Majumder, Sujoy; Mahato, Lata On the meromorphic solutions of a certain type of nonlinear difference-differential equation. (English) Zbl 07655814 Math. Bohem. 148, No. 1, 73-94 (2023). MSC: 34M05 30D35 33E30 30D30 PDF BibTeX XML Cite \textit{S. Majumder} and \textit{L. Mahato}, Math. Bohem. 148, No. 1, 73--94 (2023; Zbl 07655814) Full Text: DOI OpenURL
Shen, Yuan; Tian, Bo; Zhou, Tian-Yu; Gao, Xiao-Tian Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, \(N\)-fold Darboux transformation and explicit exact solutions. (English) Zbl 07646361 Chaos Solitons Fractals 164, Article ID 112460, 7 p. (2022). MSC: 37-XX 35-XX PDF BibTeX XML Cite \textit{Y. Shen} et al., Chaos Solitons Fractals 164, Article ID 112460, 7 p. (2022; Zbl 07646361) Full Text: DOI OpenURL
Alam, Mohammad Prawesh; Khan, Arshad A new numerical algorithm for time-dependent singularly perturbed differential-difference convection-diffusion equation arising in computational neuroscience. (English) Zbl 07645481 Comput. Appl. Math. 41, No. 8, Paper No. 402, 32 p. (2022). MSC: 65M99 65N35 65N55 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{M. P. Alam} and \textit{A. Khan}, Comput. Appl. Math. 41, No. 8, Paper No. 402, 32 p. (2022; Zbl 07645481) Full Text: DOI OpenURL
Martinez, Lorenzo J.; Gallego, Felipe A.; Salas, Alvaro H. Analytical solution to a damped and forced oscillator equation with power law nonlinearity. (English) Zbl 07604272 Int. J. Math. Comput. Sci. 17, No. 4, 1649-1655 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{L. J. Martinez} et al., Int. J. Math. Comput. Sci. 17, No. 4, 1649--1655 (2022; Zbl 07604272) Full Text: Link OpenURL
Salas, Alvaro H. Elementary solution to a damped and forced cubic-quintic Duffing equation. (English) Zbl 07604271 Int. J. Math. Comput. Sci. 17, No. 4, 1643-1647 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{A. H. Salas}, Int. J. Math. Comput. Sci. 17, No. 4, 1643--1647 (2022; Zbl 07604271) Full Text: Link OpenURL
Salas, Alvaro H.; Castillo, Jairo E.; Martínez H., Lorenzo J. Analytical and numerical solutions to the Kapitza pendulum equation. (English) Zbl 07604260 Int. J. Math. Comput. Sci. 17, No. 4, 1529-1534 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 17, No. 4, 1529--1534 (2022; Zbl 07604260) Full Text: Link OpenURL
Chen, Wei; Thin, Nguyen Van; Wang, Qiongyan Entire solutions of one certain type of nonlinear differential-difference equations. (English) Zbl 1502.30085 Rocky Mt. J. Math. 52, No. 4, 1251-1266 (2022). MSC: 30D20 39B32 PDF BibTeX XML Cite \textit{W. Chen} et al., Rocky Mt. J. Math. 52, No. 4, 1251--1266 (2022; Zbl 1502.30085) Full Text: DOI Link OpenURL
Hao, Wen-Jie; Chen, Jun-Fan Entire solutions of a certain type of nonlinear differential-difference equations. (English) Zbl 07597936 Acta Math. Vietnam. 47, No. 4, 731-741 (2022). MSC: 34K41 34M05 30D35 34M10 PDF BibTeX XML Cite \textit{W.-J. Hao} and \textit{J.-F. Chen}, Acta Math. Vietnam. 47, No. 4, 731--741 (2022; Zbl 07597936) Full Text: DOI OpenURL
Qin, Da Zhuan; Long, Jian Ren On entire solutions of nonlinear differential-difference equations. (Chinese. English summary) Zbl 07594608 Acta Math. Sin., Chin. Ser. 65, No. 3, 435-446 (2022). MSC: 30D35 34M05 39A10 PDF BibTeX XML Cite \textit{D. Z. Qin} and \textit{J. R. Long}, Acta Math. Sin., Chin. Ser. 65, No. 3, 435--446 (2022; Zbl 07594608) Full Text: Link OpenURL
Xu, Hong Yan; Yu, Meiying; Zhang, Keyu The study of solutions of several systems of nonlinear partial differential difference equations. (English) Zbl 1495.35086 J. Funct. Spaces 2022, Article ID 4449502, 14 p. (2022). MSC: 35F20 39A14 PDF BibTeX XML Cite \textit{H. Y. Xu} et al., J. Funct. Spaces 2022, Article ID 4449502, 14 p. (2022; Zbl 1495.35086) Full Text: DOI OpenURL
Lu, Xiaoqing; Liao, Liangwen Meromorphic solutions of a certain type of nonlinear differential equations. (English) Zbl 07667610 Houston J. Math. 47, No. 3, 571-584 (2021). MSC: 34M05 30D35 30D30 33E30 PDF BibTeX XML Cite \textit{X. Lu} and \textit{L. Liao}, Houston J. Math. 47, No. 3, 571--584 (2021; Zbl 07667610) Full Text: Link OpenURL
Li, Nan; Geng, Jiachuan; Yang, Lianzhong Some results on transcendental entire solutions to certain nonlinear differential-difference equations. (English) Zbl 1485.34208 AIMS Math. 6, No. 8, 8107-8126 (2021). MSC: 34M05 30D35 PDF BibTeX XML Cite \textit{N. Li} et al., AIMS Math. 6, No. 8, 8107--8126 (2021; Zbl 1485.34208) Full Text: DOI OpenURL
Inc, Mustafa; Partohaghighi, Mohammad; Akinlar, Mehmet Ali; Weber, Gerhard-Wilhelm New solutions of hyperbolic telegraph equation. (English) Zbl 1497.35022 J. Dyn. Games 8, No. 2, 129-138 (2021). MSC: 35A35 35L10 33E30 65M22 65J15 PDF BibTeX XML Cite \textit{M. Inc} et al., J. Dyn. Games 8, No. 2, 129--138 (2021; Zbl 1497.35022) Full Text: DOI OpenURL
