Andreianov, Boris; Maliki, Mohamed On classes of well-posedness for quasilinear diffusion equations in the whole space. (English) Zbl 07314570 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505-531 (2021). MSC: 35J62 35A02 37L05 35J70 35D30 PDF BibTeX XML Cite \textit{B. Andreianov} and \textit{M. Maliki}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 505--531 (2021; Zbl 07314570) Full Text: DOI
Chen, Yufei; Liu, Qihuai; Su, Heng Generalized Hamiltonian forms of dissipative mechanical systems via a unified approach. (English) Zbl 07299624 J. Geom. Phys. 160, Article ID 103976, 13 p. (2021). MSC: 37J06 37L05 70H03 70H05 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Geom. Phys. 160, Article ID 103976, 13 p. (2021; Zbl 07299624) Full Text: DOI
Li, Xiaojun Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations. (English) Zbl 07297744 J. Differ. Equations 276, 1-42 (2021). MSC: 35Q30 35B40 37B55 35B41 37L30 37L05 PDF BibTeX XML Cite \textit{X. Li}, J. Differ. Equations 276, 1--42 (2021; Zbl 07297744) Full Text: DOI
Li, Chan; Liang, Jin; Xiao, Ti-Jun Asymptotic behaviours of solutions for wave equations with damped Wentzell boundary conditions but no interior damping. (English) Zbl 07283576 J. Differ. Equations 271, 76-106 (2021). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L05 35Q74 47D06 93D15 74D10 35B35 35B30 74M05 PDF BibTeX XML Cite \textit{C. Li} et al., J. Differ. Equations 271, 76--106 (2021; Zbl 07283576) Full Text: DOI
Bishop, Sheila A.; Eke, Kanayo S.; Okagbue, Hilary I. Advances on asymptotic stability of impulsive stochastic evolution equations. (English) Zbl 07264170 Int. J. Math. Comput. Sci. 16, No. 1, 99-109 (2021). MSC: 37H30 37L55 47J35 47H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Int. J. Math. Comput. Sci. 16, No. 1, 99--109 (2021; Zbl 07264170) Full Text: Link
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston M.; Zhou, Yong Periodic mild solutions of infinite delay second order evolution equations with impulses. (English) Zbl 07246086 Electron. J. Math. Analysis Appl. 9, No. 1, 179-190 (2021). MSC: 34G20 34G25 PDF BibTeX XML Cite \textit{S. Abbas} et al., Electron. J. Math. Analysis Appl. 9, No. 1, 179--190 (2021; Zbl 07246086) Full Text: Link
Shi, Ke A non-local expanding flow of convex closed curves in the plane. (English) Zbl 07308663 Int. J. Math. 31, No. 14, Article ID 2050115, 16 p. (2020). MSC: 35K15 35K55 53A04 53C44 PDF BibTeX XML Cite \textit{K. Shi}, Int. J. Math. 31, No. 14, Article ID 2050115, 16 p. (2020; Zbl 07308663) Full Text: DOI
Moroşanu, Gheorghe; Petruşel, Adrian Two-parameter second-order differential inclusions in Hilbert spaces. (English) Zbl 07307053 Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1-2, 274-294 (2020). MSC: 34G25 47J35 47H05 35K20 35L50 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1--2, 274--294 (2020; Zbl 07307053) Full Text: Link
Borah, Jayanta; Bora, Swaroop Nandan Sufficient conditions for existence of integral solution for non-instantaneous impulsive fractional evolution equations. (English) Zbl 07301247 Indian J. Pure Appl. Math. 51, No. 3, 1065-1082 (2020). MSC: 34A08 34G20 34A37 47N20 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Indian J. Pure Appl. Math. 51, No. 3, 1065--1082 (2020; Zbl 07301247) Full Text: DOI
Gürbüz, Nevin; Yoon, Dae Won Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space. (English) Zbl 07299080 Demonstr. Math. 53, 277-284 (2020). MSC: 53Z05 81Q70 PDF BibTeX XML Cite \textit{N. Gürbüz} and \textit{D. W. Yoon}, Demonstr. Math. 53, 277--284 (2020; Zbl 07299080) Full Text: DOI
Yang, He; Zhang, Yong Approximate controllability for a class of fractional evolution equations with nonlocal integral boundary conditions. (English) Zbl 07295580 J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1-7 (2020). MSC: 93B05 37L05 26A33 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1--7 (2020; Zbl 07295580) Full Text: DOI
Nakao, Hiroya; Mezić, Igor Spectral analysis of the Koopman operator for partial differential equations. (English) Zbl 07287043 Chaos 30, No. 11, 113131, 14 p. (2020). MSC: 35K90 35K20 35K58 47D06 PDF BibTeX XML Cite \textit{H. Nakao} and \textit{I. Mezić}, Chaos 30, No. 11, 113131, 14 p. (2020; Zbl 07287043) Full Text: DOI
Zhang, Lu; Zhou, Yong; Samet, Bessem Terminal value problems of fractional evolution equations. (English) Zbl 07283063 J. Integral Equations Appl. 32, No. 3, 377-393 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34G20 47N20 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Integral Equations Appl. 32, No. 3, 377--393 (2020; Zbl 07283063) Full Text: DOI Euclid
