Mackenzie, John; Rowlatt, Christopher; Insall, Robert A conservative finite element ALE scheme for mass-conservative reaction-diffusion equations on evolving two-dimensional domains. (English) Zbl 07331664 SIAM J. Sci. Comput. 43, No. 1, B132-B166 (2021). MSC: 35K57 35K61 65M12 65M60 92C17 PDF BibTeX XML Cite \textit{J. Mackenzie} et al., SIAM J. Sci. Comput. 43, No. 1, B132--B166 (2021; Zbl 07331664) Full Text: DOI
Li, Qingfeng; Chen, Yanping; Huang, Yunqing; Wang, Yang Two-grid methods for nonlinear time fractional diffusion equations by \(L 1\)-Galerkin FEM. (English) Zbl 07331068 Math. Comput. Simul. 185, 436-451 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{Q. Li} et al., Math. Comput. Simul. 185, 436--451 (2021; Zbl 07331068) Full Text: DOI
Efendiev, Messoud; Vougalter, Vitali Existence of solutions for some non-Fredholm integro-differential equations with mixed diffusion. (English) Zbl 07330796 J. Differ. Equations 284, 83-101 (2021). MSC: 35J05 35P30 47F05 PDF BibTeX XML Cite \textit{M. Efendiev} and \textit{V. Vougalter}, J. Differ. Equations 284, 83--101 (2021; Zbl 07330796) Full Text: DOI
Wang, Jia-Bing; Wang, Jie; Cao, Jia-Feng Blowup and global existence of a free boundary problem with weak spatial source. (English) Zbl 07328931 Appl. Anal. 100, No. 5, 964-974 (2021). MSC: 35R35 35K57 35K20 35B33 35B44 PDF BibTeX XML Cite \textit{J.-B. Wang} et al., Appl. Anal. 100, No. 5, 964--974 (2021; Zbl 07328931) Full Text: DOI
Ambrazevičius, A.; Skakauskas, V. Solvability of a coupled quasilinear reaction-diffusion system. (English) Zbl 07327339 Appl. Anal. 100, No. 4, 791-803 (2021). MSC: 35K51 35K57 35K59 35K61 35B09 92E20 PDF BibTeX XML Cite \textit{A. Ambrazevičius} and \textit{V. Skakauskas}, Appl. Anal. 100, No. 4, 791--803 (2021; Zbl 07327339) Full Text: DOI
Cheng, Hongyu; Wang, Shimin Response solutions to harmonic oscillators beyond multi-dimensional brjuno frequency. (English) Zbl 07327290 Commun. Pure Appl. Anal. 20, No. 2, 467-494 (2021). MSC: 70H08 37J40 34C15 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{S. Wang}, Commun. Pure Appl. Anal. 20, No. 2, 467--494 (2021; Zbl 07327290) Full Text: DOI
Karimnejad, Esfahani Mohammad; Neisy, Abdolsadeh; De Marchi, Stefano An RBF approach for oil futures pricing under the jump-diffusion model. (English) Zbl 07326409 J. Math. Model. 9, No. 1, 81-92 (2021). MSC: 34A34 65L05 PDF BibTeX XML Cite \textit{E. M. Karimnejad} et al., J. Math. Model. 9, No. 1, 81--92 (2021; Zbl 07326409) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35B51 35K15 35K55 35K57 35R09 35R11 35C07 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via phaselift. (English) Zbl 07323237 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). MSC: 65M32 65T50 49M37 90C25 35R11 35R60 60G60 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 07323237) Full Text: DOI
Haragus, Mariana; Johnson, Mathew A.; Perkins, Wesley R. Linear modulational and subharmonic dynamics of spectrally stable Lugiato-Lefever periodic waves. (English) Zbl 07319434 J. Differ. Equations 280, 315-354 (2021). MSC: 35Q55 35B 35K 35C 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{M. Haragus} et al., J. Differ. Equations 280, 315--354 (2021; Zbl 07319434) Full Text: DOI
Yi, Fengqi Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling. (English) Zbl 07319419 J. Differ. Equations 281, 379-410 (2021). MSC: 35K 35G 35K57 35K55 35G10 35K25 PDF BibTeX XML Cite \textit{F. Yi}, J. Differ. Equations 281, 379--410 (2021; Zbl 07319419) Full Text: DOI
Chen, Yu-Shuo; Giletti, Thomas; Guo, Jong-Shenq Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys. (English) Zbl 07319418 J. Differ. Equations 281, 341-378 (2021). MSC: 35K40 35K57 34B40 92D25 35K55 35B05 35B40 PDF BibTeX XML Cite \textit{Y.-S. Chen} et al., J. Differ. Equations 281, 341--378 (2021; Zbl 07319418) Full Text: DOI
Huang, Zhonggan Homogenization of enhancing thin layers. (English) Zbl 07319399 J. Differ. Equations 282, 330-369 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35J65 35J25 35B50 35B05 PDF BibTeX XML Cite \textit{Z. Huang}, J. Differ. Equations 282, 330--369 (2021; Zbl 07319399) Full Text: DOI
Fehrman, Benjamin; Gess, Benjamin Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise. (English. French summary) Zbl 07319315 J. Math. Pures Appl. (9) 148, 221-266 (2021). MSC: 37L55 60H15 60L50 PDF BibTeX XML Cite \textit{B. Fehrman} and \textit{B. Gess}, J. Math. Pures Appl. (9) 148, 221--266 (2021; Zbl 07319315) Full Text: DOI