Xiao, Chun; Xu, Shixin; Yue, Xingye; Zhang, Changjuan; Zhang, Changrong Homogenization of a discrete network model for chemical vapor infiltration process. (English) Zbl 1479.35065 Commun. Math. Sci. 19, No. 7, 1809-1826 (2021). MSC: 35B27 35K51 35K55 35K57 35R02 47E07 PDF BibTeX XML Cite \textit{C. Xiao} et al., Commun. Math. Sci. 19, No. 7, 1809--1826 (2021; Zbl 1479.35065) Full Text: DOI OpenURL
Li, Hong; Xu, Hong Yan Notes on solutions for some systems of complex functional equations in \(\mathbb{C}^2\). (English) Zbl 1481.39019 J. Funct. Spaces 2021, Article ID 5424284, 9 p. (2021). Reviewer: Risto Korhonen (Joensuu) MSC: 39A45 39B32 39B72 PDF BibTeX XML Cite \textit{H. Li} and \textit{H. Y. Xu}, J. Funct. Spaces 2021, Article ID 5424284, 9 p. (2021; Zbl 1481.39019) Full Text: DOI OpenURL
Kato, Masaki Differential algebraicity of the multiple elliptic gamma function for a rational period. (English) Zbl 1481.33015 Funkc. Ekvacioj, Ser. Int. 64, No. 2, 225-235 (2021). MSC: 33E30 34M04 PDF BibTeX XML Cite \textit{M. Kato}, Funkc. Ekvacioj, Ser. Int. 64, No. 2, 225--235 (2021; Zbl 1481.33015) Full Text: DOI OpenURL
Khalid, Muhammad; Khan, Fareeha Sami; Sultana, Mariam A highly accurate numerical method for solving nonlinear time-fractional differential difference equation. (English) Zbl 1484.65167 Math. Methods Appl. Sci. 44, No. 10, 8243-8253 (2021). MSC: 65L99 34A08 65Q99 PDF BibTeX XML Cite \textit{M. Khalid} et al., Math. Methods Appl. Sci. 44, No. 10, 8243--8253 (2021; Zbl 1484.65167) Full Text: DOI OpenURL
Faried, Nashat; Ahmed, Abdel Baset I.; Labeeb, Mohamed A. Sufficient conditions for regular solvability of an arbitrary order operator-differential equation with initial-boundary conditions. (English) Zbl 1482.34142 Adv. Difference Equ. 2020, Paper No. 104, 14 p. (2020). MSC: 34G10 34G20 47A70 47E07 47N20 PDF BibTeX XML Cite \textit{N. Faried} et al., Adv. Difference Equ. 2020, Paper No. 104, 14 p. (2020; Zbl 1482.34142) Full Text: DOI OpenURL
Kanth, A. S. V. Ravi; Kumar, P. Murali Mohan Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. (English) Zbl 1488.65191 Hacet. J. Math. Stat. 49, No. 1, 221-235 (2020). MSC: 65L11 65L10 34K26 PDF BibTeX XML Cite \textit{A. S. V. R. Kanth} and \textit{P. M. M. Kumar}, Hacet. J. Math. Stat. 49, No. 1, 221--235 (2020; Zbl 1488.65191) Full Text: DOI OpenURL
Xu, Ling; Luo, Runzi; Cao, Tingbin On entire solutions of Fermat type differential difference equations. (Chinese. English summary) Zbl 1474.34614 J. Nanchang Univ., Nat. Sci. 44, No. 4, 307-312 (2020). MSC: 34M05 30D35 34K41 34M04 PDF BibTeX XML Cite \textit{L. Xu} et al., J. Nanchang Univ., Nat. Sci. 44, No. 4, 307--312 (2020; Zbl 1474.34614) Full Text: DOI OpenURL
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 1463.65227 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M06 65M12 35K20 35B25 65D07 35B45 35B50 35R07 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 1463.65227) Full Text: DOI OpenURL
Bollati, Julieta; Semitiel, Jose A.; Natale, Maria F.; Tarzia, Domingo A. Existence and uniqueness of the \(p\)-generalized modified error function. (English) Zbl 1461.34048 Electron. J. Differ. Equ. 2020, Paper No. 35, 11 p. (2020). Reviewer: Alessandro Calamai (Ancona) MSC: 34B18 34B15 47H10 33E30 PDF BibTeX XML Cite \textit{J. Bollati} et al., Electron. J. Differ. Equ. 2020, Paper No. 35, 11 p. (2020; Zbl 1461.34048) Full Text: arXiv Link OpenURL
Fujioka, Jorge; Espinosa, Áurea Generalized Ablowitz-Ladik equation with a dual Lagrangian structure. (English) Zbl 1479.35788 Phys. Lett., A 383, No. 27, Article ID 125849, 8 p. (2019). MSC: 35Q55 39A12 35C08 35A01 PDF BibTeX XML Cite \textit{J. Fujioka} and \textit{Á. Espinosa}, Phys. Lett., A 383, No. 27, Article ID 125849, 8 p. (2019; Zbl 1479.35788) Full Text: DOI OpenURL
Kim, Yun-Ho A global bifurcation for nonlinear elliptic equations involving nonhomogeneous operators of \(p(x)\)-Laplace type. (English) Zbl 1413.35061 Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 27-39 (2018). MSC: 35B32 35D30 35J60 35P30 37K50 47J10 PDF BibTeX XML Cite \textit{Y.-H. Kim}, Adv. Stud. Contemp. Math., Kyungshang 28, No. 1, 27--39 (2018; Zbl 1413.35061) OpenURL
Ravi Kanth, A. S. V.; Murali Mohan Kumar, P. Numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline. (English) Zbl 1401.65078 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 3-4, 357-365 (2018). MSC: 65L10 34K26 34K28 41A15 65L03 65L11 PDF BibTeX XML Cite \textit{A. S. V. Ravi Kanth} and \textit{P. Murali Mohan Kumar}, Int. J. Nonlinear Sci. Numer. Simul. 19, No. 3--4, 357--365 (2018; Zbl 1401.65078) Full Text: DOI OpenURL
Shakhno, S. M.; Iakymchuk, R. P.; Yarmola, H. P. An iterative method for solving nonlinear least squares problems with nondifferentiable operator. (English) Zbl 1414.49033 Mat. Stud. 48, No. 1, 97-107 (2017). MSC: 49M15 65B05 65H10 65K10 PDF BibTeX XML Cite \textit{S. M. Shakhno} et al., Mat. Stud. 48, No. 1, 97--107 (2017; Zbl 1414.49033) Full Text: DOI OpenURL