Roques, Lionel; Patout, Florian; Bonnefon, Olivier; Martin, Guillaume Adaptation in general temporally changing environments. (English) Zbl 07282656 SIAM J. Appl. Math. 80, No. 6, 2420-2447 (2020). MSC: 35Q92 35R09 45G10 45K05 45M05 92D10 92D15 PDF BibTeX XML Cite \textit{L. Roques} et al., SIAM J. Appl. Math. 80, No. 6, 2420--2447 (2020; Zbl 07282656) Full Text: DOI
Chernov, Andreĭ Vladimirovich On preservation of global solvability of controlled second kind operator equation. (Russian. English summary) Zbl 07281891 Ufim. Mat. Zh. 12, No. 1, 56-82 (2020); translation in Ufa Math. J. 12, No. 1, 56-81 (2020). MSC: 47J05 47J35 47N10 PDF BibTeX XML Cite \textit{A. V. Chernov}, Ufim. Mat. Zh. 12, No. 1, 56--82 (2020; Zbl 07281891); translation in Ufa Math. J. 12, No. 1, 56--81 (2020) Full Text: DOI MNR
Friesen, Martin; Kutoviy, Oleksandr Nonlinear perturbations of evolution systems in scales of Banach spaces. (English) Zbl 1452.35220 Nonlinearity 33, No. 11, 6134-6156 (2020). MSC: 35Q92 92D25 82C31 47H14 47H20 35Q84 PDF BibTeX XML Cite \textit{M. Friesen} and \textit{O. Kutoviy}, Nonlinearity 33, No. 11, 6134--6156 (2020; Zbl 1452.35220) Full Text: DOI
Schulz, Mario B. Unconditional existence of conformally hyperbolic Yamabe flows. (English) Zbl 07271839 Anal. PDE 13, No. 5, 1579-1590 (2020). Reviewer: John Urbas (Canberra) MSC: 53E99 53E20 35K55 35A01 35A02 PDF BibTeX XML Cite \textit{M. B. Schulz}, Anal. PDE 13, No. 5, 1579--1590 (2020; Zbl 07271839) Full Text: DOI
Sire, Yannick; Sogge, Christopher D.; Wang, Chengbo; Zhang, Junyong Strichartz estimates and Strauss conjecture on non-trapping asymptotically hyperbolic manifolds. (English) Zbl 07269819 Trans. Am. Math. Soc. 373, No. 11, 7639-7668 (2020). MSC: 47J35 35L71 35L05 35S30 PDF BibTeX XML Cite \textit{Y. Sire} et al., Trans. Am. Math. Soc. 373, No. 11, 7639--7668 (2020; Zbl 07269819) Full Text: DOI
Feng, Qingjiang; Yang, Juan Applying improved Kudryashov method to solve exact solutions of nonlinear equations. (Chinese. English summary) Zbl 07267369 Math. Pract. Theory 50, No. 4, 185-190 (2020). MSC: 35G20 35R11 PDF BibTeX XML Cite \textit{Q. Feng} and \textit{J. Yang}, Math. Pract. Theory 50, No. 4, 185--190 (2020; Zbl 07267369)
Wang, Xuan; Liang, Lanlan; Song, An The time-dependent attractors for abstract evolution equations with nonlinear damping. (Chinese. English summary) Zbl 07266944 J. Northwest Norm. Univ., Nat. Sci. 56, No. 1, 1-9 (2020). MSC: 35B41 37L05 37L30 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Northwest Norm. Univ., Nat. Sci. 56, No. 1, 1--9 (2020; Zbl 07266944) Full Text: DOI
Sirendaoerji Generalization of the variable separated equation method and its applications. (Chinese. English summary) Zbl 07266830 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 1, 1-8 (2020). MSC: 35A25 35C07 PDF BibTeX XML Cite \textit{Sirendaoerji}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 1, 1--8 (2020; Zbl 07266830) Full Text: DOI
Wang, Liangwei; Yin, Jingxue; Zhou, Langhao Equivalence relation between initial values and solutions for evolution \(p\)-Laplacian equation in unbounded space. (English) Zbl 07266474 Commun. Math. Res. 36, No. 1, 51-67 (2020). MSC: 35K55 35B40 PDF BibTeX XML Cite \textit{L. Wang} et al., Commun. Math. Res. 36, No. 1, 51--67 (2020; Zbl 07266474) Full Text: DOI
Wang, Xin; Wei, Jiao; Geng, Xianguo Rational solutions for a (3+1)-dimensional nonlinear evolution equation. (English) Zbl 1450.35242 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105116, 11 p. (2020). MSC: 35Q55 35Q53 35C08 37K35 PDF BibTeX XML Cite \textit{X. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105116, 11 p. (2020; Zbl 1450.35242) Full Text: DOI
Beznea, Lucian; Boeangiu, Ana-Maria; Lupaşcu-Stamate, Oana \(h\)-transform of Doob and nonlocal branching processes. (English) Zbl 07262176 Anal. Math. Phys. 10, No. 4, Paper No. 47, 15 p. (2020). MSC: 60J80 60J45 60J35 60J57 47D07 60J25 60J40 31C05 PDF BibTeX XML Cite \textit{L. Beznea} et al., Anal. Math. Phys. 10, No. 4, Paper No. 47, 15 p. (2020; Zbl 07262176) Full Text: DOI
Popivanov, Petar; Slavova, Angela Explicit solutions of the hyperbolic Monge-Ampere type equation, of a nonlinear evolution system and their qualitative properties. (English) Zbl 07258556 C. R. Acad. Bulg. Sci. 73, No. 6, 767-775 (2020). Reviewer: Ivan Landjev (Sofia) MSC: 35L70 35Q55 35A30 35C05 37K10 81Q05 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, C. R. Acad. Bulg. Sci. 73, No. 6, 767--775 (2020; Zbl 07258556) Full Text: DOI
Beznea, Lucian; Lupaşcu-Stamate, Oana; Vrabie, Cătălin Ioan Stochastic solutions to evolution equations of non-local branching processes. (English) Zbl 07248585 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112021, 17 p. (2020). MSC: 60J80 35J60 60J68 60J45 60J35 47D07 PDF BibTeX XML Cite \textit{L. Beznea} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112021, 17 p. (2020; Zbl 07248585) Full Text: DOI