Bayraktar, Erhan; Cecchin, Alekos; Cohen, Asaf; Delarue, François Finite state mean field games with Wright-Fisher common noise. (English. French summary) Zbl 07319305 J. Math. Pures Appl. (9) 147, 98-162 (2021). MSC: 91A16 35K65 PDF BibTeX XML Cite \textit{E. Bayraktar} et al., J. Math. Pures Appl. (9) 147, 98--162 (2021; Zbl 07319305) Full Text: DOI
John, Volker; Knobloch, Petr Existence of solutions of a finite element flux-corrected-transport scheme. (English) Zbl 07317509 Appl. Math. Lett. 115, Article ID 106932, 7 p. (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{V. John} and \textit{P. Knobloch}, Appl. Math. Lett. 115, Article ID 106932, 7 p. (2021; Zbl 07317509) Full Text: DOI
Kurt, Halil Ibrahim; Shen, Wenxian Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. (English) Zbl 1455.35269 SIAM J. Math. Anal. 53, No. 1, 973-1003 (2021). MSC: 35Q92 92C17 35K55 35B44 35K51 35K57 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, SIAM J. Math. Anal. 53, No. 1, 973--1003 (2021; Zbl 1455.35269) Full Text: DOI
Xie, Jianing A new result for boundedness of solutions to a higher-dimensional quasilinear chemotaxis system with a logistic source. (English) Zbl 07316096 J. Math. Anal. Appl. 496, No. 1, Article ID 124784, 17 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 35K55 PDF BibTeX XML Cite \textit{J. Xie}, J. Math. Anal. Appl. 496, No. 1, Article ID 124784, 17 p. (2021; Zbl 07316096) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Fadai, Nabil T. Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model. (English) Zbl 07312083 Nonlinearity 34, No. 2, 725-743 (2021). MSC: 35C07 35K57 34B16 41A60 35R37 PDF BibTeX XML Cite \textit{N. T. Fadai}, Nonlinearity 34, No. 2, 725--743 (2021; Zbl 07312083) Full Text: DOI
Huang, Jianfei; Zhang, Jingna; Arshad, Sadia; Tang, Yifa A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. (English) Zbl 07310750 Appl. Numer. Math. 159, 159-173 (2021). MSC: 65M06 65M12 35R09 35R11 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Numer. Math. 159, 159--173 (2021; Zbl 07310750) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. A method for constructing exact solutions of nonlinear delay PDEs. (English) Zbl 07310653 J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 35D99 34K10 35B20 35K57 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021; Zbl 07310653) Full Text: DOI
Barré, Julien; Dobson, Paul; Ottobre, Michela; Zatorska, Ewelina Fast non-mean-field networks: uniform in time averaging. (English) Zbl 07309973 SIAM J. Math. Anal. 53, No. 1, 937-972 (2021). MSC: 60K35 47D07 60J60 35Q84 35Q82 82C31 PDF BibTeX XML Cite \textit{J. Barré} et al., SIAM J. Math. Anal. 53, No. 1, 937--972 (2021; Zbl 07309973) Full Text: DOI
Ge, Chuanfang; Geng, Jiansheng; Lou, Zhaowei KAM tori for completely resonant Hamiltonian derivative beam equations on \(\mathbb{T}^2\). (English) Zbl 07307372 J. Dyn. Differ. Equations 33, No. 1, 525-547 (2021). MSC: 37K55 37J40 34C27 34C15 PDF BibTeX XML Cite \textit{C. Ge} et al., J. Dyn. Differ. Equations 33, No. 1, 525--547 (2021; Zbl 07307372) Full Text: DOI
Dębiec, Tomasz; Perthame, Benoît; Schmidtchen, Markus; Vauchelet, Nicolas Incompressible limit for a two-species model with coupling through Brinkman’s law in any dimension. (English. French summary) Zbl 07305904 J. Math. Pures Appl. (9) 145, 204-239 (2021). MSC: 35Q92 92C37 35B45 35K57 35K55 35K65 76A10 76N10 76S05 35R35 PDF BibTeX XML Cite \textit{T. Dębiec} et al., J. Math. Pures Appl. (9) 145, 204--239 (2021; Zbl 07305904) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Xu, Qiuyan; An, Hengbin A class of domain decomposition based nonlinear explicit-implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. (English) Zbl 07305149 J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021). MSC: 65M55 65M06 35K55 85A25 80A21 85-08 35Q85 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{H. An}, J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021; Zbl 07305149) Full Text: DOI
Kolokolnikov, Theodore; Paquin-Lefebvre, Frédéric; Ward, Michael J. Competition instabilities of spike patterns for the 1D Gierer-Meinhardt and Schnakenberg models are subcritical. (English) Zbl 07303399 Nonlinearity 34, No. 1, 273-312 (2021). MSC: 35B25 35B32 35B35 35B36 35K57 92C15 PDF BibTeX XML Cite \textit{T. Kolokolnikov} et al., Nonlinearity 34, No. 1, 273--312 (2021; Zbl 07303399) Full Text: DOI