Startsev, S. Ya Relationships between symmetries depending on arbitrary functions and integrals of discrete equations. (English) Zbl 1383.35011 J. Phys. A, Math. Theor. 50, No. 50, Article ID 50LT01, 12 p. (2017). MSC: 35B06 35G20 39A14 PDF BibTeX XML Cite \textit{S. Y. Startsev}, J. Phys. A, Math. Theor. 50, No. 50, Article ID 50LT01, 12 p. (2017; Zbl 1383.35011) Full Text: DOI arXiv OpenURL
Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation. (English) Zbl 1386.35033 Z. Angew. Math. Phys. 68, No. 5, Paper No. 111, 23 p. (2017). MSC: 35C08 35F20 35G20 PDF BibTeX XML Cite \textit{B. Qin} et al., Z. Angew. Math. Phys. 68, No. 5, Paper No. 111, 23 p. (2017; Zbl 1386.35033) Full Text: DOI OpenURL
Lang, Jan; Méndez, Osvaldo; Rouhani, Behzad A new Schauder basis for \(L^r((0,1)^n),\,n=2,3\). (English) Zbl 1370.42007 Math. Inequal. Appl. 20, No. 2, 591-600 (2017). MSC: 42B05 42C99 33E30 35P10 35P30 41A58 PDF BibTeX XML Cite \textit{J. Lang} et al., Math. Inequal. Appl. 20, No. 2, 591--600 (2017; Zbl 1370.42007) Full Text: DOI OpenURL
Fischler, Stéphane; Rivoal, Tanguy Arithmetic theory of \(E\)-operators. (Théorie arithmétique des \(E\)-opérateurs.) (English. French summary) Zbl 1370.11090 J. Éc. Polytech., Math. 3, 31-65 (2016). Reviewer: Michel Waldschmidt (Paris) MSC: 11J91 33E30 34M40 44A10 PDF BibTeX XML Cite \textit{S. Fischler} and \textit{T. Rivoal}, J. Éc. Polytech., Math. 3, 31--65 (2016; Zbl 1370.11090) Full Text: DOI arXiv OpenURL
Slyusarchuk, L. M. Nonlinear differential-difference equations with asymptotically constant solutions. (Ukrainian. English summary) Zbl 1363.34206 Bukovyn. Mat. Zh. 4, No. 1-2, 143-144 (2016). MSC: 34K05 PDF BibTeX XML Cite \textit{L. M. Slyusarchuk}, Bukovyn. Mat. Zh. 4, No. 1--2, 143--144 (2016; Zbl 1363.34206) OpenURL
Aslan, Ismail Exact solutions for a local fractional DDE associated with a nonlinear transmission line. (English) Zbl 1351.34095 Commun. Theor. Phys. 66, No. 3, 315-320 (2016). MSC: 34K37 34A08 34K07 PDF BibTeX XML Cite \textit{I. Aslan}, Commun. Theor. Phys. 66, No. 3, 315--320 (2016; Zbl 1351.34095) Full Text: DOI Link OpenURL
Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh. Periodic two-cluster synchronization modes in completely connected genetic networks. (English. Russian original) Zbl 1410.34199 Differ. Equ. 52, No. 2, 157-176 (2016); translation from Differ. Uravn. 52, No. 2, 157-176 (2016). MSC: 34K13 34K25 92B20 34K20 92D10 PDF BibTeX XML Cite \textit{S. D. Glyzin} et al., Differ. Equ. 52, No. 2, 157--176 (2016; Zbl 1410.34199); translation from Differ. Uravn. 52, No. 2, 157--176 (2016) Full Text: DOI OpenURL
Arsenault, Ashley; Opps, Sheldon; Saad, Nasser Solvable potentials with exceptional orthogonal polynomials. (English) Zbl 1338.81219 Ann. Phys., Berlin 528, No. 3-4, 321-334 (2016). MSC: 81Q80 33E30 81Q05 81Q60 PDF BibTeX XML Cite \textit{A. Arsenault} et al., Ann. Phys., Berlin 528, No. 3--4, 321--334 (2016; Zbl 1338.81219) Full Text: DOI OpenURL
Girg, Petr; Kotrla, Lukáš Generalized trigonometric functions in complex domain. (English) Zbl 1349.33018 Math. Bohem. 140, No. 2, 223-239 (2015). MSC: 33E30 34B15 34M05 34M99 PDF BibTeX XML Cite \textit{P. Girg} and \textit{L. Kotrla}, Math. Bohem. 140, No. 2, 223--239 (2015; Zbl 1349.33018) Full Text: Link OpenURL
Badiale, Marino; Guida, Michela; Rolando, Sergio A nonexistence result for a nonlinear elliptic equation with singular and decaying potential. (English) Zbl 1321.35052 Commun. Contemp. Math. 17, No. 4, Article ID 1450024, 21 p. (2015). MSC: 35J61 35Q55 34A34 45G99 33E30 PDF BibTeX XML Cite \textit{M. Badiale} et al., Commun. Contemp. Math. 17, No. 4, Article ID 1450024, 21 p. (2015; Zbl 1321.35052) Full Text: DOI arXiv OpenURL
Batic, Davide; Williams, Runako The two-point connection problem for a sub-class of the Heun equation. (English) Zbl 1321.34114 J. Inequal. Spec. Funct. 6, No. 1, 1-11 (2015). Reviewer: Vladimir P. Kostov (Nice) MSC: 34M40 33E30 PDF BibTeX XML Cite \textit{D. Batic} and \textit{R. Williams}, J. Inequal. Spec. Funct. 6, No. 1, 1--11 (2015; Zbl 1321.34114) Full Text: arXiv OpenURL
Bakkyaraj, T.; Sahadevan, R. An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. (English) Zbl 1499.65593 J. Fract. Calc. Appl. 5, No. 1, 37-52 (2014). MSC: 65M99 35R10 35R11 26A33 34K37 PDF BibTeX XML Cite \textit{T. Bakkyaraj} and \textit{R. Sahadevan}, J. Fract. Calc. Appl. 5, No. 1, 37--52 (2014; Zbl 1499.65593) Full Text: Link OpenURL
Polyanin, Andrei D.; Zhurov, Alexei I. Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations. (English) Zbl 1470.35219 Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 417-430 (2014). MSC: 35K91 35C05 35R10 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{A. I. Zhurov}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 417--430 (2014; Zbl 1470.35219) Full Text: DOI OpenURL