Nasibov, Sh. M. Collapse rate of solutions of the Cauchy problem for the nonlinear Schrödinger equation. (English. Russian original) Zbl 1445.81068 Theor. Math. Phys. 203, No. 3, 726-733 (2020); translation from Teor. Mat. Fiz. 203, No. 3, 342-350 (2020). MSC: 81U90 35Q55 35G25 41A17 PDF BibTeX XML Cite \textit{Sh. M. Nasibov}, Theor. Math. Phys. 203, No. 3, 726--733 (2020; Zbl 1445.81068); translation from Teor. Mat. Fiz. 203, No. 3, 342--350 (2020) Full Text: DOI
Oloo, J. O.; Shrira, V. I. Boundary layer collapses described by the two-dimensional intermediate long-wave equation. (English. Russian original) Zbl 1440.76029 Theor. Math. Phys. 203, No. 1, 512-523 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 91-105 (2020). MSC: 76D10 76F06 PDF BibTeX XML Cite \textit{J. O. Oloo} and \textit{V. I. Shrira}, Theor. Math. Phys. 203, No. 1, 512--523 (2020; Zbl 1440.76029); translation from Teor. Mat. Fiz. 203, No. 1, 91--105 (2020) Full Text: DOI
Kalita, Piotr; Zgliczyński, Piotr On non-autonomously forced Burgers equation with periodic and Dirichlet boundary conditions. (English) Zbl 07220515 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 2025-2054 (2020). Reviewer: Jörg Härterich (Bochum) MSC: 37L30 37L05 37L15 35B35 35B40 35K55 35B41 PDF BibTeX XML Cite \textit{P. Kalita} and \textit{P. Zgliczyński}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 4, 2025--2054 (2020; Zbl 07220515) Full Text: DOI
Akylas, T. R. David J. Benney: nonlinear wave and instability processes in fluid flows. (English) Zbl 1439.76013 Davis, Stephen H. (ed.) et al., Annual review of fluid mechanics. Vol. 52. Palo Alto, CA: Annual Reviews. Annu. Rev. Fluid Mech. 52, 21-36 (2020). MSC: 76B15 76E30 76B25 01A70 76-02 PDF BibTeX XML Cite \textit{T. R. Akylas}, Annu. Rev. Fluid Mech. 52, 21--36 (2020; Zbl 1439.76013) Full Text: DOI
Yi, Taishan; Chen, Yuming; Wu, Jianhong Asymptotic propagations of asymptotical monostable type equations with shifting habitats. (English) Zbl 1448.35308 J. Differ. Equations 269, No. 7, 5900-5930 (2020). MSC: 35K58 35B51 35K57 37L05 45M05 PDF BibTeX XML Cite \textit{T. Yi} et al., J. Differ. Equations 269, No. 7, 5900--5930 (2020; Zbl 1448.35308) Full Text: DOI
Cui, Shangbin On the Banach manifold of simple domains in the Euclidean space and applications to free boundary problems. (English) Zbl 1448.58003 Acta Appl. Math. 167, No. 1, 117-148 (2020). MSC: 58B10 35J05 35R35 47J35 PDF BibTeX XML Cite \textit{S. Cui}, Acta Appl. Math. 167, No. 1, 117--148 (2020; Zbl 1448.58003) Full Text: DOI
El Allaoui, Abdelati; Melliani, Said; Chadli, Lalla Saadia Fuzzy solutions for impulsive evolution equations. (English) Zbl 1450.34010 Zerrik, El Hassan (ed.) et al., Recent advances in modeling, analysis and systems control: theoretical aspects and applications. Selected papers of the 8th workshop on modeling, analysis and systems control, Meknes, Morocco, October 26–27, 2018. Cham: Springer. Stud. Syst. Decis. Control 243, 49-65 (2020). Reviewer: Tatyana Komleva (Odessa) MSC: 34A07 34A37 34G20 PDF BibTeX XML Cite \textit{A. El Allaoui} et al., Stud. Syst. Decis. Control 243, 49--65 (2020; Zbl 1450.34010) Full Text: DOI
Favini, Angelo; Yagi, Atsushi Global existence for Laplace reaction-diffusion equations. (English) Zbl 1445.37053 Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1473-1493 (2020). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 37L05 37L15 35J15 35Q79 35M13 35K05 35K57 PDF BibTeX XML Cite \textit{A. Favini} and \textit{A. Yagi}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 5, 1473--1493 (2020; Zbl 1445.37053) Full Text: DOI
Heihoff, Frederic Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term. (English) Zbl 1434.35246 Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020). MSC: 35Q91 35B40 35K55 91D10 PDF BibTeX XML Cite \textit{F. Heihoff}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020; Zbl 1434.35246) Full Text: DOI
Subashini, Ramasamy; Ravichandran, Chokkalingam; Jothimani, Kasthurisamy; Baskonus, Haci Mehmet Existence results of Hilfer integro-differential equations with fractional order. (English) Zbl 1450.45006 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 911-923 (2020). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 34A08 47J35 PDF BibTeX XML Cite \textit{R. Subashini} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 911--923 (2020; Zbl 1450.45006) Full Text: DOI
Eikmeier, André; Emmrich, Etienne; Kreusler, Hans-Christian Nonlinear evolution equations with exponentially decaying memory: existence via time discretisation, uniqueness, and stability. (English) Zbl 07194988 Comput. Methods Appl. Math. 20, No. 1, 89-108 (2020). MSC: 47J35 45K05 34K30 35K90 35R09 65J08 65M12 PDF BibTeX XML Cite \textit{A. Eikmeier} et al., Comput. Methods Appl. Math. 20, No. 1, 89--108 (2020; Zbl 07194988) Full Text: DOI