Gidea, Marian; de la Llave, Rafael; Musser, Maxwell Global effect of non-conservative perturbations on homoclinic orbits. (English) Zbl 07302072 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 9, 40 p. (2021). MSC: 37J40 37J46 37C29 34C37 70H09 70K44 PDF BibTeX XML Cite \textit{M. Gidea} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 9, 40 p. (2021; Zbl 07302072) Full Text: DOI
Darbenas, Zymantas; Oliver, Marcel Breakdown of Liesegang precipitation bands in a simplified fast reaction limit of the Keller-Rubinow model. (English) Zbl 07301272 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 4, 34 p. (2021). MSC: 45G10 PDF BibTeX XML Cite \textit{Z. Darbenas} and \textit{M. Oliver}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 4, 34 p. (2021; Zbl 07301272) Full Text: DOI
Wang, Jianping Global existence and boundedness of a forager-exploiter system with nonlinear diffusions. (English) Zbl 07297757 J. Differ. Equations 276, 460-492 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K57 92C17 35B40 PDF BibTeX XML Cite \textit{J. Wang}, J. Differ. Equations 276, 460--492 (2021; Zbl 07297757) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Wang, Fang; Xue, Ling; Zhao, Kun; Zheng, Xiaoming Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model. (English) Zbl 07291343 J. Differ. Equations 275, 391-417 (2021). MSC: 35K57 35G31 35A09 35B35 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Differ. Equations 275, 391--417 (2021; Zbl 07291343) Full Text: DOI
Valero, José Characterization of the attractor for nonautonomous reaction-diffusion equations with discontinuous nonlinearity. (English) Zbl 07291339 J. Differ. Equations 275, 270-308 (2021). MSC: 35B40 35B41 35B51 35K55 35K57 PDF BibTeX XML Cite \textit{J. Valero}, J. Differ. Equations 275, 270--308 (2021; Zbl 07291339) Full Text: DOI
de Rijk, Björn; Sandstede, Björn Reprint of: “Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems”. (English) Zbl 1455.35039 J. Differ. Equations 274, 1223-1261 (2021). MSC: 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{B. Sandstede}, J. Differ. Equations 274, 1223--1261 (2021; Zbl 1455.35039) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 1454.35031 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 1454.35031) Full Text: DOI
Biler, Piotr; Boritchev, Alexandre; Karch, Grzegorz; Laurençot, Philippe Concentration phenomena in a diffusive aggregation model. (English) Zbl 1455.35264 J. Differ. Equations 271, 1092-1108 (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 35K55 35B36 35B45 35B06 92C37 PDF BibTeX XML Cite \textit{P. Biler} et al., J. Differ. Equations 271, 1092--1108 (2021; Zbl 1455.35264) Full Text: DOI
Boglaev, Igor A parameter robust numerical method for a nonlinear system of singularly perturbed elliptic equations. (English) Zbl 1446.65141 J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021). MSC: 65N06 65N12 65N15 65N50 35J60 35A01 35A02 PDF BibTeX XML Cite \textit{I. Boglaev}, J. Comput. Appl. Math. 381, Article ID 113017, 12 p. (2021; Zbl 1446.65141) Full Text: DOI
Jiang, Xiaoyu; Yang, Yu; Meng, Fanwei; Xu, Yancong Modelling the dynamics of avian influenza with nonlinear recovery rate and psychological effect. (English) Zbl 07331957 J. Appl. Anal. Comput. 10, No. 3, 1170-1192 (2020). MSC: 35K57 37L15 PDF BibTeX XML Cite \textit{X. Jiang} et al., J. Appl. Anal. Comput. 10, No. 3, 1170--1192 (2020; Zbl 07331957) Full Text: DOI
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Zhang, Hong-Yi Analysis of the time fractional nonlinear diffusion equation from diffusion process. (English) Zbl 07331950 J. Appl. Anal. Comput. 10, No. 3, 1060-1072 (2020). MSC: 22E70 35D99 35K05 35L65 35Q51 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Appl. Anal. Comput. 10, No. 3, 1060--1072 (2020; Zbl 07331950) Full Text: DOI
Li, Yanan; Carvalho, Alexandre N.; Luna, Tito L. M.; Moreira, Estefani M. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. (English) Zbl 07326931 Commun. Pure Appl. Anal. 19, No. 11, 5181-5196 (2020). MSC: 35B32 35K20 35K59 35R09 35B09 35B51 35B41 35B06 35B40 PDF BibTeX XML Cite \textit{Y. Li} et al., Commun. Pure Appl. Anal. 19, No. 11, 5181--5196 (2020; Zbl 07326931) Full Text: DOI