Polyanin, Andrei D.; Zhurov, Alexei I. Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations. (English) Zbl 1470.35218 Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 409-416 (2014). MSC: 35K91 35C05 35R10 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{A. I. Zhurov}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 3, 409--416 (2014; Zbl 1470.35218) Full Text: DOI OpenURL
Wen, Xiao-Yong; Wang, Deng-Shan Odd-soliton solutions and inelastic interaction for the differential-difference nonlinear Schrödinger equation in nonlinear optics. (English) Zbl 1335.81071 Appl. Math. Comput. 244, 598-605 (2014). MSC: 81Q05 39A12 35Q55 PDF BibTeX XML Cite \textit{X.-Y. Wen} and \textit{D.-S. Wang}, Appl. Math. Comput. 244, 598--605 (2014; Zbl 1335.81071) Full Text: DOI OpenURL
Mickens, Ronald E. I wish I knew how to \(\ldots\). (English) Zbl 1329.33028 Gumel, Abba B. (ed.), Mathematics of continuous and discrete dynamical systems. AMS special session in honor of Ronald Mickens’s 70th birthday on nonstandard finite-difference discretizations and nonlinear oscillations, San Diego, CA, USA, January 9–10, 2013. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9862-8/pbk; 978-1-4704-1686-7/ebook). Contemporary Mathematics 618, 299-310 (2014). MSC: 33E30 39B12 42A16 92-08 39A10 41A60 PDF BibTeX XML Cite \textit{R. E. Mickens}, Contemp. Math. 618, 299--310 (2014; Zbl 1329.33028) OpenURL
Rucker, Sandra A. Leah-cosine and -sine functions: definitions and elementary properties. (English) Zbl 1329.33001 Gumel, Abba B. (ed.), Mathematics of continuous and discrete dynamical systems. AMS special session in honor of Ronald Mickens’s 70th birthday on nonstandard finite-difference discretizations and nonlinear oscillations, San Diego, CA, USA, January 9–10, 2013. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-9862-8/pbk; 978-1-4704-1686-7/ebook). Contemporary Mathematics 618, 265-280 (2014). MSC: 33B10 33B99 33E30 34C05 PDF BibTeX XML Cite \textit{S. A. Rucker}, Contemp. Math. 618, 265--280 (2014; Zbl 1329.33001) OpenURL
Otoba, Nobuhiko Erratum to: “Constant scalar curvature metrics on Hirzebruch surfaces”. (English) Zbl 1304.53031 Ann. Global Anal. Geom. 46, No. 3, 225 (2014). MSC: 53C20 34B18 33E05 33E30 PDF BibTeX XML Cite \textit{N. Otoba}, Ann. Global Anal. Geom. 46, No. 3, 225 (2014; Zbl 1304.53031) Full Text: DOI OpenURL
Otoba, Nobuhiko Constant scalar curvature metrics on Hirzebruch surfaces. (English) Zbl 1302.53039 Ann. Global Anal. Geom. 46, No. 3, 197-223 (2014); erratum ibid. 46, No. 3, 225 (2014). MSC: 53C20 34B18 33E05 33E30 PDF BibTeX XML Cite \textit{N. Otoba}, Ann. Global Anal. Geom. 46, No. 3, 197--223 (2014; Zbl 1302.53039) Full Text: DOI arXiv OpenURL
Turkyilmazoglu, Mustafa A convergence condition of the homotopy analysis method. (English) Zbl 1301.65115 Liao, Shijun (ed.), Advances in the homotopy analysis method. Hackensack, NJ: World Scientific (ISBN 978-981-4551-24-3/hbk; 978-981-4551-26-7/ebook). 181-257 (2014). MSC: 65M99 65H05 45G10 45J05 65L03 65L10 34B15 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, in: Advances in the homotopy analysis method. Hackensack, NJ: World Scientific. 181--257 (2014; Zbl 1301.65115) Full Text: arXiv OpenURL
Fischler, Stéphane; Rivoal, Tanguy On the values of \(G\)-functions. (English) Zbl 1304.11070 Comment. Math. Helv. 89, No. 2, 313-341 (2014). Reviewer: Michel Waldschmidt (Paris) MSC: 11J91 33E30 34M35 34M40 PDF BibTeX XML Cite \textit{S. Fischler} and \textit{T. Rivoal}, Comment. Math. Helv. 89, No. 2, 313--341 (2014; Zbl 1304.11070) Full Text: DOI arXiv OpenURL
Zheng, Bin Extended Riccati sub-ODE method for nonlinear differential-difference equations. (English) Zbl 1299.35258 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75, No. 4, 193-204 (2014). MSC: 35Q51 35Q53 PDF BibTeX XML Cite \textit{B. Zheng}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75, No. 4, 193--204 (2014; Zbl 1299.35258) OpenURL
Tripathy, Arun Kumar Oscillation criteria for a class of first order neutral impulsive differential-difference equations. (English) Zbl 1292.34066 J. Appl. Anal. Comput. 4, No. 1, 89-101 (2014). MSC: 34K11 34K40 34K45 PDF BibTeX XML Cite \textit{A. K. Tripathy}, J. Appl. Anal. Comput. 4, No. 1, 89--101 (2014; Zbl 1292.34066) OpenURL
Snyder, Martin Avery A new set of polynomials, related to the Bernoulli numbers, which display a finite Stokes phenomenon. (English) Zbl 1396.33042 Integral Transforms Spec. Funct. 25, No. 2, 124-133 (2014). MSC: 33E30 41A60 34M40 PDF BibTeX XML Cite \textit{M. A. Snyder}, Integral Transforms Spec. Funct. 25, No. 2, 124--133 (2014; Zbl 1396.33042) Full Text: DOI OpenURL
El-Sayed, Ahmed; Hashem, Hind Existence results for nonlinear quadratic integral equations of fractional order in Banach algebra. (English) Zbl 1312.45004 Fract. Calc. Appl. Anal. 16, No. 4, 816-826 (2013). MSC: 45D05 26A33 33E30 34A08 PDF BibTeX XML Cite \textit{A. El-Sayed} and \textit{H. Hashem}, Fract. Calc. Appl. Anal. 16, No. 4, 816--826 (2013; Zbl 1312.45004) Full Text: DOI OpenURL