Gou, Haide; Li, Yongxiang The method of lower and upper solutions for impulsive fractional evolution equations. (English) Zbl 1441.34008 Ann. Funct. Anal. 11, No. 2, 350-369 (2020). MSC: 34A08 34A37 34A45 34G20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Ann. Funct. Anal. 11, No. 2, 350--369 (2020; Zbl 1441.34008) Full Text: DOI
Antoniouk, Alexandra V.; Khrennikov, Andrei Yu.; Kochubei, Anatoly N. Multidimensional nonlinear pseudo-differential evolution equation with \(p\)-adic spatial variables. (English) Zbl 07193644 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311-343 (2020). Reviewer: Manuel Cruz-López (Guanajuato) MSC: 35S10 47J35 11S80 60J25 76S05 35K65 35R11 PDF BibTeX XML Cite \textit{A. V. Antoniouk} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 1, 311--343 (2020; Zbl 07193644) Full Text: DOI
Qin, Yonghui; Ma, Heping Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations. (English) Zbl 1436.65149 Appl. Numer. Math. 153, 52-65 (2020). MSC: 65M70 65N35 65N30 65M15 65D30 PDF BibTeX XML Cite \textit{Y. Qin} and \textit{H. Ma}, Appl. Numer. Math. 153, 52--65 (2020; Zbl 1436.65149) Full Text: DOI
Sapountzoglou, Niklas Entropy solutions to doubly nonlinear integro-differential equations. (English) Zbl 1447.45012 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020). MSC: 45K05 47J35 45D05 35D99 PDF BibTeX XML Cite \textit{N. Sapountzoglou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020; Zbl 1447.45012) Full Text: DOI
Tölle, Jonas M. Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions. (English) Zbl 1439.35250 Stochastic Processes Appl. 130, No. 5, 3220-3248 (2020). MSC: 35K55 35K92 60H15 49J40 58J65 PDF BibTeX XML Cite \textit{J. M. Tölle}, Stochastic Processes Appl. 130, No. 5, 3220--3248 (2020; Zbl 1439.35250) Full Text: DOI
Das, Nilima; Saha, Jitraj; Kumar, Jitendra An application of semigroup theory to the pure fragmentation equation. (English) Zbl 1439.35130 J. Anal. 28, No. 1, 95-106 (2020). Reviewer: Philippe Laurençot (Toulouse) MSC: 35F25 35D35 45K05 47D06 PDF BibTeX XML Cite \textit{N. Das} et al., J. Anal. 28, No. 1, 95--106 (2020; Zbl 1439.35130) Full Text: DOI
Chung, Jaywan; Kim, Yong-Jung; Kwon, Ohsang; Pan, Xingbin Discontinuous nonlinearity and finite time extinction. (English) Zbl 1431.35073 SIAM J. Math. Anal. 52, No. 1, 894-926 (2020). MSC: 35K57 35J60 35J65 35Q92 92D15 PDF BibTeX XML Cite \textit{J. Chung} et al., SIAM J. Math. Anal. 52, No. 1, 894--926 (2020; Zbl 1431.35073) Full Text: DOI
Liu, Zhengguang; Li, Xiaoli Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. (English) Zbl 1434.65125 Appl. Numer. Math. 150, 491-506 (2020). MSC: 65M06 65F10 65M22 65J08 35K35 35K55 35Q82 82C26 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{X. Li}, Appl. Numer. Math. 150, 491--506 (2020; Zbl 1434.65125) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Approximate controllability of non-autonomous evolution system with nonlocal conditions. (English) Zbl 1439.34065 J. Dyn. Control Syst. 26, No. 1, 1-16 (2020). MSC: 34G20 37C60 34B10 93B05 34H05 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Dyn. Control Syst. 26, No. 1, 1--16 (2020; Zbl 1439.34065) Full Text: DOI
Zhang, Junyong; Zheng, Jiqiang Strichartz estimates and wave equation in a conic singular space. (English) Zbl 1433.42026 Math. Ann. 376, No. 1-2, 525-581 (2020). MSC: 42B37 35L05 35Q40 47J35 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Zheng}, Math. Ann. 376, No. 1--2, 525--581 (2020; Zbl 1433.42026) Full Text: DOI
Hussain, Javed On existence and invariance of sphere, of solutions of constrained evolution equation. (English) Zbl 1429.35110 Int. J. Math. Comput. Sci. 15, No. 1, 325-345 (2020). MSC: 35K15 35R01 35K55 35Q30 35Q60 58J65 PDF BibTeX XML Cite \textit{J. Hussain}, Int. J. Math. Comput. Sci. 15, No. 1, 325--345 (2020; Zbl 1429.35110) Full Text: Link
Mirhosseini-Alizamini, Seyed Mehdi; Rezazadeh, Hadi; Eslami, Mostafa; Mirzazadeh, Mohammad; Korkmaz, Alpert New extended direct algebraic method for the Tzitzéica type evolution equations arising in nonlinear optics. (English) Zbl 1449.35407 Comput. Methods Differ. Equ. 8, No. 1, 28-53 (2020). MSC: 35Q60 35A30 35C05 35L71 78A60 PDF BibTeX XML Cite \textit{S. M. Mirhosseini-Alizamini} et al., Comput. Methods Differ. Equ. 8, No. 1, 28--53 (2020; Zbl 1449.35407) Full Text: DOI
Sun, Chenmin; Zheng, Jiqiang Low regularity blowup solutions for the mass-critical NLS in higher dimensions. (English. French summary) Zbl 1430.35180 J. Math. Pures Appl. (9) 134, 255-298 (2020). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 35P25 35Q55 47J35 PDF BibTeX XML Cite \textit{C. Sun} and \textit{J. Zheng}, J. Math. Pures Appl. (9) 134, 255--298 (2020; Zbl 1430.35180) Full Text: DOI arXiv
