. Math., Praha 55, No. 5, 353--372 (2010; Zbl 1224.65219) Full Text: DOI EuDML Link OpenURL
Huang, Zhen-Ting; Hsu, Huan-Chun; Chang, Chau-Lyan; Wu, Chin-Tien; Jiang, T. F. Momentum-time flux conservation method for one-dimensional wave equations. (English) Zbl 1205.65276 Comput. Phys. Commun. 181, No. 3, 473-480 (2010). MSC: 65M70 35L05 35K20 35Q53 PDF BibTeX XML Cite \textit{Z.-T. Huang} et al., Comput. Phys. Commun. 181, No. 3, 473--480 (2010; Zbl 1205.65276) Full Text: DOI OpenURL
Segeth, Karel A review of some a posteriori error estimates for adaptive finite element methods. (English) Zbl 1196.65173 Math. Comput. Simul. 80, No. 8, 1589-1600 (2010). MSC: 65N15 65M30 35J05 35J25 35J40 35J62 35J65 35K55 35Q30 PDF BibTeX XML Cite \textit{K. Segeth}, Math. Comput. Simul. 80, No. 8, 1589--1600 (2010; Zbl 1196.65173) Full Text: DOI OpenURL
Kučera, Václav Optimal \(L^{\infty}(L^{2})\)-error estimates for the DG method applied to nonlinear convection-diffusion problems with nonlinear diffusion. (English) Zbl 1195.65118 Numer. Funct. Anal. Optim. 31, No. 3, 285-312 (2010). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M15 65M12 35K61 65M20 PDF BibTeX XML Cite \textit{V. Kučera}, Numer. Funct. Anal. Optim. 31, No. 3, 285--312 (2010; Zbl 1195.65118) Full Text: DOI OpenURL
Momani, Shaher; Yıldırım, Ahmet Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method. (English) Zbl 1192.65137 Int. J. Comput. Math. 87, No. 5, 1057-1065 (2010); correction ibid. 98, No. 6, 1291 (2021). MSC: 65M70 26A33 35R11 35K55 35C10 PDF BibTeX XML Cite \textit{S. Momani} and \textit{A. Yıldırım}, Int. J. Comput. Math. 87, No. 5, 1057--1065 (2010; Zbl 1192.65137) Full Text: DOI OpenURL
Ji, Lina; Qu, Changzheng; Ye, Yaojun Solutions and symmetry reductions of the \(n\)-dimensional nonlinear convection-diffusion equations. (English) Zbl 1186.35162 IMA J. Appl. Math. 75, No. 1, 17-55 (2010). MSC: 35Q35 35B06 37K05 35K35 35B44 PDF BibTeX XML Cite \textit{L. Ji} et al., IMA J. Appl. Math. 75, No. 1, 17--55 (2010; Zbl 1186.35162) Full Text: DOI OpenURL
Chertock, Alina; Kurganov, Alexander On splitting-based numerical methods for convection-diffusion equations. (English) Zbl 1266.65143 Puppo, Gabriella (ed.) et al., Numerical methods for balance laws. Caserta: Dipartimento di Matematica, Seconda Università di Napoli (ISBN 978-88-548-3360-9/hbk). Quaderni di Matematica 24, 303-343 (2009). MSC: 65M06 65M08 65M25 35F21 35K15 35L65 35C15 35Q53 82D60 76B15 76D05 76M20 76M12 PDF BibTeX XML Cite \textit{A. Chertock} and \textit{A. Kurganov}, Quad. Mat. 24, 303--343 (2009; Zbl 1266.65143) OpenURL
Ganji, Z. Z.; Ganji, D. D.; Asgari, A. Finding general and explicit solutions of high nonlinear equations by the Exp-function method. (English) Zbl 1189.65249 Comput. Math. Appl. 58, No. 11-12, 2124-2130 (2009). MSC: 65M99 PDF BibTeX XML Cite \textit{Z. Z. Ganji} et al., Comput. Math. Appl. 58, No. 11--12, 2124--2130 (2009; Zbl 1189.65249) Full Text: DOI OpenURL