Li, Yunxia; Li, Wenting; Liang, Chen; Jiang, Kun; Zhou, Xiaowei A discrete MKdV auxiliary equation method for NDDEs. (English) Zbl 1299.65192 J. Nat. Sci. Heilongjiang Univ. 30, No. 4, 453-457 (2013). MSC: 65M06 68W30 35Q53 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Nat. Sci. Heilongjiang Univ. 30, No. 4, 453--457 (2013; Zbl 1299.65192) OpenURL
Solonukha, O. V. On a class of essentially nonlinear elliptic differential-difference equations. (English. Russian original) Zbl 1286.35245 Proc. Steklov Inst. Math. 283, 226-244 (2013); translation from Tr. Mat. Inst. Steklova 283, 233-251 (2013). MSC: 35R10 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Proc. Steklov Inst. Math. 283, 226--244 (2013; Zbl 1286.35245); translation from Tr. Mat. Inst. Steklova 283, 233--251 (2013) Full Text: DOI OpenURL
Qi, Xiaoguang; Yang, Lianzhong Properties of meromorphic solutions to certain differential-difference equations. (English) Zbl 1293.39001 Electron. J. Differ. Equ. 2013, Paper No. 135, 9 p. (2013). MSC: 39A10 39A45 39B32 30D35 PDF BibTeX XML Cite \textit{X. Qi} and \textit{L. Yang}, Electron. J. Differ. Equ. 2013, Paper No. 135, 9 p. (2013; Zbl 1293.39001) Full Text: EMIS OpenURL
Zhang, Xia; Liao, LiangWen On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions. (English) Zbl 1287.34077 Sci. China, Math. 56, No. 10, 2025-2034 (2013). MSC: 34M05 33E30 30D35 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{L. Liao}, Sci. China, Math. 56, No. 10, 2025--2034 (2013; Zbl 1287.34077) Full Text: DOI OpenURL
Wang, Songmin; Li, Sheng On entire solutions of nonlinear difference-differential equations. (English) Zbl 1302.34130 Bull. Korean Math. Soc. 50, No. 5, 1471-1479 (2013). Reviewer: Yuefei Wang (Beijing) MSC: 34M05 30D35 PDF BibTeX XML Cite \textit{S. Wang} and \textit{S. Li}, Bull. Korean Math. Soc. 50, No. 5, 1471--1479 (2013; Zbl 1302.34130) Full Text: DOI Link OpenURL
Rao, R. Nageshwar; Chakravarthy, P. Pramod A finite difference method for singularly perturbed differential-difference equations with layer and oscillatory behavior. (English) Zbl 1274.65213 Appl. Math. Modelling 37, No. 8, 5743-5755 (2013). MSC: 65L12 65L11 34C15 PDF BibTeX XML Cite \textit{R. N. Rao} and \textit{P. P. Chakravarthy}, Appl. Math. Modelling 37, No. 8, 5743--5755 (2013; Zbl 1274.65213) Full Text: DOI Link OpenURL
Budochkina, Svetlana A.; Savchin, Vladimir M. An operator approach to the investigation of potentiality of some differential-difference equations. (English) Zbl 1294.47094 Contemp. Anal. Appl. Math. 1, No. 1, 20-33 (2013). Reviewer: Shaochun Ji (Huaian) MSC: 47J35 34K30 PDF BibTeX XML Cite \textit{S. A. Budochkina} and \textit{V. M. Savchin}, Contemp. Anal. Appl. Math. 1, No. 1, 20--33 (2013; Zbl 1294.47094) OpenURL
Meng, Fanwei A new variable-coefficient Riccati subequation method for solving nonlinear lattice equations. (English) Zbl 1275.65035 Abstr. Appl. Anal. 2013, Article ID 810363, 6 p. (2013). MSC: 65L03 34K28 34K31 PDF BibTeX XML Cite \textit{F. Meng}, Abstr. Appl. Anal. 2013, Article ID 810363, 6 p. (2013; Zbl 1275.65035) Full Text: DOI OpenURL
Feng, Qinghua Extended Riccati sub-ODE method for solving nonlinear differential-difference equations. (English) Zbl 1283.35150 J. Adv. Math. Stud. 6, No. 1, 25-33 (2013). Reviewer: Rodica Luca (Iaşi) MSC: 35Q92 39A12 PDF BibTeX XML Cite \textit{Q. Feng}, J. Adv. Math. Stud. 6, No. 1, 25--33 (2013; Zbl 1283.35150) OpenURL
Zhang, Xiaoling; Cong, Yang; Zhang, Hongqing Preliminary group classification of the nonlinear differential-difference equations. (English) Zbl 1267.34062 J. Math. Anal. Appl. 399, No. 2, 638-649 (2013). Reviewer: Oleg V. Makeev (Ulyanovsk) MSC: 34C14 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Math. Anal. Appl. 399, No. 2, 638--649 (2013; Zbl 1267.34062) Full Text: DOI OpenURL
Dimitrova, Zlatinka On traveling waves in lattices: the case of Riccati lattices. (English) Zbl 1330.35062 J. Theor. Appl. Mech., Sofia 42, No. 3, 3-22 (2012). MSC: 35C07 35G20 PDF BibTeX XML Cite \textit{Z. Dimitrova}, J. Theor. Appl. Mech., Sofia 42, No. 3, 3--22 (2012; Zbl 1330.35062) Full Text: arXiv OpenURL
Li, Wenting; Zhou, Yi; Jiang, Kun An improved characteristics set method for differential-difference systems. (Chinese. English summary) Zbl 1289.34200 J. Syst. Sci. Math. Sci. 32, No. 8, 935-941 (2012). MSC: 34K31 PDF BibTeX XML Cite \textit{W. Li} et al., J. Syst. Sci. Math. Sci. 32, No. 8, 935--941 (2012; Zbl 1289.34200) OpenURL
Wang, Aifeng; Ni, Mingkang The interior layer for a nonlinear singularly perturbed differential-difference equation. (English) Zbl 1265.34276 Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 2, 695-709 (2012). MSC: 34K26 34E20 34B15 34E05 PDF BibTeX XML Cite \textit{A. Wang} and \textit{M. Ni}, Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 2, 695--709 (2012; Zbl 1265.34276) Full Text: DOI OpenURL