Liu, Guowei; Wang, Weike Decay estimates for a dissipative-dispersive linear semigroup and application to the viscous Boussinesq equation. (English) Zbl 1436.35281 J. Funct. Anal. 278, No. 7, Article ID 108413, 21 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35B40 47D03 47J35 35B65 76D05 PDF BibTeX XML Cite \textit{G. Liu} and \textit{W. Wang}, J. Funct. Anal. 278, No. 7, Article ID 108413, 21 p. (2020; Zbl 1436.35281) Full Text: DOI
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI
Wang, Yuehu; Zhang, Congjun Existence results of partial differential mixed variational inequalities without Lipschitz continuity. (English) Zbl 1437.35514 J. Math. Anal. Appl. 484, No. 1, Article ID 123710, 15 p. (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35M86 47J20 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{C. Zhang}, J. Math. Anal. Appl. 484, No. 1, Article ID 123710, 15 p. (2020; Zbl 1437.35514) Full Text: DOI
Mizutani, Haruya; Zhang, Junyong; Zheng, Jiqiang Uniform resolvent estimates for Schrödinger operator with an inverse-square potential. (English) Zbl 1429.42027 J. Funct. Anal. 278, No. 4, Article ID 108350, 29 p. (2020). MSC: 42B37 35Q40 35J10 35Q41 47J35 PDF BibTeX XML Cite \textit{H. Mizutani} et al., J. Funct. Anal. 278, No. 4, Article ID 108350, 29 p. (2020; Zbl 1429.42027) Full Text: DOI arXiv
Sánchez, Justino Asymptotic behavior of solutions of a \(k\)-Hessian evolution equation. (English) Zbl 07143195 J. Differ. Equations 268, No. 4, 1840-1853 (2020). MSC: 47J35 35C06 35B40 35K55 PDF BibTeX XML Cite \textit{J. Sánchez}, J. Differ. Equations 268, No. 4, 1840--1853 (2020; Zbl 07143195) Full Text: DOI arXiv
Yi, Taishan; Zou, Xingfu Propagation and heterogeneous steady states in a delayed nonlocal R-D equation without spatial translation-invariance. (English) Zbl 1427.35132 J. Differ. Equations 268, No. 4, 1600-1632 (2020). MSC: 35K57 35R10 37L05 45M05 PDF BibTeX XML Cite \textit{T. Yi} and \textit{X. Zou}, J. Differ. Equations 268, No. 4, 1600--1632 (2020; Zbl 1427.35132) Full Text: DOI
Liu, Zhiming; Yang, Zhijian Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. (English) Zbl 1427.37059 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 223-240 (2020). MSC: 37L05 37L30 35B33 35B40 35B41 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Z. Yang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 223--240 (2020; Zbl 1427.37059) Full Text: DOI
Chow, Shui-Nee; Li, Wuchen; Zhou, Haomin Wasserstein Hamiltonian flows. (English) Zbl 1428.35007 J. Differ. Equations 268, No. 3, 1205-1219 (2020). MSC: 35A15 47J35 PDF BibTeX XML Cite \textit{S.-N. Chow} et al., J. Differ. Equations 268, No. 3, 1205--1219 (2020; Zbl 1428.35007) Full Text: DOI arXiv
Benedetti, Irene; Rocha, Eugenio M. Existence results for evolution equations with superlinear growth. (English) Zbl 07314056 Topol. Methods Nonlinear Anal. 54, No. 2B, 917-936 (2019). MSC: 34G99 47D06 47H06 47H10 35K58 PDF BibTeX XML Cite \textit{I. Benedetti} and \textit{E. M. Rocha}, Topol. Methods Nonlinear Anal. 54, No. 2B, 917--936 (2019; Zbl 07314056) Full Text: DOI Euclid
Bokalo, Mykola; Ilnytska, Olga Problems without initial conditions for nonlinear evolution inclusions with variable time-delay. (English) Zbl 07308382 J. Nonlinear Evol. Equ. Appl. 2019, 59-79 (2019). MSC: 26D10 49J40 47J20 47J22 PDF BibTeX XML Cite \textit{M. Bokalo} and \textit{O. Ilnytska}, J. Nonlinear Evol. Equ. Appl. 2019, 59--79 (2019; Zbl 07308382) Full Text: Link
Rovenski, Vladimir Prescribing the mixed scalar curvature of a foliation. (English) Zbl 07276338 Balkan J. Geom. Appl. 24, No. 1, 73-92 (2019). MSC: 53C12 53E99 PDF BibTeX XML Cite \textit{V. Rovenski}, Balkan J. Geom. Appl. 24, No. 1, 73--92 (2019; Zbl 07276338) Full Text: Link
Chowdhury, Dipankar; Debsarma, S. Nonlinear evolution equations of co-propagating waves over finite depth fluid. (English) Zbl 1445.76018 Water Waves 1, No. 2, 259-273 (2019). MSC: 76B15 76E99 PDF BibTeX XML Cite \textit{D. Chowdhury} and \textit{S. Debsarma}, Water Waves 1, No. 2, 259--273 (2019; Zbl 1445.76018) Full Text: DOI
Deng, Changrui; Zhou, Xiaohong New exact solutions of \( (2+1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation. (Chinese. English summary) Zbl 1449.35364 J. Nanchang Univ., Nat. Sci. 43, No. 4, 331-335 (2019). MSC: 35Q51 47J35 PDF BibTeX XML Cite \textit{C. Deng} and \textit{X. Zhou}, J. Nanchang Univ., Nat. Sci. 43, No. 4, 331--335 (2019; Zbl 1449.35364) Full Text: DOI