Eom, Junyong; Sato, Ryuichi Large time behavior of ODE type solutions to parabolic \(p\)-Laplacian type equations. (English) Zbl 07326896 Commun. Pure Appl. Anal. 19, No. 9, 4373-4386 (2020). MSC: 35B40 35K15 35K92 PDF BibTeX XML Cite \textit{J. Eom} and \textit{R. Sato}, Commun. Pure Appl. Anal. 19, No. 9, 4373--4386 (2020; Zbl 07326896) Full Text: DOI
Tseng, Jui-Pin Global synchronization of coupled reaction-diffusion neural networks with general couplings via an iterative approach. (English) Zbl 07325576 IMA J. Appl. Math. 85, No. 4, 635-669 (2020). MSC: 35K51 35K57 92B20 PDF BibTeX XML Cite \textit{J.-P. Tseng}, IMA J. Appl. Math. 85, No. 4, 635--669 (2020; Zbl 07325576) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems. (English) Zbl 07325564 Rev. Colomb. Mat. 54, No. 1, 1-11 (2020). MSC: 35R11 26A33 74G10 34K28 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Rev. Colomb. Mat. 54, No. 1, 1--11 (2020; Zbl 07325564) Full Text: DOI
Maarouf, Sarra; Yakoubi, Driss Analysis of backward Euler/spectral discretization for an evolutionary mass and heat transfer in porous medium. (English) Zbl 07322806 J. Math. Anal. Appl. 492, No. 1, Article ID 124427, 24 p. (2020). MSC: 65 35 PDF BibTeX XML Cite \textit{S. Maarouf} and \textit{D. Yakoubi}, J. Math. Anal. Appl. 492, No. 1, Article ID 124427, 24 p. (2020; Zbl 07322806) Full Text: DOI
Kharlamov, B. P. On some boundary property of Dirichlet operator family for the second order ordinary differential equation. (Russian. English summary) Zbl 07318959 Differ. Uravn. Protsessy Upr. 2020, No. 3, 163-180 (2020). MSC: 34B15 34A30 PDF BibTeX XML Cite \textit{B. P. Kharlamov}, Differ. Uravn. Protsessy Upr. 2020, No. 3, 163--180 (2020; Zbl 07318959) Full Text: Link
Wang, Qi; Yang, Jingyue; Yu, Feng Global well-posedness of advective Lotka-Volterra competition systems with nonlinear diffusion. (English) Zbl 07316335 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2322-2348 (2020). MSC: 35K51 35K55 PDF BibTeX XML Cite \textit{Q. Wang} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2322--2348 (2020; Zbl 07316335) Full Text: DOI
Li, Yingwei Pointwise stability of reaction diffusion fronts. (English) Zbl 07316332 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2216-2254 (2020). MSC: 35K57 35J08 35B40 47D06 35B35 PDF BibTeX XML Cite \textit{Y. Li}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2216--2254 (2020; Zbl 07316332) Full Text: DOI
Corli, Andrea; Malaguti, Luisa Models of collective movements with negative degenerate diffusivities. (English) Zbl 07315485 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 393-399 (2020). MSC: 35K65 35C07 35K55 35K57 35M10 PDF BibTeX XML Cite \textit{A. Corli} and \textit{L. Malaguti}, AIMS Ser. Appl. Math. 10, 393--399 (2020; Zbl 07315485)
Qin, W. D.; Ma, Qiang; Man, Z. Y.; Ding, X. H. A boundedness and monotonicity preserving method for a generalized population model. (English) Zbl 07314955 J. Difference Equ. Appl. 26, No. 9-10, 1347-1368 (2020). MSC: 65Q10 65M06 65Q30 35K55 PDF BibTeX XML Cite \textit{W. D. Qin} et al., J. Difference Equ. Appl. 26, No. 9--10, 1347--1368 (2020; Zbl 07314955) Full Text: DOI
Yamada, Yoshio Asymptotic properties of a free boundary problem for a reaction-diffusion equation with multi-stable nonlinearity. (English) Zbl 07312822 Rend. Ist. Mat. Univ. Trieste 52, 65-89 (2020). MSC: 35R35 34B18 35B40 35B51 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Yamada}, Rend. Ist. Mat. Univ. Trieste 52, 65--89 (2020; Zbl 07312822) Full Text: DOI Link
Shibata, Tetsutaro Global structure of bifurcation curves related to inverse bifurcation problems. (English) Zbl 07312821 Rend. Ist. Mat. Univ. Trieste 52, 45-64 (2020). Reviewer: Fatma Hıra (Atakum) MSC: 34B09 34L15 34C23 34A55 PDF BibTeX XML Cite \textit{T. Shibata}, Rend. Ist. Mat. Univ. Trieste 52, 45--64 (2020; Zbl 07312821) Full Text: DOI Link
Kolinichenko, Aleksandr Pavlovich; Ryashko, Lev Borisovich Analysis of stochastic sensitivity of Turing patterns in distributed reaction-diffusion systems. (English) Zbl 07312118 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 155-163 (2020). MSC: 70K50 65C30 60H30 PDF BibTeX XML Cite \textit{A. P. Kolinichenko} and \textit{L. B. Ryashko}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 55, 155--163 (2020; Zbl 07312118) Full Text: DOI MNR
Hung, Li-Chang; Liao, Xian Nonlinear estimates for traveling wave solutions of reaction diffusion equations. (English) Zbl 07309991 Japan J. Ind. Appl. Math. 37, No. 3, 819-830 (2020). MSC: 35B50 35B45 35C07 35K57 35K45 92D25 PDF BibTeX XML Cite \textit{L.-C. Hung} and \textit{X. Liao}, Japan J. Ind. Appl. Math. 37, No. 3, 819--830 (2020; Zbl 07309991) Full Text: DOI