Darmani, G.; Setayeshi, S.; Ramezanpour, H. Toward analytic solution of nonlinear differential difference equations via extended sensitivity approach. (English) Zbl 1247.34019 Commun. Theor. Phys. 57, No. 1, 5-9 (2012). MSC: 34A34 49Q12 34K17 34K06 34K28 PDF BibTeX XML Cite \textit{G. Darmani} et al., Commun. Theor. Phys. 57, No. 1, 5--9 (2012; Zbl 1247.34019) Full Text: DOI OpenURL
Mokhtari, Reza; Isfahani, Fereshteh Toutian; Mohammadi, Maryam Reproducing kernel method for solving nonlinear differential-difference equations. (English) Zbl 1251.34080 Abstr. Appl. Anal. 2012, Article ID 514103, 10 p. (2012). MSC: 34K07 34A25 PDF BibTeX XML Cite \textit{R. Mokhtari} et al., Abstr. Appl. Anal. 2012, Article ID 514103, 10 p. (2012; Zbl 1251.34080) Full Text: DOI OpenURL
Shakhno, S. M.; Yarmola, H. P. Two-point method for solving nonlinear equation with nondifferentiable operator. (Ukrainian. English summary) Zbl 1297.65063 Mat. Stud. 36, No. 2, 213-220 (2011). MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{S. M. Shakhno} and \textit{H. P. Yarmola}, Mat. Stud. 36, No. 2, 213--220 (2011; Zbl 1297.65063) OpenURL
Sahadevan, R.; Balakrishnan, S. New integrable multicomponent nonlinear partial differential-difference equations. (English) Zbl 1235.35280 J. Nonlinear Math. Phys. 18, No. 4, 501-518 (2011). MSC: 35R10 35Q51 PDF BibTeX XML Cite \textit{R. Sahadevan} and \textit{S. Balakrishnan}, J. Nonlinear Math. Phys. 18, No. 4, 501--518 (2011; Zbl 1235.35280) Full Text: DOI OpenURL
Winternitz, Pavel Symmetry preserving discretization of differential equations and Lie point symmetries of differential-difference equations. (English) Zbl 1229.65133 Levi, Decio (ed.) et al., Symmetries and integrability of difference equations. Based upon lectures delivered during the summer school, Montreal, Canada, June 8–21, 2008. Cambridge: Cambridge University Press (ISBN 978-0-521-13658-7/pbk). London Mathematical Society Lecture Note Series 381, 292-341 (2011). MSC: 65L12 34A34 65L05 34A26 PDF BibTeX XML Cite \textit{P. Winternitz}, Lond. Math. Soc. Lect. Note Ser. 381, 292--341 (2011; Zbl 1229.65133) OpenURL
Kevrekidis, P. G. Non-linear waves in lattices: past, present, future. (English) Zbl 1230.37099 IMA J. Appl. Math. 76, No. 3, 389-423 (2011). Reviewer: Yuming Chen (Waterloo) MSC: 37N05 37K60 37L60 35Q55 37-02 PDF BibTeX XML Cite \textit{P. G. Kevrekidis}, IMA J. Appl. Math. 76, No. 3, 389--423 (2011; Zbl 1230.37099) Full Text: DOI arXiv OpenURL
Dzhalladova, Irada A.; Baštinec, Jaromír; Diblík, Josef; Khusainov, Denys Y. Estimates of exponential stability for solutions of stochastic control systems with delay. (English) Zbl 1217.93150 Abstr. Appl. Anal. 2011, Article ID 920412, 14 p. (2011). MSC: 93D20 93E15 34K50 93C10 PDF BibTeX XML Cite \textit{I. A. Dzhalladova} et al., Abstr. Appl. Anal. 2011, Article ID 920412, 14 p. (2011; Zbl 1217.93150) Full Text: DOI OpenURL
Aleksić, Jelena Gauss kernel method for generalized solutions to conservation laws in heterogeneous media. (English) Zbl 1223.35223 Integral Transforms Spec. Funct. 22, No. 4-5, 247-254 (2011). MSC: 35L65 46F30 33E30 44A20 PDF BibTeX XML Cite \textit{J. Aleksić}, Integral Transforms Spec. Funct. 22, No. 4--5, 247--254 (2011; Zbl 1223.35223) Full Text: DOI OpenURL
Lang, Jan; Edmunds, David Eigenvalues, embeddings and generalised trigonometric functions. (English) Zbl 1220.47001 Lecture Notes in Mathematics 2016. Berlin: Springer (ISBN 978-3-642-18267-9/pbk; 978-3-642-18429-1/ebook). xi, 220 p. (2011). Reviewer: Carsten Michels (Oldenburg) MSC: 47-02 41A35 41A46 47B06 33E30 47G10 35P05 47A75 35P15 46E35 PDF BibTeX XML Cite \textit{J. Lang} and \textit{D. Edmunds}, Eigenvalues, embeddings and generalised trigonometric functions. Berlin: Springer (2011; Zbl 1220.47001) Full Text: DOI Link OpenURL
Dorodnitsyn, Vladimir Applications of Lie groups to difference equations. (English) Zbl 1236.39002 Differential and Integral Equations and Their Applications 8. Boca Raton, FL: CRC Press (ISBN 978-1-4200-8309-5/hbk; 978-1-138-11823-2/pbk; 978-1-4200-8310-1/ebook). lxxx, 264 p. (2011). Reviewer: Vojtech Zadnik (Brno) MSC: 39A10 39-02 22E99 65L12 65M06 35Q53 35Q55 34B15 34A26 34K05 PDF BibTeX XML Cite \textit{V. Dorodnitsyn}, Applications of Lie groups to difference equations. Boca Raton, FL: CRC Press (2011; Zbl 1236.39002) Full Text: DOI OpenURL
Porshokouhi, Mehdi Gholami; Ghanbari, Behzad; Gholami, Mohammad; Rashidi, Majid Application of the variational iteration method for solving differential-difference equations. (English) Zbl 1225.47124 Gen. Math. Notes 1, No. 2, 138-142 (2010). MSC: 47J30 65-04 PDF BibTeX XML Cite \textit{M. G. Porshokouhi} et al., Gen. Math. Notes 1, No. 2, 138--142 (2010; Zbl 1225.47124) OpenURL
Scimiterna, Christian; Levi, Decio \(C\)-integrability test for discrete equations via multiple scale expansions. (English) Zbl 1219.39002 SIGMA, Symmetry Integrability Geom. Methods Appl. 6, Paper 070, 17 p. (2010). MSC: 39A12 39A10 34K99 34E13 37J30 37K10 PDF BibTeX XML Cite \textit{C. Scimiterna} and \textit{D. Levi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 6, Paper 070, 17 p. (2010; Zbl 1219.39002) Full Text: DOI arXiv EuDML OpenURL