Zapov, Aleksandr Sergeevich On one mathematical model in elastic stability theory. (Russian. English summary) Zbl 1442.35450 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 29, No. 1, 29-39 (2019). MSC: 35Q74 35B10 35B05 74H45 PDF BibTeX XML Cite \textit{A. S. Zapov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 29, No. 1, 29--39 (2019; Zbl 1442.35450) Full Text: DOI MNR
Fedorov, Vladimir E.; Avilovich, Anna S.; Borel, Lidiya V. Initial problems for semilinear degenerate evolution equations of fractional order in the sectorial case. (English) Zbl 1443.34010 Area, Iván (ed.) et al., Nonlinear analysis and boundary value problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7, 2018. Proceedings of the international conference. Dedicated to Juan J. Nieto on the occasion of his 60th birthday. Cham: Springer. Springer Proc. Math. Stat. 292, 41-62 (2019). MSC: 34A08 34G20 34A09 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Springer Proc. Math. Stat. 292, 41--62 (2019; Zbl 1443.34010) Full Text: DOI
Raheem, A.; Kumar, M. On controllability for a nondensely defined fractional differential equation with a deviated argument. (English) Zbl 07199048 Math. Sci., Springer 13, No. 4, 407-413 (2019). MSC: 34K37 34G20 47D06 49K21 93B05 PDF BibTeX XML Cite \textit{A. Raheem} and \textit{M. Kumar}, Math. Sci., Springer 13, No. 4, 407--413 (2019; Zbl 07199048) Full Text: DOI
Wu, Hong-Yu; Jiang, Li-Hong Instruction on the construction of coherent structures based on variable separation solutions of \((2+1)\)-dimensional nonlinear evolution equations in fluid mechanics. (English) Zbl 1430.35202 Nonlinear Dyn. 97, No. 1, 403-412 (2019). MSC: 35Q35 37K40 37K10 35C05 PDF BibTeX XML Cite \textit{H.-Y. Wu} and \textit{L.-H. Jiang}, Nonlinear Dyn. 97, No. 1, 403--412 (2019; Zbl 1430.35202) Full Text: DOI
Liao, Wei-Hung The eternal solution to the cross curvature flow exists in 3-manifolds of negative sectional curvature. (English) Zbl 1433.53123 Turk. J. Math. 43, No. 5, 2444-2450 (2019). MSC: 53E20 35K55 53C21 PDF BibTeX XML Cite \textit{W.-H. Liao}, Turk. J. Math. 43, No. 5, 2444--2450 (2019; Zbl 1433.53123) Full Text: Link
Yang, Juan; Zeng, Chunhua; Feng, Qingjiang New exact solutions for a class of nonlinear fractional evolution equations. (Chinese. English summary) Zbl 1449.47130 Math. Pract. Theory 49, No. 12, 255-261 (2019). MSC: 47J35 35R11 PDF BibTeX XML Cite \textit{J. Yang} et al., Math. Pract. Theory 49, No. 12, 255--261 (2019; Zbl 1449.47130)
Zgurovsky, M. Z.; Kas’yanov, P. O.; Gorban’, N. V.; Paliĭchuk, L. S. Qualitative and quantitative analysis of weak solutions of energy-balance climate models. (English. Russian original) Zbl 1427.37066 Cybern. Syst. Anal. 55, No. 4, 552-560 (2019); translation from Kibern. Sist. Anal. 2019, No. 4, 39-49 (2019). MSC: 37N10 37L30 37L05 86A08 35K57 PDF BibTeX XML Cite \textit{M. Z. Zgurovsky} et al., Cybern. Syst. Anal. 55, No. 4, 552--560 (2019; Zbl 1427.37066); translation from Kibern. Sist. Anal. 2019, No. 4, 39--49 (2019) Full Text: DOI
Muslim, M.; George, Raju K. Trajectory controllability of the nonlinear systems governed by fractional differential equations. (English) Zbl 1434.34015 Differ. Equ. Dyn. Syst. 27, No. 4, 529-537 (2019). MSC: 34A08 34H05 34G20 47D06 PDF BibTeX XML Cite \textit{M. Muslim} and \textit{R. K. George}, Differ. Equ. Dyn. Syst. 27, No. 4, 529--537 (2019; Zbl 1434.34015) Full Text: DOI
Mishra, Indira Almost automorphy and Riccati equation. (English) Zbl 1433.49051 Differ. Equ. Dyn. Syst. 27, No. 4, 379-394 (2019). Reviewer: Savin Treanta (Bucharest) MSC: 49N10 34C27 37L05 93B52 PDF BibTeX XML Cite \textit{I. Mishra}, Differ. Equ. Dyn. Syst. 27, No. 4, 379--394 (2019; Zbl 1433.49051) Full Text: DOI arXiv
Kowalski, K.; Rembieliński, J. Integrable nonlinear evolution of the qubit. (English) Zbl 1427.35219 Ann. Phys. 411, Article ID 167955, 12 p. (2019). MSC: 35Q40 81Q05 PDF BibTeX XML Cite \textit{K. Kowalski} and \textit{J. Rembieliński}, Ann. Phys. 411, Article ID 167955, 12 p. (2019; Zbl 1427.35219) Full Text: DOI
Akagi, Goro; Efendiev, Messoud Allen-Cahn equation with strong irreversibility. (English) Zbl 1427.35110 Eur. J. Appl. Math. 30, No. 4, 707-755 (2019). MSC: 35K55 35Q74 35K86 35B41 PDF BibTeX XML Cite \textit{G. Akagi} and \textit{M. Efendiev}, Eur. J. Appl. Math. 30, No. 4, 707--755 (2019; Zbl 1427.35110) Full Text: DOI arXiv
Tsyfra, I. M.; Rzeszut, W. Lie-Bäcklund symmetry reduction of nonlinear and non-evolution equations. (English) Zbl 1438.37043 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 174-180 (2019). Reviewer: S. V. Spichak (Kyïv) MSC: 37K35 35Q53 35C05 PDF BibTeX XML Cite \textit{I. M. Tsyfra} and \textit{W. Rzeszut}, Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 174--180 (2019; Zbl 1438.37043)