Pourhadi, Ehsan; Khrennikov, Andrei Yu.; Saadati, Reza On the \(p\)-adic analog of Richards’ equation with the finite difference method. (English) Zbl 07308697 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 4, Article ID 2050025, 23 p. (2020). MSC: 35S10 35K57 35K55 11S80 43A30 43A70 65M06 PDF BibTeX XML Cite \textit{E. Pourhadi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 4, Article ID 2050025, 23 p. (2020; Zbl 07308697) Full Text: DOI
Ananthaswamy, Vembu; Shirly, P. Felicia Mathematical analysis of a coupled non-linear reaction-diffusion systems. (English) Zbl 07303742 Nonlinear Stud. 27, No. 1, 123-148 (2020). MSC: 35K57 35K51 35K61 PDF BibTeX XML Cite \textit{V. Ananthaswamy} and \textit{P. F. Shirly}, Nonlinear Stud. 27, No. 1, 123--148 (2020; Zbl 07303742) Full Text: Link
Ferreira, Jaqueline da Costa; Pereira, Marcone Corrêa A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions. (English) Zbl 07303384 C. R., Math., Acad. Sci. Paris 358, No. 11-12, 1119-1128 (2020). MSC: 35B40 35R12 35B45 35R09 PDF BibTeX XML Cite \textit{J. da C. Ferreira} and \textit{M. C. Pereira}, C. R., Math., Acad. Sci. Paris 358, No. 11--12, 1119--1128 (2020; Zbl 07303384) Full Text: DOI
Hamster, C. H. S.; Hupkes, H. J. Travelling waves for reaction-diffusion equations forced by translation invariant noise. (English) Zbl 1453.35202 Physica D 401, Article ID 132233, 35 p. (2020). MSC: 35R60 35K57 35B35 35C07 60H15 PDF BibTeX XML Cite \textit{C. H. S. Hamster} and \textit{H. J. Hupkes}, Physica D 401, Article ID 132233, 35 p. (2020; Zbl 1453.35202) Full Text: DOI
Li, Yifei; Heijster, Peter van; Marangell, Robert; Simpson, Matthew J. Travelling wave solutions in a negative nonlinear diffusion-reaction model. (English) Zbl 07298372 J. Math. Biol. 81, No. 6-7, 1495-1522 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35C07 35K57 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Math. Biol. 81, No. 6--7, 1495--1522 (2020; Zbl 07298372) Full Text: DOI
Qin, Xinqiang; Peng, Dayao; Hu, Gang Implicit radial point interpolation method for nonlinear space fractional advection-diffusion equations. (English) Zbl 07297924 Rocky Mt. J. Math. 50, No. 6, 2199-2212 (2020). MSC: 65M22 65M70 65D32 35R11 PDF BibTeX XML Cite \textit{X. Qin} et al., Rocky Mt. J. Math. 50, No. 6, 2199--2212 (2020; Zbl 07297924) Full Text: DOI Euclid
Shangerganesh, L.; Manimaran, J. Mathematical and numerical analysis of an acid-mediated cancer invasion model with nonlinear diffusion. (English) Zbl 07297616 ETNA, Electron. Trans. Numer. Anal. 52, 576-598 (2020). MSC: 35Q92 92C37 92C17 35D30 35B45 35B65 35A01 35K57 35K55 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{J. Manimaran}, ETNA, Electron. Trans. Numer. Anal. 52, 576--598 (2020; Zbl 07297616) Full Text: DOI Link
Dashkovskiy, Sergey; Kapustyan, Oleksiy; Schmid, Jochen A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations. (English) Zbl 1455.93170 Math. Control Signals Syst. 32, No. 3, 309-326 (2020). MSC: 93D25 93C20 35K57 93C10 PDF BibTeX XML Cite \textit{S. Dashkovskiy} et al., Math. Control Signals Syst. 32, No. 3, 309--326 (2020; Zbl 1455.93170) Full Text: DOI
Luo, Zhenguo; Luo, Liping; Hou, Juan Oscillation of nonlinear neutral hyperbolic equations with variable delayed influence. (English) Zbl 07295652 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 289-294 (2020). MSC: 35B05 35L75 35R10 PDF BibTeX XML Cite \textit{Z. Luo} et al., J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 289--294 (2020; Zbl 07295652) Full Text: DOI
Ma, Qianting Image denoising via time-delay regularization coupled nonlinear diffusion equations. (English) Zbl 07295199 J. Comput. Math. 38, No. 3, 417-436 (2020). MSC: 94A08 35K57 35K55 PDF BibTeX XML Cite \textit{Q. Ma}, J. Comput. Math. 38, No. 3, 417--436 (2020; Zbl 07295199) Full Text: DOI
Fonseka, Nalin; Shivaji, Ratnasingham; Goddard, Jerome II; Morris, Quinn A.; Son, Byungjae On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model. (English) Zbl 1455.35118 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401-3415 (2020). MSC: 35J91 35J66 35A01 35A02 92D25 PDF BibTeX XML Cite \textit{N. Fonseka} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401--3415 (2020; Zbl 1455.35118) Full Text: DOI