Zhu, Zuo-Nong Conservation laws of several \((2+1)\)-dimensional differential-difference hierarchies. (English) Zbl 1219.65123 Elaydi, Saber (ed.) et al., Discrete dynamics and difference equations. Proceedings of the twelfth international conference on difference equations and applications (ICDEA), Lisbon, Portugal, July 23–27, 2007. Hackensack, NJ: World Scientific (ISBN 978-981-4287-64-7/hbk). 410-424 (2010). MSC: 65M99 35R10 35P05 65M06 PDF BibTeX XML Cite \textit{Z.-N. Zhu}, in: Discrete dynamics and difference equations. Proceedings of the twelfth international conference on difference equations and applications (ICDEA), Lisbon, Portugal, July 23--27, 2007. Hackensack, NJ: World Scientific. 410--424 (2010; Zbl 1219.65123) OpenURL
Grigorieva, E.; Kaschenko, S. Dynamics of spikes in delay coupled semiconductor lasers. (English) Zbl 1223.34111 Regul. Chaotic Dyn. 15, No. 2-3, 319-327 (2010). Reviewer: A. G. Vladimirov (Berlin) MSC: 34K60 78A60 34K18 34K07 34K11 PDF BibTeX XML Cite \textit{E. Grigorieva} and \textit{S. Kaschenko}, Regul. Chaotic Dyn. 15, No. 2--3, 319--327 (2010; Zbl 1223.34111) Full Text: DOI OpenURL
Jiang, Li-Hong; Wu, Hong-Yu; Lei, Jun Exp-function method for \(N\)-solutions of hybrid-lattice system. (English) Zbl 1206.65237 Far East J. Math. Sci. (FJMS) 45, No. 2, 203-211 (2010). MSC: 65M70 35R10 35Q51 68W30 PDF BibTeX XML Cite \textit{L.-H. Jiang} et al., Far East J. Math. Sci. (FJMS) 45, No. 2, 203--211 (2010; Zbl 1206.65237) Full Text: Link OpenURL
Kadalbajoo, Mohan K.; Kumar, Devendra A computational method for singularly perturbed nonlinear differential-difference equations with small shift. (English) Zbl 1195.65100 Appl. Math. Modelling 34, No. 9, 2584-2596 (2010). MSC: 65L11 34K07 34K26 65L03 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{D. Kumar}, Appl. Math. Modelling 34, No. 9, 2584--2596 (2010; Zbl 1195.65100) Full Text: DOI OpenURL
Grigoriev, Yurii N.; Ibragimov, Nail H.; Kovalev, Vladimir F.; Meleshko, Sergey V. Symmetries of integro-differential equations. With applications in mechanics and plasma physics. (English) Zbl 1203.45006 Lecture Notes in Physics 806. Dordrecht: Springer (ISBN 978-90-481-3796-1/pbk; 978-90-481-3797-8/ebook). xiii, 305 p. (2010). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 45J05 45-02 82D10 76M60 82B40 82B28 34C14 74D99 76P05 34K99 45R99 45G10 PDF BibTeX XML Cite \textit{Y. N. Grigoriev} et al., Symmetries of integro-differential equations. With applications in mechanics and plasma physics. Dordrecht: Springer (2010; Zbl 1203.45006) Full Text: DOI OpenURL
Aslan, İsmail The Ablowitz-Ladik lattice system by means of the extended (\(G^{\prime}/G)\)-expansion method. (English) Zbl 1193.35179 Appl. Math. Comput. 216, No. 9, 2778-2782 (2010). MSC: 35Q53 39A14 35A24 PDF BibTeX XML Cite \textit{İ. Aslan}, Appl. Math. Comput. 216, No. 9, 2778--2782 (2010; Zbl 1193.35179) Full Text: DOI OpenURL
Yıldırım, Ahmet He’s homotopy perturbation method for nonlinear differential-difference equations. (English) Zbl 1192.65102 Int. J. Comput. Math. 87, No. 5, 992-996 (2010); correction ibid. 98, No. 5, 1069 (2021). MSC: 65L05 65L03 34K28 PDF BibTeX XML Cite \textit{A. Yıldırım}, Int. J. Comput. Math. 87, No. 5, 992--996 (2010; Zbl 1192.65102) Full Text: DOI OpenURL
Zhao, Hong A new algebraic procedure to construct exact solutions of nonlinear differential-difference equations. (English) Zbl 1194.34122 Appl. Math. Comput. 216, No. 4, 1219-1225 (2010). MSC: 34K05 PDF BibTeX XML Cite \textit{H. Zhao}, Appl. Math. Comput. 216, No. 4, 1219--1225 (2010; Zbl 1194.34122) Full Text: DOI OpenURL
Zhao, Hong Analytical study on nonlinear differential-difference equations via a new method. (English) Zbl 1186.37089 Mod. Phys. Lett. B 24, No. 8, 761-773 (2010). MSC: 37K40 35Q51 35Q55 33E05 PDF BibTeX XML Cite \textit{H. Zhao}, Mod. Phys. Lett. B 24, No. 8, 761--773 (2010; Zbl 1186.37089) Full Text: DOI OpenURL
Abdou, M. A. New applications of He’s homotopy perturbation method for nonlinear differential difference equations. (English) Zbl 1189.65233 Phys. Scr. 81, No. 1, Article ID 015003 (2010). MSC: 65M70 35R10 PDF BibTeX XML Cite \textit{M. A. Abdou}, Phys. Scr. 81, No. 1, Article ID 015003 (2010; Zbl 1189.65233) Full Text: DOI OpenURL
Zhang, Sheng; Zhang, Hong-Qing Variable-coefficient discrete tanh method and its application to (2+1)-dimensional Toda equation. (English) Zbl 1233.37046 Phys. Lett., A 373, No. 33, 2905-2910 (2009). MSC: 37K10 39A05 33B10 33F10 49S05 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{H.-Q. Zhang}, Phys. Lett., A 373, No. 33, 2905--2910 (2009; Zbl 1233.37046) Full Text: DOI OpenURL