Vaneeva, O. O. Exact solutions of Fisher equations with time-dependent coefficients. (Ukrainian. English summary) Zbl 1438.35085 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 44-49 (2019). Reviewer: V. M. Boĭko (Kyïv) MSC: 35C05 35K57 35K58 PDF BibTeX XML Cite \textit{O. O. Vaneeva}, Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 44--49 (2019; Zbl 1438.35085)
Boĭko, V. M.; Lokazyuk, O. V. \((1+1)\)-dimensional nonlinear evolution equations of the second order with maximal Lie symmetries. (Ukrainian. English summary) Zbl 1438.35005 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 16-21 (2019). Reviewer: O. Vaneeva (Kyïv) MSC: 35A30 58J70 35K10 35K55 PDF BibTeX XML Cite \textit{V. M. Boĭko} and \textit{O. V. Lokazyuk}, Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 1, 16--21 (2019; Zbl 1438.35005)
Slyusarchuk, V. Yu. Instability of unbounded solutions of evolution equations with operator coefficients commuting with rotation operators. (Ukrainian. English summary) Zbl 1438.34216 Bukovyn. Mat. Zh. 7, No. 1, 99-113 (2019). MSC: 34G20 34A37 34D20 39A22 34C14 PDF BibTeX XML Cite \textit{V. Yu. Slyusarchuk}, Bukovyn. Mat. Zh. 7, No. 1, 99--113 (2019; Zbl 1438.34216) Full Text: Link
Kabelitz, C.; Linz, S. J. The dynamics of geometric PDEs: surface evolution equations and a comparison with their small gradient approximations. (English) Zbl 1430.53106 Chaos 29, No. 10, 103119, 15 p. (2019). MSC: 53E99 35K55 PDF BibTeX XML Cite \textit{C. Kabelitz} and \textit{S. J. Linz}, Chaos 29, No. 10, 103119, 15 p. (2019; Zbl 1430.53106) Full Text: DOI
Wen, Zhenshu Abundant dynamical behaviors of bounded traveling wave solutions to generalized \(\theta\)-equation. (English) Zbl 1427.37060 Comput. Math. Math. Phys. 59, No. 6, 926-935 (2019). MSC: 37L05 37L10 35C07 PDF BibTeX XML Cite \textit{Z. Wen}, Comput. Math. Math. Phys. 59, No. 6, 926--935 (2019; Zbl 1427.37060) Full Text: DOI
Kulikov, A. N.; Kulikov, D. A. Local bifurcations in the Cahn-Hilliard and Kuramoto-Sivashinsky equations and in their generalizations. (English. Russian original) Zbl 1430.35021 Comput. Math. Math. Phys. 59, No. 4, 630-643 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 670-683 (2019). MSC: 35B32 35K35 35K58 35B35 37L10 PDF BibTeX XML Cite \textit{A. N. Kulikov} and \textit{D. A. Kulikov}, Comput. Math. Math. Phys. 59, No. 4, 630--643 (2019; Zbl 1430.35021); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 670--683 (2019) Full Text: DOI
Rouhani, Behzad Djafari; Piranfar, Mohsen Rahimi Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time. (English) Zbl 1427.35159 Demonstr. Math. 52, 274-282 (2019). MSC: 35L90 35B40 47H05 34C12 34G20 34G25 PDF BibTeX XML Cite \textit{B. D. Rouhani} and \textit{M. R. Piranfar}, Demonstr. Math. 52, 274--282 (2019; Zbl 1427.35159) Full Text: DOI
Eisenmann, Monika; Emmrich, Etienne; Mehrmann, Volker Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. (English) Zbl 07116743 Evol. Equ. Control Theory 8, No. 2, 315-342 (2019). MSC: 47J35 35K58 65J15 65M12 34H05 49J99 PDF BibTeX XML Cite \textit{M. Eisenmann} et al., Evol. Equ. Control Theory 8, No. 2, 315--342 (2019; Zbl 07116743) Full Text: DOI arXiv
Bu, Shangquan; Cai, Gang Well-posedness of fractional degenerate differential equations in Banach spaces. (English) Zbl 1426.34008 Fract. Calc. Appl. Anal. 22, No. 2, 379-395 (2019). Reviewer: Pham Viet Hai (Hanoi) MSC: 34A08 34A09 34G20 47D06 47A10 PDF BibTeX XML Cite \textit{S. Bu} and \textit{G. Cai}, Fract. Calc. Appl. Anal. 22, No. 2, 379--395 (2019; Zbl 1426.34008) Full Text: DOI
Onodera, Eiji Local existence of a fourth-order dispersive curve flow on locally Hermitian symmetric spaces and its application. (English) Zbl 1425.53086 Differ. Geom. Appl. 67, Article ID 101560, 26 p. (2019). MSC: 53C44 35Q35 35Q40 35Q55 35G61 53C21 PDF BibTeX XML Cite \textit{E. Onodera}, Differ. Geom. Appl. 67, Article ID 101560, 26 p. (2019; Zbl 1425.53086) Full Text: DOI
Golse, François; Ha, Seung-Yeal A mean-field limit of the Lohe matrix model and emergent dynamics. (English) Zbl 1425.37046 Arch. Ration. Mech. Anal. 234, No. 3, 1445-1491 (2019). MSC: 37L05 82C40 35Q83 35Q82 PDF BibTeX XML Cite \textit{F. Golse} and \textit{S.-Y. Ha}, Arch. Ration. Mech. Anal. 234, No. 3, 1445--1491 (2019; Zbl 1425.37046) Full Text: DOI
Bao, Xia; Sirendaoerji The early development of the forty of solitons in China – the 40th anniversary for study of the soliton theory in China. (Chinese. English summary) Zbl 07113341 Math. Pract. Theory 49, No. 2, 279-285 (2019). MSC: 37-03 01A60 37K40 PDF BibTeX XML Cite \textit{X. Bao} and \textit{Sirendaoerji}, Math. Pract. Theory 49, No. 2, 279--285 (2019; Zbl 07113341)