Ahmad, Imtiaz; Siraj-ul-Islam; Mehnaz; Zaman, Sakhi Local meshless differential quadrature collocation method for time-fractional PDEs. (English) Zbl 1451.65166 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641-2654 (2020). MSC: 65M99 35K55 35K57 35R11 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2641--2654 (2020; Zbl 1451.65166) Full Text: DOI
Rodríguez, Nancy; Winkler, Michael Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation. (English) Zbl 1451.35226 Math. Models Methods Appl. Sci. 30, No. 11, 2105-2137 (2020). MSC: 35Q91 35B40 35K55 35D30 PDF BibTeX XML Cite \textit{N. Rodríguez} and \textit{M. Winkler}, Math. Models Methods Appl. Sci. 30, No. 11, 2105--2137 (2020; Zbl 1451.35226) Full Text: DOI
Degond, Pierre; Merino-Aceituno, Sara Nematic alignment of self-propelled particles: from particle to macroscopic dynamics. (English) Zbl 1451.35218 Math. Models Methods Appl. Sci. 30, No. 10, 1935-1986 (2020). MSC: 35Q82 35L60 35K99 82C22 82C31 82C44 82C70 92D50 PDF BibTeX XML Cite \textit{P. Degond} and \textit{S. Merino-Aceituno}, Math. Models Methods Appl. Sci. 30, No. 10, 1935--1986 (2020; Zbl 1451.35218) Full Text: DOI
Lindstrom, Michael R.; Bertozzi, Andrea L. Qualitative features of a nonlinear, nonlocal, agent-based PDE model with applications to homelessness. (English) Zbl 1455.35262 Math. Models Methods Appl. Sci. 30, No. 10, 1863-1891 (2020). MSC: 35Q91 91D10 91B69 35B10 35B35 35B50 35K55 65M20 65N06 91-08 PDF BibTeX XML Cite \textit{M. R. Lindstrom} and \textit{A. L. Bertozzi}, Math. Models Methods Appl. Sci. 30, No. 10, 1863--1891 (2020; Zbl 1455.35262) Full Text: DOI
Ge, Fudong; Chen, Yangquan Distributed event-triggered output feedback control for semilinear time fractional diffusion systems. (English) Zbl 1454.93160 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 245-253 (2020). MSC: 93C65 93B52 93D05 93C20 35R11 93C10 PDF BibTeX XML Cite \textit{F. Ge} and \textit{Y. Chen}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 245--253 (2020; Zbl 1454.93160) Full Text: DOI
Nakao, Hiroya; Mezić, Igor Spectral analysis of the Koopman operator for partial differential equations. (English) Zbl 1454.35225 Chaos 30, No. 11, 113131, 14 p. (2020). MSC: 35K90 35K20 35K58 47D06 PDF BibTeX XML Cite \textit{H. Nakao} and \textit{I. Mezić}, Chaos 30, No. 11, 113131, 14 p. (2020; Zbl 1454.35225) Full Text: DOI
Aïssa, Naïma; Balehouane, Abdelkhalek Global existence and uniqueness of solutions to a chemotaxis system. (English) Zbl 1455.35263 Appl. Anal. 99, No. 16, 2833-2853 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K59 35B40 PDF BibTeX XML Cite \textit{N. Aïssa} and \textit{A. Balehouane}, Appl. Anal. 99, No. 16, 2833--2853 (2020; Zbl 1455.35263) Full Text: DOI
Fefferman, C. L.; Weinstein, M. I. Continuum Schrödinger operators for sharply terminated graphene-like structures. (English) Zbl 1454.82053 Commun. Math. Phys. 380, No. 2, 853-945 (2020). MSC: 82D80 82B24 82B20 35Q55 35P30 PDF BibTeX XML Cite \textit{C. L. Fefferman} and \textit{M. I. Weinstein}, Commun. Math. Phys. 380, No. 2, 853--945 (2020; Zbl 1454.82053) Full Text: DOI
Kuehn, Christian; Soresina, Cinzia Numerical continuation for a fast-reaction system and its cross-diffusion limit. (English) Zbl 1451.35237 SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 7, 26 p. (2020). MSC: 35Q92 70K70 35K59 65P30 PDF BibTeX XML Cite \textit{C. Kuehn} and \textit{C. Soresina}, SN Partial Differ. Equ. Appl. 1, No. 2, Paper No. 7, 26 p. (2020; Zbl 1451.35237) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. (English) Zbl 1454.35032 SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020; Zbl 1454.35032) Full Text: DOI
Eckmann, Jean-Pierre; Wayne, C. Eugene Decay of Hamiltonian breathers under dissipation. (English) Zbl 07285884 Commun. Math. Phys. 380, No. 1, 71-102 (2020). MSC: 70K 34C 37J 37J40 70K65 34C15 PDF BibTeX XML Cite \textit{J.-P. Eckmann} and \textit{C. E. Wayne}, Commun. Math. Phys. 380, No. 1, 71--102 (2020; Zbl 07285884) Full Text: DOI
Fa, Kwok Sau Fractional oscillator noise and its applications. (English) Zbl 1451.34008 Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020). MSC: 34A08 34C15 34F05 PDF BibTeX XML Cite \textit{K. S. Fa}, Int. J. Mod. Phys. B 34, No. 26, Article ID 2050234, 12 p. (2020; Zbl 1451.34008) Full Text: DOI