Zhang, Sheng; Dong, Ling; Ba, Jin-Mei; Sun, Ying-Na The \((\frac{G'}{G})\)-expansion method for nonlinear differential-difference equations. (English) Zbl 1228.34096 Phys. Lett., A 373, No. 10, 905-910 (2009). MSC: 34K05 34K31 PDF BibTeX XML Cite \textit{S. Zhang} et al., Phys. Lett., A 373, No. 10, 905--910 (2009; Zbl 1228.34096) Full Text: DOI OpenURL
Aslan, İsmail Discrete exact solutions to some nonlinear differential-difference equations via the \((G'/G)\)-expansion method. (English) Zbl 1186.34004 Appl. Math. Comput. 215, No. 8, 3140-3147 (2009). MSC: 34A05 34K31 34A33 34A45 PDF BibTeX XML Cite \textit{İ. Aslan}, Appl. Math. Comput. 215, No. 8, 3140--3147 (2009; Zbl 1186.34004) Full Text: DOI Link OpenURL
Levi, D.; Petrera, M.; Scimiterna, C. Multiscale reduction of discrete nonlinear Schrödinger equations. (English) Zbl 1181.35263 J. Phys. A, Math. Theor. 42, No. 45, Article ID 454011, 12 p. (2009). MSC: 35Q55 65M22 35R10 39A14 37K10 PDF BibTeX XML Cite \textit{D. Levi} et al., J. Phys. A, Math. Theor. 42, No. 45, Article ID 454011, 12 p. (2009; Zbl 1181.35263) Full Text: DOI arXiv Link OpenURL
Labiadh, Hedi; Dada, Micahel; Awojoyogbe, O. Bamidele; Ben Mahmoud, Karem B.; Bannour, Amine Establishment of an ordinary generating function and a Christoffel-Darboux type first-order differential equation for the heat equation related Boubaker-Turki polynomials. (English) Zbl 1488.35175 Differ. Uravn. Protsessy Upr. 2008, No. 1, 51-66 (2008). MSC: 35F30 33E20 33E30 35K10 PDF BibTeX XML Cite \textit{H. Labiadh} et al., Differ. Uravn. Protsessy Upr. 2008, No. 1, 51--66 (2008; Zbl 1488.35175) Full Text: Link OpenURL
Bai, Cheng-Jie; Zhao, Hong; Han, Ji-Guang Exact solutions expressible in rational formal hyperbolic and elliptic functions for nonlinear differential-difference equation. (English) Zbl 1392.37071 Commun. Theor. Phys. 50, No. 2, 303-308 (2008). MSC: 37K40 37K60 39A14 PDF BibTeX XML Cite \textit{C.-J. Bai} et al., Commun. Theor. Phys. 50, No. 2, 303--308 (2008; Zbl 1392.37071) Full Text: DOI OpenURL
Liu, Shi-Kuo; Fu, Zun-Tao; Wang, Zhang-Gui; Liu, Shi-Da Periodic solutions for a class of nonlinear differential-difference equations. (English) Zbl 1392.34085 Commun. Theor. Phys. 49, No. 5, 1155-1158 (2008). MSC: 34K31 34K13 35R10 35C07 35C08 PDF BibTeX XML Cite \textit{S.-K. Liu} et al., Commun. Theor. Phys. 49, No. 5, 1155--1158 (2008; Zbl 1392.34085) Full Text: DOI OpenURL
Ouyang, Cheng Asymptotic solution of initial value problems for differential-difference equation with small time delay. (Chinese. English summary) Zbl 1199.34415 J. Jilin Univ., Sci. 46, No. 4, 628-632 (2008). MSC: 34K26 34K25 PDF BibTeX XML Cite \textit{C. Ouyang}, J. Jilin Univ., Sci. 46, No. 4, 628--632 (2008; Zbl 1199.34415) OpenURL
Dai, Chao-Qing; Cen, Xu; Wu, Sheng-Sheng Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach. (English) Zbl 1145.65325 Comput. Math. Appl. 56, No. 1, 55-62 (2008). MSC: 65M99 37L60 PDF BibTeX XML Cite \textit{C.-Q. Dai} et al., Comput. Math. Appl. 56, No. 1, 55--62 (2008; Zbl 1145.65325) Full Text: DOI OpenURL
Zhu, Jiamin Homotopy perturbation method for the nonlinearity relativistic Toda lattice equations. (English) Zbl 1153.65077 Topol. Methods Nonlinear Anal. 31, No. 2, 373-381 (2008). MSC: 65L10 34K28 34K10 PDF BibTeX XML Cite \textit{J. Zhu}, Topol. Methods Nonlinear Anal. 31, No. 2, 373--381 (2008; Zbl 1153.65077) OpenURL
Ramesh, V. P.; Kadalbajoo, M. K. Upwind and midpoint upwind difference methods for time-dependent differential difference equations with layer behavior. (English) Zbl 1151.65072 Appl. Math. Comput. 202, No. 2, 453-471 (2008). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65M06 35R10 35B25 65M50 35K55 PDF BibTeX XML Cite \textit{V. P. Ramesh} and \textit{M. K. Kadalbajoo}, Appl. Math. Comput. 202, No. 2, 453--471 (2008; Zbl 1151.65072) Full Text: DOI OpenURL
Zhang, Sheng Exp-function method for constructing explicit and exact solutions of a lattice equation. (English) Zbl 1142.65102 Appl. Math. Comput. 199, No. 1, 242-249 (2008). MSC: 65Q05 68W30 34K28 65L05 PDF BibTeX XML Cite \textit{S. Zhang}, Appl. Math. Comput. 199, No. 1, 242--249 (2008; Zbl 1142.65102) Full Text: DOI OpenURL
Buckdahn, Rainer; Ma, Jin; Rainer, Catherine Stochastic control problems for systems driven by normal martingales. (English) Zbl 1141.93065 Ann. Appl. Probab. 18, No. 2, 632-663 (2008). MSC: 93E20 60G44 35K55 49L25 PDF BibTeX XML Cite \textit{R. Buckdahn} et al., Ann. Appl. Probab. 18, No. 2, 632--663 (2008; Zbl 1141.93065) Full Text: DOI arXiv OpenURL
Shih, Shagi-Di; Chow, Shue-Sum Equivalence of \(n\)-point Gauss-Chebyshev rule and \(4n\)-point midpoint rule in computing the period of a Lotka-Volterra system. (English) Zbl 1130.41010 Adv. Comput. Math. 28, No. 1, 63-79 (2008). Reviewer: Adhemar Bultheel (Leuven) MSC: 41A55 34A34 33E30 92D25 34C15 PDF BibTeX XML Cite \textit{S.-D. Shih} and \textit{S.-S. Chow}, Adv. Comput. Math. 28, No. 1, 63--79 (2008; Zbl 1130.41010) Full Text: DOI OpenURL