Nilssen, T. K.; Karlsen, K. H.; Mannseth, T.; Tai, X.-C. Identification of diffusion parameters in a nonlinear convection-diffusion equation using the augmented Lagrangian method. (English) Zbl 1179.65122 Comput. Geosci. 13, No. 3, 317-329 (2009). MSC: 65M32 PDF BibTeX XML Cite \textit{T. K. Nilssen} et al., Comput. Geosci. 13, No. 3, 317--329 (2009; Zbl 1179.65122) Full Text: DOI OpenURL
Akimenko, V. V.; Nakonechnyi, A. G.; Trofimchuka, O. Yu. Modeling convection-diffusion processes based on a multidimensional integro-differential equation with degenerate parabolicity. (English. Russian original) Zbl 1182.65198 Cybern. Syst. Anal. 45, No. 2, 232-244 (2009); translation from Kibern. Sist. Anal. 2009, No. 2, 83-96 (2009). MSC: 65R20 45K05 PDF BibTeX XML Cite \textit{V. V. Akimenko} et al., Cybern. Syst. Anal. 45, No. 2, 232--244 (2009; Zbl 1182.65198); translation from Kibern. Sist. Anal. 2009, No. 2, 83--96 (2009) Full Text: DOI OpenURL
Nguyen, N. C.; Peraire, J.; Cockburn, B. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. (English) Zbl 1177.65150 J. Comput. Phys. 228, No. 23, 8841-8855 (2009). MSC: 65M60 35K61 65N30 35J65 65M20 35Q53 PDF BibTeX XML Cite \textit{N. C. Nguyen} et al., J. Comput. Phys. 228, No. 23, 8841--8855 (2009; Zbl 1177.65150) Full Text: DOI OpenURL
Gao, Fu-Zheng; Yuan, Yi-Rang An upwind finite volume element method based on quadrilateral meshes for nonlinear convection-diffusion problems. (English) Zbl 1179.65125 Numer. Methods Partial Differ. Equations 25, No. 5, 1067-1085 (2009). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65M60 65M06 65M08 35K61 65M15 35B50 PDF BibTeX XML Cite \textit{F.-Z. Gao} and \textit{Y.-R. Yuan}, Numer. Methods Partial Differ. Equations 25, No. 5, 1067--1085 (2009; Zbl 1179.65125) Full Text: DOI OpenURL
Feistauer, M.; Dolejší, V.; Kučera, V.; Sobotíková, V. \(L^{\infty } (L^{2})\)-error estimates for the DGFEM applied to convection-diffusion problems on nonconforming meshes. (English) Zbl 1171.65064 J. Numer. Math. 17, No. 1, 45-65 (2009). Reviewer: Vit Dolejsi (Praha) MSC: 65M15 65M12 65M60 65M20 35K57 PDF BibTeX XML Cite \textit{M. Feistauer} et al., J. Numer. Math. 17, No. 1, 45--65 (2009; Zbl 1171.65064) Full Text: DOI OpenURL
Vlasák, Miloslav Second order time discontinuous Galerkin method for nonlinear convection-diffusion problems. (English) Zbl 1171.65427 Handlovičová, Angela (ed.) et al., Algoritmy 2009. 18th conference on scientific computing, Vysoké Tatry – Podbsanské, Slovakia, March 15–20, 2009. Proceedings of contributed papers and posters. Bratislava: Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry (ISBN 978-80-227-3032-7/pbk). 276-283 (2009). MSC: 65M20 65M60 65M12 65M15 35K57 PDF BibTeX XML Cite \textit{M. Vlasák}, in: Algoritmy 2009. 18th conference on scientific computing, Vysoké Tatry -- Podbsanské, Slovakia, March 15--20, 2009. Proceedings of contributed papers and posters. Bratislava: Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry. 276--283 (2009; Zbl 1171.65427) OpenURL