Fuest, Mario Global solutions near homogeneous steady states in a multidimensional population model with both predator- and prey-taxis. (English) Zbl 07282662 SIAM J. Math. Anal. 52, No. 6, 5865-5891 (2020). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35K57 35B35 35K55 92D25 PDF BibTeX XML Cite \textit{M. Fuest}, SIAM J. Math. Anal. 52, No. 6, 5865--5891 (2020; Zbl 07282662) Full Text: DOI
Aouadi, Moncef Quasi-stability and upper semicontinuity for coupled parabolic equations with memory. (English) Zbl 07279119 Stud. Appl. Math. 145, No. 3, 586-621 (2020). Reviewer: Andrey Zahariev (Plovdiv) MSC: 37L15 37L30 35K57 35K61 35K55 PDF BibTeX XML Cite \textit{M. Aouadi}, Stud. Appl. Math. 145, No. 3, 586--621 (2020; Zbl 07279119) Full Text: DOI
Wu, Weixin; Zhang, Long; Teng, Zhidong Wave propagation in a nonlocal dispersal SIR epidemic model with nonlinear incidence and nonlocal distributed delays. (English) Zbl 1453.92196 J. Math. Phys. 61, No. 6, 061512, 18 p. (2020). MSC: 92C60 35K57 35C07 PDF BibTeX XML Cite \textit{W. Wu} et al., J. Math. Phys. 61, No. 6, 061512, 18 p. (2020; Zbl 1453.92196) Full Text: DOI
Bluman, George W.; de la Rosa, Rafael; Bruzón, María Santos; Gandarias, María Luz A new symmetry-based method for constructing nonlocally related PDE systems from admitted multi-parameter groups. (English) Zbl 1453.35010 J. Math. Phys. 61, No. 6, 061503, 27 p. (2020). MSC: 35B06 35G50 35K57 17B30 PDF BibTeX XML Cite \textit{G. W. Bluman} et al., J. Math. Phys. 61, No. 6, 061503, 27 p. (2020; Zbl 1453.35010) Full Text: DOI
Tu, Xinyu; Mu, Chunlai; Qiu, Shuyan; Yang, Li Boundedness in the higher-dimensional fully parabolic chemotaxis-competition system with loop. (English) Zbl 07274429 Z. Angew. Math. Phys. 71, No. 6, Paper No. 185, 17 p. (2020). Reviewer: Neng Zhu (Nanchang) MSC: 35K51 35K55 35K57 92C17 PDF BibTeX XML Cite \textit{X. Tu} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 185, 17 p. (2020; Zbl 07274429) Full Text: DOI
Kiziridis, Diogenis A.; Fowler, Mike S.; Yuan, Chenggui Modelling fungal competition for space: towards prediction of community dynamics. (English) Zbl 1453.92352 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411-4426 (2020). MSC: 92D40 34A34 35Q92 PDF BibTeX XML Cite \textit{D. A. Kiziridis} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4411--4426 (2020; Zbl 1453.92352) Full Text: DOI
Chamoun, Georges; Ibrahim, Moustafa; Saad, Mazen; Talhouk, Raafat Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. (English) Zbl 1454.35393 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4165-4188 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K55 35B36 65M08 PDF BibTeX XML Cite \textit{G. Chamoun} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4165--4188 (2020; Zbl 1454.35393) Full Text: DOI
Brzeźniak, Zdzisław; Hussain, Javed Global solution of nonlinear stochastic heat equation with solutions in a Hilbert manifold. (English) Zbl 1454.60088 Stoch. Dyn. 20, No. 6, Article ID 2040012, 29 p. (2020). Reviewer: Dejun Luo (Beijing) MSC: 60H15 35K05 35K55 58J35 58J65 60J60 60J65 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{J. Hussain}, Stoch. Dyn. 20, No. 6, Article ID 2040012, 29 p. (2020; Zbl 1454.60088) Full Text: DOI
Colli, Pierluigi; Fukao, Takeshi Vanishing diffusion in a dynamic boundary condition for the Cahn-Hilliard equation. (English) Zbl 1452.35080 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 53, 26 p. (2020). MSC: 35K61 35K35 35K58 74N20 80A22 35B25 PDF BibTeX XML Cite \textit{P. Colli} and \textit{T. Fukao}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 53, 26 p. (2020; Zbl 1452.35080) Full Text: DOI
Schulz, Mario B. Unconditional existence of conformally hyperbolic Yamabe flows. (English) Zbl 1455.53103 Anal. PDE 13, No. 5, 1579-1590 (2020). Reviewer: John Urbas (Canberra) MSC: 53E99 53E20 35K55 35A01 35A02 PDF BibTeX XML Cite \textit{M. B. Schulz}, Anal. PDE 13, No. 5, 1579--1590 (2020; Zbl 1455.53103) Full Text: DOI
Colturato, Michele Sliding mode control for a diffuse interface tumor growth model coupling a Cahn-Hilliard equation with a reaction-diffusion equation. (English) Zbl 1454.35394 Math. Methods Appl. Sci. 43, No. 10, 6598-6626 (2020). MSC: 35Q92 92C37 92C50 35K61 35K25 35D35 93B52 35A01 35A02 PDF BibTeX XML Cite \textit{M. Colturato}, Math. Methods Appl. Sci. 43, No. 10, 6598--6626 (2020; Zbl 1454.35394) Full Text: DOI