Cao, Junfei; Huang, Zaitang Asymptotic almost periodicity of stochastic evolution equations. (English) Zbl 1427.34080 Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2295-2332 (2019). MSC: 34F05 34C27 34G20 PDF BibTeX XML Cite \textit{J. Cao} and \textit{Z. Huang}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2295--2332 (2019; Zbl 1427.34080) Full Text: DOI
Shen, Jie; Xu, Jie; Yang, Jiang A new class of efficient and robust energy stable schemes for gradient flows. (English) Zbl 1422.65080 SIAM Rev. 61, No. 3, 474-506 (2019). MSC: 65J08 35K20 35K35 35K55 65Z05 35Q35 PDF BibTeX XML Cite \textit{J. Shen} et al., SIAM Rev. 61, No. 3, 474--506 (2019; Zbl 1422.65080) Full Text: DOI arXiv
Poon, Chi-Cheung Blowup rate of solutions of a degenerate nonlinear parabolic equation. (English) Zbl 1420.35114 Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5317-5336 (2019). MSC: 35K20 35K55 35K65 PDF BibTeX XML Cite \textit{C.-C. Poon}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5317--5336 (2019; Zbl 1420.35114) Full Text: DOI
Mortell, Michael P.; Seymour, Brian R. The evolution of resonance: a multiscale approach to the effect of nonlinearity, frequency dispersion and geometry. (English) Zbl 1447.35272 Math. Model. Nat. Phenom. 14, No. 4, Paper No. 403, 20 p. (2019). MSC: 35Q35 35L05 35L67 35B34 76L05 PDF BibTeX XML Cite \textit{M. P. Mortell} and \textit{B. R. Seymour}, Math. Model. Nat. Phenom. 14, No. 4, Paper No. 403, 20 p. (2019; Zbl 1447.35272) Full Text: DOI
Pham Loi Vu Inverse scattering problems and their application to nonlinear integrable equations. (English) Zbl 1444.35001 Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press (ISBN 978-0-367-33489-5/hbk; 978-0-429-32845-9/ebook). xxvi, 388 p. (2020). Reviewer: Khanlar R. Mamedov (Mersin) MSC: 35-01 35R30 37Kxx PDF BibTeX XML Cite \textit{Pham Loi Vu}, Inverse scattering problems and their application to nonlinear integrable equations. Boca Raton, FL: CRC Press (2019; Zbl 1444.35001) Full Text: DOI
Guo, Shunzi Horospherical convex hypersurfaces contracting of the hyperbolic space by functions of the mean curvature. (English) Zbl 1420.53074 Int. J. Math. 30, No. 8, Article ID 1950039, 22 p. (2019). MSC: 53C44 35K55 58J35 35B40 PDF BibTeX XML Cite \textit{S. Guo}, Int. J. Math. 30, No. 8, Article ID 1950039, 22 p. (2019; Zbl 1420.53074) Full Text: DOI
Bauzet, Caroline; Lebon, Frédéric; Maitlo, Asghar The Neumann problem for a Barenblatt equation with a multiplicative stochastic force and a nonlinear source term. (English) Zbl 07086120 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019). MSC: 47J35 60H15 47H10 47H05 PDF BibTeX XML Cite \textit{C. Bauzet} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019; Zbl 07086120) Full Text: DOI
Zhang, Guoqing; Song, Ningning Travelling solitary waves for boson stars. (English) Zbl 1418.35319 Electron. J. Differ. Equ. 2019, Paper No. 73, 12 p. (2019). MSC: 35Q40 35Q55 47J35 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{N. Song}, Electron. J. Differ. Equ. 2019, Paper No. 73, 12 p. (2019; Zbl 1418.35319) Full Text: Link
Khanmamedov, A. Kh.; Guseinov, A. M.; Vekilov, M. M. Algorithm for solving the Cauchy problem for one infinite-dimensional system of nonlinear differential equations. (English. Russian original) Zbl 1421.34010 Comput. Math. Math. Phys. 59, No. 2, 236-240 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 2, 247-251 (2019). MSC: 34A33 34A12 PDF BibTeX XML Cite \textit{A. Kh. Khanmamedov} et al., Comput. Math. Math. Phys. 59, No. 2, 236--240 (2019; Zbl 1421.34010); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 2, 247--251 (2019) Full Text: DOI
Debsarma, S.; Chowdhury, D. Evolution of a pair of random inhomogeneous wave systems over infinite-depth water. (English) Zbl 1415.76064 ANZIAM J. 61, No. 2, 233-247 (2019). MSC: 76B15 76B07 86A05 PDF BibTeX XML Cite \textit{S. Debsarma} and \textit{D. Chowdhury}, ANZIAM J. 61, No. 2, 233--247 (2019; Zbl 1415.76064) Full Text: DOI
Zeng, Biao Feedback control systems governed by evolution equations. (English) Zbl 1416.93081 Optimization 68, No. 6, 1223-1243 (2019). MSC: 93B52 93C23 93C25 93B05 47J35 PDF BibTeX XML Cite \textit{B. Zeng}, Optimization 68, No. 6, 1223--1243 (2019; Zbl 1416.93081) Full Text: DOI
Gutiérrez, Susana; de Laire, André The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions. (English) Zbl 1415.35269 Nonlinearity 32, No. 7, 2522-2563 (2019). MSC: 35R05 35Q60 35A01 35C06 35B35 35Q55 35Q56 35A02 53C44 PDF BibTeX XML Cite \textit{S. Gutiérrez} and \textit{A. de Laire}, Nonlinearity 32, No. 7, 2522--2563 (2019; Zbl 1415.35269) Full Text: DOI arXiv
Kreulich, Josef Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings. (English) Zbl 07064712 Adv. Nonlinear Anal. 8, 1-28 (2019). MSC: 47J35 37L05 35B40 PDF BibTeX XML Cite \textit{J. Kreulich}, Adv. Nonlinear Anal. 8, 1--28 (2019; Zbl 07064712) Full Text: DOI