Wang, Wei; Wang, Xiunan; Guo, Ke; Ma, Wanbiao Global analysis of a diffusive viral model with cell-to-cell infection and incubation period. (English) Zbl 1455.92143 Math. Methods Appl. Sci. 43, No. 9, 5963-5978 (2020). MSC: 92D30 34K18 34D23 PDF BibTeX XML Cite \textit{W. Wang} et al., Math. Methods Appl. Sci. 43, No. 9, 5963--5978 (2020; Zbl 1455.92143) Full Text: DOI
Gordina, Maria; Röckner, Michael; Teplyaev, Alexander Ornstein-Uhlenbeck processes with singular drifts: integral estimates and Girsanov densities. (English) Zbl 07271332 Probab. Theory Relat. Fields 178, No. 3-4, 861-891 (2020). MSC: 60H10 35R15 60H15 47D07 47N30 PDF BibTeX XML Cite \textit{M. Gordina} et al., Probab. Theory Relat. Fields 178, No. 3--4, 861--891 (2020; Zbl 07271332) Full Text: DOI
Abdellaoui, M. Correction to: “Perturbation effects for some nonlinear parabolic equations with lower order term and \(L^1\)-data”. (English) Zbl 07270576 J. Elliptic Parabol. Equ. 6, No. 2, 947 (2020). MSC: 35B35 35B45 65J15 60J70 32U20 PDF BibTeX XML Cite \textit{M. Abdellaoui}, J. Elliptic Parabol. Equ. 6, No. 2, 947 (2020; Zbl 07270576) Full Text: DOI
Abdellaoui, M. Perturbation effects for some nonlinear parabolic equations with lower order term and \(L^1\)-data. (English) Zbl 1451.35079 J. Elliptic Parabol. Equ. 6, No. 2, 599-631 (2020); correction ibid. 6, No. 2, 947 (2020). MSC: 35K92 35K20 35B35 35B45 65J15 60J70 32U20 PDF BibTeX XML Cite \textit{M. Abdellaoui}, J. Elliptic Parabol. Equ. 6, No. 2, 599--631 (2020; Zbl 1451.35079) Full Text: DOI
Di Gironimo, Patrizia; Zecca, Gabriella Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO. (English) Zbl 1454.35136 J. Elliptic Parabol. Equ. 6, No. 2, 507-527 (2020). MSC: 35J60 35J25 35A01 PDF BibTeX XML Cite \textit{P. Di Gironimo} and \textit{G. Zecca}, J. Elliptic Parabol. Equ. 6, No. 2, 507--527 (2020; Zbl 1454.35136) Full Text: DOI
Wang, Yu-Xia Positive steady states of the S-K-T competition model with spatially heterogeneous interactions. (English) Zbl 1453.92359 Nonlinear Anal., Real World Appl. 56, Article ID 103168, 20 p. (2020). MSC: 92D40 34B18 PDF BibTeX XML Cite \textit{Y.-X. Wang}, Nonlinear Anal., Real World Appl. 56, Article ID 103168, 20 p. (2020; Zbl 1453.92359) Full Text: DOI
Ebrahimijahan, Ali; Dehghan, Mehdi; Abbaszadeh, Mostafa Compact local integrated radial basis functions (integrated RBF) method for solving system of non-linear advection-diffusion-reaction equations to prevent the groundwater contamination. (English) Zbl 07268631 Eng. Anal. Bound. Elem. 121, 50-64 (2020). MSC: 65L60 34B15 PDF BibTeX XML Cite \textit{A. Ebrahimijahan} et al., Eng. Anal. Bound. Elem. 121, 50--64 (2020; Zbl 07268631) Full Text: DOI
Zeng, Shengda; Migórski, Stanisław; Nguyen, Van Thien; Bai, Yunru Maximum principles for a class of generalized time-fractional diffusion equations. (English) Zbl 07268204 Fract. Calc. Appl. Anal. 23, No. 3, 822-836 (2020). MSC: 26A33 33E12 35B50 35J60 35S10 45K05 PDF BibTeX XML Cite \textit{S. Zeng} et al., Fract. Calc. Appl. Anal. 23, No. 3, 822--836 (2020; Zbl 07268204) Full Text: DOI
Liang, Guizhen; Zhao, Xiao Stability analysis of Holling III functional response predator-prey systems with nonlinear diffusion and delay. (Chinese. English summary) Zbl 07266814 J. Henan Norm. Univ., Nat. Sci. 48, No. 3, 19-25 (2020). MSC: 34K60 34K20 92D25 34K13 37C60 34K25 PDF BibTeX XML Cite \textit{G. Liang} and \textit{X. Zhao}, J. Henan Norm. Univ., Nat. Sci. 48, No. 3, 19--25 (2020; Zbl 07266814) Full Text: DOI
Babaei, A.; Moghaddam, B. P.; Banihashemi, S.; Machado, J. A. T. Numerical solution of variable-order fractional integro-partial differential equations via sinc collocation method based on single and double exponential transformations. (English) Zbl 1452.65268 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020). MSC: 65M70 65D07 65M12 65M15 65M06 35R11 35R09 35G31 41A15 PDF BibTeX XML Cite \textit{A. Babaei} et al., Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020; Zbl 1452.65268) Full Text: DOI
Davydova, M. A.; Nechaeva, A. L. Asymptotically stable periodic solutions in one problem of atmospheric diffusion of impurities: asymptotics, existence, and uniqueness. (English. Russian original) Zbl 1450.35029 Comput. Math. Math. Phys. 60, No. 3, 448-458 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 3, 451-461 (2020). MSC: 35B25 35K20 35K58 35B10 PDF BibTeX XML Cite \textit{M. A. Davydova} and \textit{A. L. Nechaeva}, Comput. Math. Math. Phys. 60, No. 3, 448--458 (2020; Zbl 1450.35029); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 3, 451--461 (2020) Full Text: DOI